
690 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

CANBLWO: A Novel Hybrid Approach for

Semantic Text Generation

Abhishek Kumar Pandey

School of Computer Science and Engineering

Vellore Institute of Technology, India

abhishek.pandey2020@vitstudent.ac.in

Sanjiban Sekhar Roy

School of Computer Science and Engineering

Vellore Institute of Technology, India

s.roy@vit.ac.in

Abstract: Semantic text generation is critical in Natural Language Processing (NLP) as it faces challenges such as

maintenance of coherence among texts, contextual relevance, and quality output. Traditional language models often produce

grammatically inconsistent text. To address these issues, we introduce Convolutional Attention Bi-LSTM with Whale

Optimization (CANBLWO), a novel hybrid model that integrates a Convolutional Attention Network (CAN), Bidirectional Long

Short-Term Memory (Bi-LSTM), and Whale Optimization Algorithm (WOA). CANBLWO aims to generate semantically rich and

coherent text and outperforms the traditional models like Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN),

Bi-LSTM, and Bi-LSTM with attention, Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-

trained Transformer 2 (GPT-2). Our model achieved 0.79, 0.78, 0.76, and 0.82 scores in Metric for Evaluation of Translation

with Explicit Ordering (METEOR), Bi-Lingual Evaluation Understudy (BLEU), Consensus-based Image Description Evaluation

(Ciders), and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics, respectively. The proposed model also

demonstrates 97% and 96% accuracy on Wiki-Bio and Code/Natural Language Challenge (CoNaLa) datasets, highlighting its

effectiveness against Large Language Models (LLMs). This study underscores the potential capability of hybrid approaches in

enhancing semantic text generation.

Keywords: Natural language processing, natural language generation, neural network, convolutional attention network,

whale optimization algorithm, BERT, large language model.

Received April 3, 2024; accepted July 23, 2024

https://doi.org/10.34028/iajit/21/4/11

1. Introduction

Natural Language Generation (NLG) has advanced

rapidly in the last ten years. It has helped to generate

automatic text such as reports, narratives, and Multiple

Choice Questions (MCQ). NLG is a challenging task

that requires effective handling of grammar, sentence

structure, semantic meaning, contextual relevance, and

tone or style. Semantically enhanced text generation

aims to produce text that is not only grammatically

correct but also semantically meaningful. This means

that the text should have a clear and coherent meaning

and be relevant to the context of the input dataset that

has already been generated. Seo et al. [42] have

proposed a valuable framework for generating text with

semantic control by leveraging the power of grammar-

based models. This research uses a transformer-based

encoder-decoder model. Yang et al. [58] have

introduced an innovative approach called dynamic

planning for generating text from data. Using dynamic

planning techniques, their proposed method addressed

the challenges of generating coherent and contextually

relevant text. Zhang et al. [60] presented emotional text

generation, namely cross-domain sentiment transfer,

using a Gated Neural Network (GRU)-based encode

decoder model.

Semantically enhanced text generation is important

in Natural Language Processing (NLP) because it can

improve text quality in various ways, such as generating

more natural and engaging text. It can also improve the

accuracy of machine translation, create more

informative, helpful chatbots, and develop more

effective marketing content. Shedko [44] proposed an

interactive and intelligent system based on Recurrent

Neural Networks (RNN) and Long Short-Term Memory

(LSTM) for generating creative text. Ding et al. [14]

presented a text summarization that uses semantic

attention to enhance the quality of the text summary

generation. The Large Language Model (LLMs) are

facing same kind of text generation problem as

mentioned by Qu et al. [34], in Bidirectional Encoder

Representations from Transformers (BERT) and

Generative Pre-trained Transformer 2 (GPT-2)

prediction models have been proposed, and in this work

authors have used BERT to generate intermediate

words. Here, GPT-2 has been used to generate a long

sentence or even articles [34]. LLMs used to go through

extensive training steps using massive datasets,

enabling them to utilize a spectrum of functions. These

include tasks such as translation, generating diverse

forms of creative content, and providing informative

responses to questions, even when they are complex,

unconventional, or puzzling. Therefore, LLMs

encounter several hurdles when it comes to generating

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 691

textual output. In our work, the proposed Convolutional

Attention Network (CAN) has enhanced the model’s

contextual understanding and feature extraction [57]. It

has also helped us identify grammatical structures such

as verb phrases and entities such as person,

organization, or location names. For example, in our

work, one instance of the data set, namely Wiki-Bio, is

“Otto extra is a German award-winning aerobatic pilot,”

and the proposed CAN model has identified the feature

map as “Otto extra” as a person’s name and “German”

as the nationality of that person. Bidirectional Long

Short-Term Memory (Bi-LSTM) helps us to extract

salient features such as co-referencing from the input

text; for example, consider a sentence, “extra was

trained as a mechanical engineer, and he began his flight

training in gliders” here the salient feature “extra”

referred to a named entity. Therefore, it is mapped with

the pronoun ‘he’ in the same sentence. Finally, we have

adopted the Whale Optimization Algorithm (WOA) for

optimizing the hyperparameter tuning [27]. We have

combined the advantages of CAN, Bi-LSTM, and WOA

to address the above challenges in generating

semantically rich text. We also have conducted a

comparative analysis of the proposed methodology

against popular LLMs such as BERT, GPT2, and other

deep learning methods such as Long Short-Term

Memory (LSTM), Bi-LSTM, and Bi-LSTM with

attention. BERT and GPT2 have demonstrated good

results. Moreover, this comparative analysis serves as a

valuable benchmark for assessing the performance of

the proposed methodology within the context of

language models and deep learning frameworks. The

generated text by proposed model is evaluated using

standard metrics such as Metric for Evaluation of

Translation with Explicit Ordering (METEOR), Bi-

Lingual Evaluation Understudy (BLEU), Consensus-

based Image Description Evaluation (CIDEr), and

Recall-Oriented Understudy for Gisting Evaluation

(ROUGE). The integration of WOA with the hybrid

CAN and Bi-LSTM model presents a promising

direction to achieve grammatically improved text.

The contributions of the manuscript are as follows:

• A comprehensive study on the semantic

enhancement of text generation problems has been

carried out. Existing models for text generation have

also been analyzed and how these models have

improved the quality of natural and engaging text

generation.

• We have proposed a hybrid model CANBLWO that

combines a convolutional attention network, Bi-

LSTM, and whale optimization. The proposed model

has highlighted the importance of the embedding

layer, attention layer, Bi-LSTM layer, and dense

layer as a stacked hybrid architecture. The proposed

model CANBLWO has obtained promising results in

comparison with the other existing language models

for text generation.

• CAN model has been empowered by Conv1D, and

we have shown the extraction process of features

from the text dataset such as Wiki-Bio, Code/Natural

Language Challenge ConALA, Internet Movie

Database (IMDb) and Gigaword. The potential

capability of the proposed Bi-LSTM model for the

decoding of feature maps of text as a stacking layer

has also been demonstrated, and finally, whale

optimization has tuned the model in terms of kernel

size, neuron, and batch size.

Figure 1. A Generative AI-based approach for context-based text generation.

692 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

Figure 1 shows the context-based text generation

using generative AI. This model used to operate in four

stages: pre-processing, data cleaning, modeling, and

text generation. In preprocessing steps, the conversion

of the whole text to lower case letters, replacement of

the words, removal of several unimportant characters,

stop-word removal, and finally, tokenization have been

carried out; afterward, the proposed model powered by

various computations such as embedding, encoding,

attention, and decoding are carried out. The standard

metrics of NLP applications such as BLEU, METEOR,

and ROUGE have been obtained to evaluate the

generated text quality.

The rest of the section of this paper has been

organized as follows: background work is presents in

section 2, the proposed model is described in section 3,

following up we provided results and analysis in section

4, and finally, the conclusion of the paper is presented

in section 5.

2. Related Work

In the literature, it can be found that traditional and

recent generative models [26, 40] are mostly adopted for

text generation. Van der Lee et al. [51] have

investigated a trainable approach for data-to-text

generation influenced by the templatization technique.

This approach has relied upon a rule-based method, so

it requires manual effort, and this has decreased the text

quality based on the BLEU score. Rules-based text

generation relies on the language’s grammar, syntax,

and semantics and it has been used for tasks like text

summarization and simplification, but they have

limitations as they are confined to predefined rules and

may not produce outcomes as natural as human-written

text. In the literature, also it can be found that statistical

methods such as Hidden Markov Models (HMM) and

N-gram have been used for large text corpora for

training. This training is accomplished in order to learn

patterns and dependencies among input text [19].

Statistical methods have been used in various Natural

Language Generation (NLG) tasks, such as language

modeling, text summarization, and machine translation.

Another different method such as the template-based

approach for text generation proposed by Van Deemter

et al. [50] is notable for its introduction of evolutionary

computation techniques, where the authors have

included a set of predefined templates and grammar

rules. Palivela [30] in his work has shown how to fine-

tune a text-to-text transfer transformer model for

paraphrase generation. In his work, paraphrasing is

achieved in two steps: the first step is known as

paraphrase identification, and the second step is

paraphrasing generation. Zhao et al. [61] have

combined BERT and context attention mechanisms to

generate short conversations. It combines the standard

Seq2Seq model and BERT embedding to improve the

quality of the text. BERT and GPT-2 based automatic

question and answer generation has been proposed by

Kumari and Pushphavati [21]. Their work has focused

on generating short answers from the question, where

BERT and GPT-2 have been used as encoders and

decoders. Barros et al. [9] proposed a hybrid surface

realization approach named Hana NLG for news

headline generation, where the influence of content

selection on surface realization is the key focus. They

have generated coherent and linguistically structured

headlines using Document Understanding Conference

(DUC) and DUC 2004 standard datasets. Diwan et al.

[15] have explored the utilization of AI-based

techniques for learning pathway augmentation and

content generation and learning to enhance learner

engagement. Diwan et al. [15] and authors have used

GPT-2, where they generate personalized and

interactive learning narratives that cater to individual

learners. Ayana et al. [4] have developed reinforcement

learning powered by two models for creating news

headlines. Their experimental results outperform

headline generation in Chinese-English cross-lingual,

but the models are unsuitable for training in different

source languages. Wei and Zhang [56] worked on an

LSTM-based attention mechanism to generate natural

answers that have focused on real-world Knowledge

Base (KB) question answering. Wang et al. proposed an

interesting work that has generated the introductory

parts of any research papers automatically using RNN

and text rank algorithms [55]. This work suffers from an

out-of-vocabulary problem, which produces

meaningless sentences sometimes. Dethlefs et al. [12]

have developed a divide-and-conquer based on LSTM

to generate input context text. However, the authors

mentioned that there is a scope for better hyper-

parameter tuning in memory to sequence and sequence-

to-sequence models. Cao [10] has proposed table-to-text

generation from weather gov, Wiki-Bio, and Wiki table

datasets by using RNN and LSTM models. The

following models are available in the literature mostly

for generating semantic-rich text [2, 6, 17, 32, 38, 39,

48]. Chen et al. [11] have fine-tuned the BERT model

to develop the detection of automatic generation of

essays in Chinese language. They built an essay

generator through the GPT-2 model and an essay

detector by the pre-trained BERT model. Semantically,

text generation is possible with either a Large Language

Model (LLM) or a hybrid of the sequential model. In the

following Table 1, represents the key features and

approach for different type of text generation system.

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 693

Table 1. Related work in the field of text generation.

Author(s) Approach Key Features

Van der Lee et al. [51]
Trainable approach for data-to-text generation influenced by

templatization.
Rule-based method, manual effort, BLEU score decrease.

Van Deemter et al.

[50]

Template-based approach for text generation. Evolutionary computation techniques, predefined templates and
grammar rules.

Palivela [30]
Fine-tune text-to-text transfer transformer model for paraphrase

generation.
Paraphrase identification and generation.

Zhao et al. [61]
Combined BERT and context attention mechanisms for short

conversation generation.
Seq2seq model, BERT embedding.

Kumari and

Pushphavati [21]

BERT and GPT-2 based automatic question and answer

generation.

Short answer generation, BERT and GPT-2 as encoders and

decoders.

Barros et al. [9]
Hybrid surface realization approach (Hana NLG) for news

headline generation.

Content selection influence on surface realization, DUC 2004

datasets.

Diwan et al. [15]
AI-based techniques for learning pathway augmentation and

content generation using GPT-2.
Personalized and interactive learning narratives.

Ayana et al. [4] Reinforcement learning for news headline generation Outperforms Chinese-English cross-lingual headline generation.

Wei and Zhang [56] LSTM-based attention mechanism for natural answer generation. Real-world KB question answering.

Wang et al. [55] Automatic paper writing using RNN and TextRank algorithms.
Introductory part generation of research papers, out-of-

vocabulary problem.

Dethlefs et al. [12]
Divide-and-conquer approach based on LSTM for input context

text generation.

Better hyper-parameter tuning in memory-to-sequence and

sequence-to-sequence models.

Cao [10] Table-to-text generation using RNN and LSTM models. Weather gov, Wiki-Bio, and Wiki table datasets.

Chen et al. [11]
Fine-tuned BERT for detecting automatically generated essays in

Chinese.

Essay generator through GPT-2, essay detector by pre-trained

BERT model.

2.1. Text Generation Using Seq2Seq Model

Seq2Seq model was first introduced [46] where the

Sutskever et al. [39] proposed a single-layer LSTM-

based encoder-decoder architecture to translate English

to French text. Since then, the Seq2Seq model for text

generation can be represented as a series of

computations performed on the input and output text.

The mathematical representation of the encoder-

decoder model is as follows:

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟: 𝑥𝑡 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥𝑡)

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐿𝑆𝑇𝑀/𝑅𝑁𝑁: ℎ𝑡 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑡, ℎ𝑡−1)

Equations (1) and (2) represent the text encoder of the

model, where xt and ht represents the input text, and

hidden state at time step t. Embedding and Encoder are

functions that are applied to the input text. The

embedding function converts the input text dataset into

a dense representation and hidden state update by

encoder function.

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟: 𝑦𝑡 = 𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑦𝑡)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑡, ℎ𝑡−1)

𝐷𝑒𝑐𝑜𝑑𝑒𝑟
𝐿𝑆𝑇𝑀

𝑅𝑁𝑁
: 𝑦𝑡, ℎ𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑦𝑡, ℎ𝑡−1, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

Equations (3), (4), and (5) represent the decoder parts of

the sequence model. Where yt, and ht are the output text

and hidden state respectively at the t time step. Three

functions, embedding, attention, and decoder, are

applied to the output text. The embedding function i.e.,

Equation (3) converts the output text into a dense

representation, whereas the attention function Equation

(4) computes the attention mechanism, and the decoder

function generates the output text and updates the

hidden state [5].

Figure 2 shows the detailed architecture of encoder-

decoder for sentence generation. Here, RNN is the

encoder and LSTM is the decoder [55].

Figure 2. Sentence generation architecture using an LSTM-based

encoder and decoder model.

2.2. Contextual Generation Using Bi-LSTM

Attention Model

Bidirectional Long Short-Term Memory (Bi-LSTM)

consists of two LSTM models. It works in both

directions: forward and backward [2, 35]. Bi-LSTM

captures contextual information, so it understands the

whole sentence context and it generates semantically

enhanced text. This typical forward and backward

structure is useful for generating coherent and

semantically enhanced text [36, 48]. For example, the

input text is “john m. walker is” and our model

completes this sentence by generating “john m. walker

is” an American politician and business man”.

Figure 3 shows the overall flow of the text generation

using our proposed model. It can be seen from the figure

that we first collected the Wiki-Bio dataset which has

been represented as W, and n represents the input words.

Bi-LSTM captures features such as word

interdependency, grammar patterns, co-referencing, and

Named Entity Recognition (NER) from the dataset [32].

Next, we have provided initial 2-3 words for text

(1)

(2)

(3)

(4)

(5)

694 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

generation as input, represented as outline text which

can be seen in Figure 3. Next LSTM with attention

model analyzes the outline text and predicts the next

word t using the Bi-LSTM feature map. The target text

is represented as (M) [37]. Onwards LSTM processes

the text features and generates the sentence based on the

input corpus.

Figure 3. A framework for contextual text generation using LSTM,

Bi-LSTM with Attention mechanism on the Wiki-Bio dataset.

In this work, we assigned the embedding layer

dimension as 16 and two Bi-LSTM layers with 256 and

512 hidden neurons. We provided the input initial text

from Wiki-Bio data “Jon tester born” and it assigns to k

𝑘𝑛
𝑞
as the input gate. The an is the variable that takes

“Jon”, “tester”, and “born” words as input in the time

stamp n=1,2 and 3, respectively.

𝑘𝑛
𝑞

= 𝜎(𝑤𝑘 , 𝑎𝑛 + 𝑆𝑘𝑚𝑛−1
𝑞

+ 𝑜𝑘
𝑞

)

𝑞𝑛
𝑞

= 𝜎(𝑤𝑞 , 𝑎𝑛 + 𝑆𝑞𝑚𝑛−1
𝑞

+ 𝑜𝑞
𝑞

)

𝑖𝑡
𝑞

= 𝜎(𝑤𝑖 , 𝑎𝑛 + 𝑆𝑖ℎ𝑛−1
𝑞

+ 𝑜𝑖
𝑞

)

In Equations (6), (7), and (8), 𝑎𝑛, 𝑚𝑛
𝑞

, 𝑚𝑛
𝑜 , 𝑝𝑛

𝑞
, 𝑎𝑛𝑑 𝑝𝑛

𝑜,

represent the forward hidden state, backward hidden

state memory cell, backward memory cell, and output

get respectively. We have initialized the forward LSTM

hidden state 𝑚𝑛
𝑞
 with zero vector. The forward input

gate represents as 𝑘𝑛
𝑞
in Equation (6). Next, the variable

𝑞𝑛
𝑞
 represents the forward forget gate in Equation (7)

and 𝑖𝑡
𝑞
 has been represented as a backward output gate

in Equation (8). Further, we assign our initial values

“Jon tester born” in Equation (6), which is shown in

Equations (9), (10), and (11).

𝑘1
𝑞

(1) = 𝜎("𝐽𝑜𝑛" + 𝑆0(0))

𝑘2
𝑞

(2) = 𝜎("𝑡𝑒𝑠𝑡𝑒𝑟" + 𝑆1(1))

𝑘3
𝑞

(3) = 𝜎("𝑏𝑜𝑟𝑛" + 𝑆2(2))

Similarly, in Equations (9), (10), and (11) represents the

backward input gate, forget gate, and output gate are

represented at time step n as following equations.

𝑘𝑛
𝑜 = 𝜎(𝑤𝑘 , 𝑎𝑛 + 𝑆𝑘𝑚𝑛+1

𝑜 + 𝑜𝑘
𝑜)

𝑞𝑛
𝑜 = 𝜎(𝑤𝑞 , 𝑎𝑛 + 𝑆𝑞𝑚𝑛+1

𝑜 + 𝑜𝑞
𝑜)

𝑖𝑡
𝑏 = 𝜎(𝑤𝑖 , 𝑎𝑛 + 𝑆𝑖𝑚𝑛+1

𝑜 + 𝑜𝑖
𝑜)

In the above Equations (12), (13), and (14), σ represents

the sigmoid function, Sn, Sq, Si represent the weight

matrices and 𝑜𝑘
𝑜, 𝑜𝑞

𝑜, 𝑜𝑖
𝑜 represents the bias. Further, we

assign our initial value in the backward input gate in the

below equations

𝑘1
𝑜(1) = 𝜎("𝑏𝑜𝑟𝑛" + 𝑆0(0))

𝑘2
𝑜(2) = 𝜎("𝑡𝑒𝑠𝑡𝑒𝑟" + 𝑆1(1))

𝑘3
𝑜(3) = 𝜎("𝐽𝑜𝑛" + 𝑆2(2))

In Equation (15), model assigned a0=“born”; in

Equation (16) a1=“tester”, and in Equation (17) the

variable a2 has been assigned as “jon”. Bi-LSTM learns

the sentence structure with the help of a forward hidden

state and a backward hidden state. The next step of the

process is to decide whether the information is stored in

a memory cell or not.

𝑝𝑛
𝑞

= 𝑞𝑛
𝑞

∗ 𝑝𝑛−1
𝑞

 𝑘𝑛
𝑞

∗ 𝑡𝑎𝑛ℎ (𝑊𝑝𝑎𝑛 + 𝑆𝑝 + 𝑚𝑛−1
𝑞

+ 𝑜𝑝
𝑞

)

𝑝𝑛
𝑜 = 𝑞𝑛

𝑜 ∗ 𝑝𝑛+1
𝑜 𝑖𝑡

𝑏 ∗ 𝑡𝑎𝑛ℎ (𝑊𝑝𝑎𝑡 + 𝑆𝑝 + 𝑚𝑛−1
𝑜 + 𝑜𝑝

𝑜)

Equations (18) and (19) are used to calculate forward

and backward memory cells at time step n, where, 𝑝𝑛
𝑞

 is

the forward memory cell and 𝑝𝑛
𝑜 is the backward

memory cell. All initial information are stored in the

memory cell, and based on this information output gate

predicts the next words by using forward and backward

hidden states.

𝑚𝑛
𝑞

= 𝑖𝑛
𝑞

∗ 𝑡𝑎𝑛ℎ (𝑝𝑛
𝑞

)

𝑚𝑛
𝑜 = 𝑖𝑛

𝑜 ∗ 𝑡𝑎𝑛ℎ (𝑝𝑛
𝑜)

Finally, Equations (20) and (21) represents the forward

and backward hidden states concatenate and generate

the output at n time step.

𝑧𝑛 = 𝑔 (𝑚𝑛
𝑞

, 𝑚𝑛
𝑜)

Equation (22), shows the concatenation of forward and

backward hidden state, [𝑚𝑛
𝑞

, 𝑚𝑛
𝑜] and g represents a

fully connected layer of linear function. Finally the

output zn represents the processing of the prediction of

the next word and generates contextual text.

𝑧𝑛+1 = "𝑖𝑛"

Next, the input text is updated with “jon tester born in”

in Equation (23). All equations starting from Equations

(6) to (23) have generated one word at a one-time step

and it has worked in the loop to generate complete

words for a sentence. In the following equation, we see

that this process has accomplished 3 times and predict

the next three words. Next, the input text has been

updated with “jon tester born in” in Equation (23) and

the Equations (6), (7), and (8), ……up to (22) were

again repeated for the next time step t+1, t+2………n

till the last word of the sentence is predicted.

𝑧2 = "𝑎𝑢𝑔𝑢𝑠𝑡"

𝑧3 = "21"

𝑧4 = "1956"

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(17)

(16)

(15)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 695

In Equations (24), (25), and (26), our model generates

the complete sentence that is z=“jon tester born in

august 21 1956”. In this work, the LSTM model has

generated the next word in the output sequence, based

on the previous sentence context provided by the Bi-

LSTM hidden states.

2.3. Data-to-text Generation Using CAN Model

In the convolutional attention model, Convolutional

Neural Network (CNN) is used to process the input text

by extracting features at different levels of abstraction

[62]. In our proposed model, it has extracted the features

from the text such as text pattern and grammatical

structure of the text; then it has created a word feature

vector. Conv1D has analyzed the grammatical

ambiguity in the sentence so that error-free sentences

can be generated. We used N-gram model for a better

understanding of sentence structure. The embedding,

Conv1D, and attention functions help the model in the

training phase so that it can predict the next word of the

sentence.

Figure 4. CAN for data-to-text generation.

Figure 4 represents a framework to generate context-

based text, here we have used the attention mechanism

with Conv1D. Further, this model has enhanced the

performances of Bi-LSTM model.

The following equations represent a 1D

Convolutional neural network (Conv1D) for a data-to-

text generation:

ℎ𝑡 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑡 , 𝑊) + 𝑏

Equation (27) represents the vector representation of

input of the data, of conv1d which W, and b represents

the convolutional filter and bias at t time step. The

convolutional layer output is passed through the non-

linear activation function ReLU, which is represented

below:

ℎ𝑡 = 𝑓(ℎ𝑡)

In Equation (28), the convolutional layer is passed to a

pooling layer, where f represents the activation function.

Then pooling layer output passed through the fully

connected layer, which generates the final output:

𝑦𝑡 = 𝑔(ℎ𝑡)

In Equation (29), g represents a linear function for a

fully connected layer, and yt represents the final output

of the model.

2.4. Model Optimization Using Humpback

Whale Optimization

The Whale Optimization Algorithm (WOA) has been

inspired by the hunting behavior of humpback whales.

It has been proposed by Mirjalili and Lewis [27]. The

algorithm consists of two main phases: exploration and

exploitation. During the exploration phase, the

algorithm explores the search space by randomly

moving in different directions so that it can achieve the

solution or goal state [18]. It allows for broad

exploration and helps to discover potential areas of

improvement. The exploitation phase usually is used for

search so that the best solution can be found quickly in

the given search space [25].

WOA utilizes a set of mathematical equations

inspired by bubble-net feeding and bubble searching.

The following equations govern virtual whales’

movement and behavior representing potential solutions

in the optimization process [16].

�⃗� = 2𝑚⃗⃗⃗⃗⃗⃗⃗ . �⃗⃗� − �⃗⃗⃗�

�⃗⃗� = 2 . �⃗⃗�

𝑍 = |�⃗⃗� . 𝑇∗⃗⃗⃗⃗⃗ (𝑝) − �⃗⃗� (𝑝)|

�⃗⃗�(𝑝 + 1) = 𝑇∗⃗⃗⃗⃗⃗ (𝑃) − �⃗� . 𝑍

𝑍 = |�⃗⃗� . 𝑇𝑟𝑎𝑛𝑑𝑜𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − �⃗⃗� |

�⃗⃗�(𝑃 + 1) = 𝑇𝑟𝑎𝑛𝑑𝑜𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − �⃗� . 𝑍

𝑍′⃗⃗ ⃗⃗ = | 𝑇∗⃗⃗⃗⃗⃗ (𝑝) − �⃗⃗� (𝑝)|

�⃗⃗�(𝑡 + 1) = 𝑍′⃗⃗ ⃗⃗ . 𝑒ℎ𝑙⃗⃗ ⃗⃗ ⃗⃗ . 𝑐𝑜𝑠 (2𝜋𝑘) + 𝑇∗⃗⃗⃗⃗⃗ (𝑝)

Here �⃗� represents variable linearly decreases from 2 to

0, with iterations, and ⃗n represents a random vector in

[0, 1]. h and Z⃗’ represent the constant and distance

between the whale and best solutions, respectively. L

shows a random number in [−1, 1]. P, �⃗⃗�, �⃗⃗�, and T

represent the current iteration, coefficient vectors, and

the best solution’s position vector and position vector.

The behavior of encircling prey has been shown in

Equations (30) and (31), Equations (32), and (33)

describe the ‘search for prey’ mechanism, and bubble-

net attacking behavior has been shown in Equations (34)

and (35), which are exhibited by humpback whales.

Additionally, specific modifications have been made,

such as hyperparameter tuning with iteration. One

notable aspect of WOA, it has easily been implemented

with our model to optimize the hyperparameters such as

(27)

(28)

(29)

(37)

(36)

(35)

(34)

(33)

(32)

(31)

(30)

696 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

the number of iterations, number of neurons, and

number of batch sizes.

2.5. Text Generation Using LLM

LLM is a language model with large number of

parameters i.e., the model can be trained with huge

amount of data. This model usually are powered by deep

learning technique especially such as transformer model

[3, 52]. This transformer based LLMs are capable of

recognizing, translating, predicting, or generating text.

Various transformer models generate text, including

popular ones like BERT [13], GPT, and LaMDA [47].

To validate our proposed model, we have compared our

proposed model’s outcome even with conventional

LLM models, such as checking the potential capabilities

of BERT and GPT-2 to generate text. In below, we have

discussed about BERT model and how it has been used

for our use case experimentations.

2.5.1. Bidirectional Encoder Representations from

Transformers (BERT)

BERT can convert structured data into readable text

using tokenizing techniques. It processes data and

remembers contextual connections among tokens for

understanding of the context of the text. In our work, we

have fine-tuned the BERT-base pre-trained model to

predict words or phrases and finally printed the human

readable text.

Figure 5. BERT model for data tot text generation.

In Figure 5, every sentence has been separated by

[CLS] token, and the word or token is separated with

[SEP] token [13]. Here, w represents the word, and in

the output layer, S and N represent the sentence and

word, respectively. In our work, BERT has employed

essential intermediate tokens: [CLS], [SEP], and

[MASK]. [CLS] represents the input context, [SEP]

marks sentence separation, and [MASK] predicts the

next word. Using BERT, we have achieved % accuracy

and 0.73, 0.6221, and 0.7612 of BLEU3, ROUGE L,

METEOR, and CIDERr score. Our BERT model has

generated next-word predictions for a sentence’s [mask]

label based on surrounding words [13]. Our process uses

a BERT tokenizer to convert the sequence into a vector,

denoted as {yt} (t=1, 2, 3, ….) where t represents the

sequence length. Following this, we proceed to train the

BERT model, using the input vector {yt} and saving the

model output sequence as {outputj} (j=1, 2, 3 ….) where

j represents the total number of outputs. To find the next

probable text, we use a linear layer,

𝑥𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑢𝑡𝑝𝑢𝑡𝑗)

Equation (38) represents the process {outputj} output of

BERT, we take the top five {yi} probabilities for the

next character in the dictionary for comparison. We run

through the model in four datasets, Wiki-Bio, CoNaLa,

IMDB and Gigaword where we evaluate the generated

text with BLEU, ROUGE, METEOR, and CIDEr.

2.5.2. GPT-2

We have accomplished the successful experimentation

using Generative Pre-trained Transformer 2 (GPT-2)

powered by the Hugging Face Transformers library in

Python. This has helped us immensely as tool for text-

generation tasks. In the below Table 2 and 3, it can be

observed that how the GPT2 has generated coherent and

contextually relevant text across various domains from

its BLUE, ROUGH and METEOR and CIDEr score.

GPT 2 nowadays is incorporated for creative writing to

content generation. In our case, using the Hugging face

API integration, we have able to show the power of pre-

trained language models like GPT2. The highest BLUE

score is 0.75, the maximum score in-terms of ROUGH

is, and CIDER metric have the maximum value as

0.6987, 0.6945, and 0.6395. GPT-2 via Hugging Face in

Python enhances productivity and fuels innovation in

NLP and text generation. GPT-2, which is an upgraded

version of GPT-1, excelled in various tasks by

predicting sequence items accurately but occasionally

produced repetitive or nonsensical content in longer

passages. It’s been succeeded by non-open-source GPT-

3 and GPT-4 [23].

Algorithm 1: For Text Generation Using GPT2.

Input Keyword k, model M, length l

Output Sentence y

 y k

 for j=len(k) to l do

 M.init()

 next word M(y)

 next word M(y)

 y y + next word

 End for
 return y

In the above Algorithm (1), the keyword k represents

the starting word, the model M is the GPT2 model, and

l represents the length of the output sentence. Sentence

y is the final generated sentence, which the model

returns. Here, the input form is defined as {k, M, l} [29].

(38)

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 697

3. CANBLWO for Generation of

Semantically Enhanced Text

This section describes the proposed model of

Convolutional Attention Bi-LSTM with Whale

Optimization (CANBLWO). In our proposed hybrid

model, semantic text generation has been achieved

through data pre-processing, feature map creation using

CAN encoder, text generation using Bi-LSTM decoder,

model optimization using WOA, and finally text quality

testing with evaluation matrices such as BLEU,

METEOR, ROUGE, and CIDEr. These metrics have

been used to find the ratio between reference text and

machine-generated text and the ratio represents the

quality.

3.1. Data Pre-Processing

In our work, we have applied various pre-processing

steps such as lowercasing, tokenization using the NLTK

Punkt library, and data cleaning using Python libraries

like pandas for removing duplicate entries, and regular

expressions to correct inconsistent formatting. In the

pre-processing, we also define the end of a sentence by

<end> symbol, which help us to identify the compilation

of the sentence and the start of the next sentence. In the

final step, we applied Scikit learn library for the data

validation, where it handled missing values and checked

data consistency in terms of dates and time formatting.

3.2. Feature Gathering from Input Text

The N-gram model extracts the features from the

dataset. This model helps in process and understanding

the text [25, 38]. In this work, the bigram model has

been used for the Wiki-Bio dataset to identify common

two-word phrases such as “United States” or “Prime

Minister,” while in the CoNaLa dataset, a trigram model

has been used to identify common sequences of words

in natural language commands such as “show me all” or

“give me the”.

The trigram model has considered the previous two

words as context to predict the next word. By

considering this contextual information, it generates a

probability distribution for the vocabulary of the dataset.

wi is the word probability with preceding context kj-2, kj-

1 would be as follow:

𝑃(𝑘𝑗|𝑘𝑗−2, 𝑘𝑗−1) = 𝑐𝑜𝑢𝑛𝑡(𝑘𝑗−2, 𝑘𝑗−1, 𝑘𝑗) / 𝑐𝑜𝑢𝑛𝑡(𝑘𝑗−2, 𝑘𝑗−1)

Equation (39) shows the probability distribution of N-

gram trigram model, where count(kj-2, kj-1, kj) is the total

number of times of trigram, where (kj-2, kj-1, kj) appears

in the corpus. count(kj-2, kj-1) is the total number of times

of bigram (kj-2, kj-1) is presented in the dataset.

Figure 6 represents the sample of word prediction by

N-gram model, where 3 is the value of n. In every step,

three-word sequence appears for the process, and on the

basis of these three words next word has predicted.

𝑃(𝑘𝑗|𝑘𝑗−2, 𝑘𝑗−1) = 𝑐𝑜𝑢𝑛𝑡(𝑘𝑖−1, 𝑘𝑗) / 𝑐𝑜𝑢𝑛𝑡(𝑘𝑗−1)

The bigram probability distribution is shown in

Equation (40), count(kj-1, kj) is the total number time of

bigram of (kj-1, kj) appears in the corpus.

Figure 6. N-gram word prediction with trigram model.

3.3. Data Encoding

We have used the Embedding from Language Model

(ELMO) data encoding technique [41]. It has been used

for contextual text generation on the Wiki-Bio,

CoNaLa, IMDB and Gigawords datasets, which

provided a sentence structure and word meaning of the

input data. ELMO generates word embedding for the

input data that can be used for our hybrid model

CANBLWO to generate text. It is a context-dependent

embedding method that provides a good understanding

of different words in the input data [33], the ELMO

model is trained using the following mathematical

function:

𝐽(𝜃) = ∑ 𝑙𝑜𝑔 𝑝(𝑤𝑖|𝑤1: 𝑖 − 1, 𝜃)
𝑖

In Equation (41), θ is the model parameter, wi is ith the

word for input sequence, and the probability of ith word

is p(wi|w1:i-1) for input sequence given by the previous

word sequences.

3.4. Text Generation Model Architecture

We mentioned earlier that the proposed model is a

fusion of CAN, Bi-LSTM, and WOA. Conv1D model

extracts the internal features from the text, such as

identifying the subject, verb, and object from the

sentence. It has found all the Part of Speech (POS) tags

and entity relationships in the sentence words. POS tag

has helped to understand each word’s context, and entity

relationship has been used to identify the

interdependency relationship of the text in a sentence.

For example, we have a sentence from the Wiki-Bio

dataset “john m. walker is an American politician and

businessman”. The proposed CAN first tokenizes the

sentence into Part-Of-Speech tags (POS) for every
(40)

(39)

(41)

698 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

token. In the POS tag report, “john”, “m.”, and “walker”

are referred to as consecutive nouns so they can

represent as person's full name.

The proposed CAN model also finds the referencing

among sentences such as “john m. walker is an

American politician and businessman from Colorado. A

republican, he is a member of the Colorado state

senate”. The attention models divide the sentence into

small ones such as “john m. walker is an American

politician”, “john m. walker is a businessman”. “john m.

walker from Colorado”, and “john m. walker is an

American politician member of Colorado state senate”.

In all sentences, the subject is mapped with john m.

walker. Likewise, the proposed attention model i.e.,

CAN modes builds the feature maps which further can

be fed to the Bi-LSTM.

Next the proposed Bi-LSTM model decodes the

feature map and generates the text based on initial input.

Bi-LSTM encodes initial text into fixed-length

representation, and it also supports long dependency.

For example, the initial word “john m. walker is an”, Bi-

LSTM considers this initial text as input and encodes

this input text into a fixed-length representation. To start

the text generation process, a special token <start> is

provided as the first input to the decoder. The decoder

takes the initial word one by one and the encoded

context as input, to generate the next word in the

sequence so that prediction of the most likely word can

be accomplished based on the current context. The

newly generated word is now embedded into a dense

vector representation to capture its semantic meaning.

The embedded word and the updated context are fed

back into the decoder. Decoder utilizes the recurrent

connections within the Bi-LSTM to capture the

dependencies between the previously generated

sentence and the current word context. In every step, the

decoder outputs depend on a probability distribution

over the vocabulary. This distribution is generated using

a softmax activation function. After this generated word

is appended to the previously generated words and

forms a new partial sentence. This partial sentence,

along with the updated context, has been used as input

for the next iteration of the decoding process. These

steps are repeated until reaching a maximum sentence

length or generating a special token <end>. Finally, the

complete generated sentence by our proposed model is

“John m. walker is an American politician and

businessman from Colorado”.

Our proposed model consists of the following three

main approaches.

 Capture local features of text using CAN.

 Capture long-term dependency using the Bi-LSTM

model.

 Optimize the learning rate, number of layers, and

neurons using WOA.

In Equation (42), x represents input data, and it passes

through the Conv1D encoder to generate the feature

map. The attention mechanism calculates the attention

weight, represented by the symbol ‘a’ for each position

of the ‘h’ feature map. Here, h and a have been fed into

decoder Bi-LSTM that in terms predicts one word at a

time. The complete operation is shown below.

 Encoding: xi is an encoded vector representation of

input data x in Equation (42).

 Feature extraction: the encoded input data is passed

through a Conv1D encoder to extract features from

the data. We have provided different neuron sizes,

such as 64, 128, and 256 for feature selection, finally

at 256 neuron size provides better results in the model

stacking. We have used two layers of Conv1D, and

shape of the layer is (5, 32, 128) and (5, 128, 256)

respectively.

ℎ𝑡 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑖)

 Attention: the feature map is passed through an

attention mechanism to calculate attention weights

for each position in the feature map, which is shown

in Equation (43).

𝑎 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑖)

 Text generation: while generating text, the feature

map and attention weights are passed through Bi-

LSTM decoder. Equation (44) shows the Bi-LSTM

decoder model,

𝑦𝑡 = 𝐵𝑖 − 𝐿𝑆𝑇𝑀(ℎ, 𝑎, 𝑦𝑡−1)

where yt represents generated text at time step t. yt-1 is

the previous time step of generated text.

 Loss function: cross-entropy has been used as a loss

function for model training. Basically, it finds the

difference between ground truth output and predicted

output.

𝐿 = −𝑠𝑢𝑚(𝑦𝑡 ∗ 𝑙𝑜𝑔 (𝑦ℎ,𝑎,𝑡)

In the Equation (45), loss function L calculates the error

between the predicted probabilities yh,a,t and the true

labels yt. The negative summation ensures that higher

probabilities assigned to the correct class lead to lower

loss values.

Figure 7 represents the contextual text generation

model using Conv1D, Attention, and Bi-LSTM. The

following layers have been essential in our proposed

model.

 Embedding layer: in this layer each data point is

converted into a numerical vector representation

using an embedding matrix we. Shape of embedding

layer is (10622, 32), where 10622 is vocab size and

the dimension is 32. Mathematical representation of

the embedding layer is as follows

𝑥𝑖 = 𝑤𝑒[𝑖]

In Equation (46), i represents the index of words in the

vocabulary. Here, the input data is passed through a

series of one-dimensional convolutional filters to

(42)

(43)

(44)

(45)

(46)

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 699

extract local patterns in the biography data from Wiki-

Bio. The mathematical representation of the layer is

𝑥𝑖 = 𝑦𝑖 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑖 , 𝑤𝑐) + 𝑏𝑐

where wc, bc are the filter weights and bias terms,

respectively in Equation (47).

Figure 7. CAN with Bi-LSTM model architecture to contextual text

generation.

 Attention layer: this layer selectively focuses on

certain parts of input data. It uses the dot product of

a set of learned weights and input data. The

representation of the attention layer in terms of the

equation can be written as follows:

𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖 ∗ 𝑤𝑎)

In the above Equation (48), we proposed the weight

modification which represents by wb

𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑦𝑖 ∗ 𝑤𝑎) + 𝑤𝑏)

𝑧𝑖 = 𝑠𝑢𝑚(𝑎𝑖 ∗ 𝑦𝑖)

Equations (49) and (50) calculate the attention weight,

where attention weight is wa, and attention output is zi.

 Bi-LSTM layer: feature map of the attention layer zi

is the input for this layer. It processes in both

directions to capture long-term dependencies in

paragraphs or sentences of Wiki-Bio dataset.

ℎ𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑧𝑖 , ℎ𝑖−1)

In Equation (51), hi is represents hidden state at t time

step.

 Dense layer: hi represents the output of the Bi-LSTM

layer which contains all sentence dependencies such

as pronoun-to-noun mapping and the context of the

initial text. That dependency and context are input for

the dense layer, which projects onto vocabulary

space. This layer generates a probability distribution

by using the SoftMax activation function. It predicts

the next word in the sequence over the vocabulary.

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑑 ∗ ℎ𝑖 + 𝑏𝑑)

Equation (52) is the mathematical representation of

dense layer, where wd represents dense layer and bias

term denoted as bd.

Algorithm 2: Algorithm for CAN based Bi- LSTM.

Input Wiki Bio, CoNaLa, IMDB and Gigaword

dataset

Output Semantic rich text generation based on dataset

Step 1. Begin

Step 2. Import dataset

Step 3. Data cleaning: Removing irrelevant columns,

handling missing values, Removing duplicate

rows, Data validation

Step 4. Data tokenization

Step 5. Convert into bi-gram and trigram sequence of

token

Step 6. Token pre-padding as per the max length of

sentence

Step 7. Model Building

 Step 7.1. Embedding Layer with dimension 16:

𝑥𝑖 = 𝑤𝑒[𝑖]
 Step 7.2. Conv1D layer: 𝑦𝑖 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑖 , 𝑤𝑐) +

 𝑏𝑐

 Step 7.3. Attention layer: 𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖 ∗
 𝑤𝑎) & 𝑧𝑖 = 𝑠𝑢𝑚(𝑎𝑖 ∗ 𝑦𝑖)

 Step 7.4. Bi-LSTM layer: ℎ𝑖 = 𝐵𝑖 −
𝐿𝑆𝑇𝑀(𝑧𝑖 , ℎ𝑖−1)

 Step 7.5. Dense layer: 𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑑 ∗
 ℎ𝑖 + 𝑏𝑑)

Step 8. Fitting of the network means adapting the

weight on a training dataset

Step 9. Evaluation the network

Step 10. Make prediction of next word and generate the

whole text

Step 11. End

Algorithm (2) represents the stepwise process of

generating the text using the CAN with Bi-LSTM

model.

3.5. Model Hybridization with WOA

WOA has inspired by the hunting behavior of humpback

whales. It combines exploration and exploitation

strategies to search for optimal solutions in a search

space [28, 45]. This algorithm has been used in our

proposed model to fine-tune hyper-parameters such as

number of neurons, learning rate and adding the epoch

size of the model.

Figure 8 represents the architecture of the proposed

model CANBLWO. It represents the stepwise process

of model architecture for generating semantically

enhanced text. In Figure 8, whale optimization uses an

objective function to evaluate the model’s performance

based on text generation quality metrics. The WOA

algorithm updates the positions of the whales iteratively

by considering the current best solution, random values,

and coefficients. To optimize the filter values of the

convolutional layers, it searches space and exploits

promising regions. The process continues for a

predefined number of iterations, allowing the algorithm

to converge toward optimal or near-optimal solutions.

(47)

(50)

(49)

(48)

(51)

(52)

700 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

Semantic text generation using the CANBLOW model

has been defined as

𝐿𝑒𝑡 𝑋 = (𝑥₁, . . . , 𝑥ₙ)

𝐿𝑒𝑡 𝑌 = (𝑦₁, . . . , 𝑦ₘ)

Figure 8. Proposed model architecture powered by CANBLWO.

In Equation (53), X is the input sequence, where xᵢ

represents the i-th input token. In Equation (54), Y is the

generated output sequence, where yᵢ represents the i-th.

𝐸(𝑋) = (𝑒₁, . . . , 𝑒ₙ), ∶ 𝑤ℎ𝑒𝑟𝑒 𝑒ᵢ ∈ ℝᵈ

Equation (55) represents the embedding layer, where E

is an embedding function, eᵢ is an embedded

representation of the input token xᵢ, and d represents the

embedding dimension.

ℎ = 𝜑(𝑊_𝑐 ∗ 𝐸(𝑋) + 𝑏_𝑐)

Equation (56) represents the CAN, φ represents

activation function (e.g., ReLU), W_c is the

convolutional weight matrix, b_c is the convolutional

bias vector and h shown feature map output from

convolution.

𝛼 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑎 ℎ + 𝑏_𝑎)

In Equation (57), W_a, and b_a represent the attention

weight matrix and attention bias vector, respectively. α

represents the attention weights.

𝑧 = 𝛴ᵢ 𝛼ᵢℎᵢ

Equation (58) represents the context vector z, which

aggregates information from the input weighted by the

attention context vector.

→ ℎ_𝑡 = 𝐿𝑆𝑇𝑀(𝑧_𝑡, → ℎ_{𝑡 − 1})

← ℎ_𝑡 = 𝐿𝑆𝑇𝑀(𝑧_𝑡, ← ℎ_{𝑡 + 1})

Equations (59) and (60) represent the Bi-LSTM layer,

which processes sequential data and captures long-term

dependencies. In Equation (59) →h_t represents the

forward hidden state at time t, and ←h_t in Equation

(60) is the backward hidden state at time t. z_t represents

the context vector at time t.

ℎ_𝑡 = [→ ℎ_𝑡; ← ℎ_𝑡]

In Equation (61), h_t represents the concatenated

bidirectional hidden state at time t, where [;] is for

concatenation operation.

𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑜 ℎ_𝑡 + 𝑏_𝑜)

Equation (62) represents the output layer to produce

output probabilities, Where p(y_t|y<t, X) is a probability

distribution over vocabulary for the next token. W_o and

b_o represents the output weight matrix and output bias

vector

𝑦_𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋)

In Equation (63) y_t is generated token at time t and

argmax is a function that returns the element with the

highest probability.

𝐿(𝜃) = −𝛴ᵗ 𝑙𝑜𝑔 𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋)

In Equation (64), L(θ) is Loss function and θ represents

all learnable parameters of the model.

θ(t+1)={θ*-A|C θ*-θ(t)|
if r<0.5 D'e^{bℓ}cos(2πℓ)+θ*

else θ(t): Model parameters at iteration t

Equation (65) represents the best-performing set of

parameters found so far by the WOA. Here θ* is the

current best solution. A and C represent the coefficient

vectors that control the search behavior in the WOA. D’

is the distance to the best solution, b represents the

constant for defining spiral shape, ℓ is the random

number in [-1, 1], and r denotes the random number in

[0, 1].

𝜃 ∗ = 𝑎𝑟𝑔𝑚𝑖𝑛_𝜃 𝐿(𝜃)

In Equation (66), θ* represents optimal model

parameters.

The complete CANBLWO model for text generation

can be expressed as:

𝐹𝜃(𝑋) = 𝑌 =
(𝑦1 , … , 𝑦ₘ), 𝑤ℎ𝑒𝑟𝑒 𝑦𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋)

Equation (67) represents the entire text generation

process where F_θ denotes the complete CANBLWO

model function.

𝑝(𝑦𝑡|𝑦 < 𝑡, 𝑋) =
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑜 𝐵𝑖𝐿𝑆𝑇𝑀(𝐶𝐴𝑁(𝐸(𝑋))) + 𝑏_𝑜)

In Equation (68), Bi-LSTM denotes bidirectional-

LSTM function and CAN represents convolutional

attention network function

The CANBLWO model processes input X through an

embedding layer E(X), followed by a Convolutional

Attention Network (CAN) that extracts features h and

computes attention weights α to produce a context

vector z. This context is then processed by a Bi-LSTM

to capture temporal dependencies, resulting in hidden

(54)

(53)

(56)

(55)

(57)

(59)

(58)

(60)

(64)

(62)

(63)

(61)

(65)

(66)

(67)

(68)

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 701

states h_t. The model generates text Y by iteratively

predicting the next token y_t based on the probability

distribution p(y_t|y<t, X). The model’s parameters θ are

optimized using the WOA to minimize the loss function

L(θ).

Figure 9. Flow diagram of proposed model CANBLOW.

Figure 9 represents the flow diagram of proposed

model CANBLOW, Where the proposed CANBLWO

system for semantic text generation utilizes datasets

from Wiki-Bio, Code/Natural Language-Intent Shift

With Open Code (CoNaLa-ISWOC), IMDB, and

Gigaword. The data preprocessing phase includes

lowercasing, tokenization, and stop-word removal,

followed by encoding into vector representations and

word embeddings. Feature extraction is performed

using a 1D convolutional layer, which applies filters to

extract relevant features, enhanced through activation

functions and pooling operations. These features are

aggregated in an activation layer for further processing.

Contextual information is extracted using a Bi-

LSTM layer, combining forward and backward LSTM

units to capture comprehensive contextual information.

A Bi-LSTM decoder with recurrent connections

generates the next word in the sequence using a softmax

function. Model optimization is achieved using the

WOA, involving position updates, encircling behavior,

and bubble-net attacking strategies. The system

evaluates the generated text with BLEU, ROUGE,

METEOR, and CIDEr metrics, ensuring high-quality

semantic text generation.

The following algorithm is used to hybridize of

CANBLWO model.

Algorithm (3) represents the optimization technique,

which is used for hybridization of the CANBLWO

model. This algorithm firstly initializes whale

population Ti (i=1, 2, 3……n) within the search space

and the objective function that is mentioned in the

algorithm is used to evaluate the model performance.

Step 5.1.1. is used to update the value of A, C, and D

which refer to Equations (30), (31), and (32). �⃗⃗�(𝑝 + 1)

and 𝑇∗⃗⃗⃗⃗⃗ (𝑝) are the current positions of the whale and the

best position respectively. The optimization positions

are referred to in Equations (35) and (37). WOA utilizes

the positions of the best and current solutions as

guidance to search techniques.

Algorithm 3: Algorithm for Optimization of CANBLWO.

Step 1. Begin

Step 2. Initialization of the whale population 𝑇𝑖(𝑖 = 1,2,3 … … 𝑛)

Step 3. Calculation of the objective function of each whale based

on model performance

Step 4. 𝑇 ∗ = 𝐵𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛
Step 5. Loop: while (i < maximum number of iteration):

 Step 5.1. for each whale

 Step 5.1.1. Update X, Y, and Z

�⃗� = 2𝑚⃗⃗⃗⃗⃗⃗⃗ . �⃗⃗� − �⃗⃗⃗�

�⃗⃗� = 2 . �⃗⃗�

𝑍 = 𝑎𝑏𝑠 (|�⃗⃗� . 𝑇∗⃗⃗⃗⃗⃗ (𝑝) − �⃗⃗� (𝑝)|)
 Step 5.1.2. Calculate the new position of 𝑇∗⃗⃗⃗⃗⃗(𝑝)

 �⃗⃗�(𝑝 + 1) = 𝑇∗⃗⃗⃗⃗⃗(𝑝) − �⃗� . 𝑍

 Step 5.1.3. If (k < 0.5) and (abs(X) < 1):

 Step 5.1.3.1. Updating the current

position search agent

or objective function

�⃗⃗�(𝑝 + 1) = 𝑍′⃗⃗ ⃗⃗ . 𝑒ℎ𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗.

𝑐𝑜𝑠 (2𝜋𝑘) + 𝑇∗⃗⃗⃗⃗⃗ (𝑝)

 Step 5.1.4. else

 Step 5.1.4.1. �⃗⃗�(𝑝 + 1) = 𝑍′⃗⃗ ⃗⃗ . 𝑒ℎ𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗.

𝑠𝑖𝑛 (2𝜋𝑘) + 𝑇∗⃗⃗⃗⃗⃗ (𝑝)

 Step 5.2. end for loop

 Step 5.3. If any search goes beyond the search space end

it

 Step 5.4. Process optimization based on evaluation matrix

Step 6. End while

Step7. Return 𝑋 ∗

3.6. Experimental Settings

The experimental setup utilizes 8 GB of RAM, Intel i5

processor, and macOS as an operating system. In

addition, the experimentation of the proposed

CANBLWO model has been carried out on Google

Collab Pro hosted Jupiter notebook. Tesla V100-SXM2-

16G GPU and 12.7 GB of RAM have been set as the

configuration of the collab notebook. We have used the

Python library Keras [20] and Google TensorFlow

library [1] as open-source software for our experiments.

The details of the software and hardware configuration

are shown in Table 2.

Table 2. Experimental configuration.

Experimental configuration

Processors Intel i5

Operating system macOS

RAM 8Gb

Google colab pro GPU Tesla V100-SXM2-16GB

Google colab pro RAM 12.7GB

Tensorflow Version 2.12.0

4. Result and Discussion

In below, we have discussed detailed results that we

have obtained by our proposed model. As mentioned

702 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

earlier our proposed model is a combination of CAN,

Bi-LSTM, and WOA. Prior to that we also discussed the

mechanism of preprocessing which included

tokenization, stopword removal, lower casing and word

sequence generation on the data sets (Wiki-Bio and

CoNaLa dataset) and other necessary steps required for

building the input corpus.

4.1. Dataset

We performed the experimentation on two well-known

standard datasets namely Wiki-Bio, CoNaLa, IMDB

and Gigaword. Wiki-Bio dataset has been collected

from Wikipedia and it is frequently used in NLP

research such as biography generation, table-to-text

generation [8, 10, 43], and the CoNaLa dataset has been

obtained from stack overflow [59].

Figure 10. Word cloud graph using Wiki-Bio dataset.

The Wiki-Bio data set is a large dataset that

comprises of articles of biography that used to get stored

in info-box tables [22]. Infobox tables are common

features of Wikipedia articles, and they provide key

information about the subject of the article, such as date

of birth, occupation, and education etc. It contains over

358,321 Wikipedia articles. The articles are sourced

from English Wikipedia, which cover extensive

subjects, including people, organizations, and locations.

The infobox table usually are represented in a structured

format, such as JSON or XML. It has been designed to

train machine learning models to generate natural

language text. In our work, we have trained our

proposed model namely CANBLWO to understand the

structure of the infobox tables and the relationships

between the different pieces of information. The Wiki-

Bio dataset has been used in several research studies [8],

and it has been proven to be a valuable resource for text

generation. It is also a benchmark for the performance

evaluation of data-to-text generation models. Figure 10

represents the word cloud of the Wiki-Bio dataset,

where the larger font words represent the significant

words in the Wiki-Bio dataset [49].

We also have considered CoNaLa dataset which

comprises a large collection of question-query pairs

from stack overflow. Researchers at the university of

California, and Maryland, created this dataset [54].

CoNaLa dataset mainly comprise of programming and

sciences related data. It has 2379 number of training

examples and 500 test examples. Every example has

natural language related information and its

corresponding answer. In our proposed work, the

CANBLWO model has been able to generate the

various questions automatically by feeding input as two

or three words.

The IMDb Reviews dataset is a widely used

benchmark for sentiment analysis, NLP and NLG tasks.

It consists of 50,000 highly polar movie reviews labeled

as either positive or negative, split equally into training

and testing sets. This dataset allows researchers to

evaluate and develop models for sentiment

classification, making it a critical resource for

understanding how well algorithms can interpret and

analyze subjective text.

The Gigaword dataset, on the other hand, is a

comprehensive and large-scale collection of news

articles from various sources, including the New York

Times, Associated Press, and the Washington Post. This

dataset comprises over 4 million news articles,

providing a rich resource for tasks such as text

summarization, language modeling, and text generation.

The diversity and volume of the Gigaword corpus make

it an invaluable asset for training and evaluating NLP

models, especially for developing algorithms that can

handle a wide range of topics and writing styles.

4.2. Result and Analysis

This section compared the performance of our proposed

model CANBLWO with other deep neural network

models such as RNN, Bi-LSTM, LSTM, and Bi-LSTM

with the attention mechanism on Wiki-Bio and CaNoLa

datasets. The outcome of this comparative study has

been shown in Table 3 in terms of accuracy and loss.

Table 3 shows a comparative study of various deep

learning models’ performance on Wiki-Bio, CoNaLa,

IMDB, and Gigaword datasets. For Wiki-Bio data set

our proposed model CANBLWO has achieved 97%

accuracy, followed by Bi-LSTM (87%), RNN (85%),

and others. On the other hand, in terms of loss,

CANBLWO has the lowest (0.6109), followed by Bi-

LSTM with Attention (0.9744), RNN (1.089), and

others. In addition, we also have conducted experiment

on CoNaLa data set. It can be seen that CANBLWO

again excels with 96% accuracy and 0.7469 loss, while

Bi-LSTM with Attention follows with 90% accuracy.

Our proposed CANBLWO model achieves 97%

accuracy on Wiki-Bio and 96% accuracy on the

CoNaLa dataset. Additionally, our experiments on the

IMDb and Gigaword datasets further demonstrate the

robustness of CANBLWO. The model consistently

outperforms other approaches, underscoring its

effectiveness across different types of text generation

task. The accuracy graph is shown in Figures 10.

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 703

Table 3. Accuracy and loss comparison on the Wiki-Bio and CoNaLa, IMDB and Gigaword dataset.

Dataset Model Accuracy Loss

Wiki-Bio

RNN 85% 1.089

LSTM 81% 1.1950

Bi-LSTM 87% 0.8438

Bi-LSTM with attention 84% 0.9744

BERT 96% 0.4234

GPT 2 92% 0.84

CANBLWO 97% 0.6109

CoNaLa

RNN 90% 0.8726

LSTM 71% 1.6195

Bi-LSTM 89% 1.3178

Bi-LSTM with attention 90% 1.2565

BERT 94% 0.6254

GPT 2 93% 0.90

CANBLWO 96% 0.7469

IMDB

RNN 72% 1.124

LSTM 75% 1.041

Bi-LSTM 78% 0.936

Bi-LSTM with attention 80% 0.821

BERT 88% 0.512

GPT 2 85% 0.672

CANBLWO 90% 0.489

Gigaword

RNN 68% 1.251

LSTM 70% 1.164

Bi-LSTM 73% 1.043

Bi-LSTM with attention 75% 0.928

BERT 84% 0.693

GPT 2 81% 0.821

CANBLWO 87% 0.632

Figure 11. Accuracy graph on Wiki-Bio, CoNaLa, IMDB and Gigaword.

Figure 12. Loss graph on Wiki-Bio, CoNaLa, IMDB and Gigaword.

704 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

The accuracy of Wiki-Bio and CoNaLa datasets

present in Figure 11. Figure 12 represent the loss graph.

We also have compared the generated text evaluation

score using different popular metrics such as BLEU,

ROUGE, CIDEr, and METEOR evaluation matrices.

The below figure shows the comparison graph of these

metrics.

a) BLEU score on Wiki-Bio.

b) BLEU score on CoNaLa.

Figure 13. BLEU-2, BLEU-3, and BLEU -4 score comparison on Wiki-Bio and CoNaLa.

a) Evaluation metrics score on CoNaLa. b) Evaluation metrics score on Wiki-Bio.

Figure 14. METEOR, CIDEr, and ROUGE score comparison on Wiki-Bio and CoNaLa.

Figure 13-a) and (b) represent the BLEU-2, BLEU-

3, and BLEU 4 scores on Wiki-Bio and CoNaLa

datasets. Figure14-a) and (b) show a comparison of

different evaluation metrics such as ROUGE,

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 705

METEOR, and CIDEr score using Wiki-Bio and

CoNaLa dataset.

4.3. Evaluation Matrices

To evaluate the generated text, we have used BLEU,

METEOR, ROUGE, and CIDEr scores has been used

to evaluate the quality of the machine-generated text

using our proposed model.

 Bi-Lingual Evaluation Understudy (BLEU): the

BLEU mechanism has been used to evaluate the

quality of the generated text [31]. It is based on the

concept of N-gram, where we compare word by word

of generated text and reference text. It is calculated

as a precision score by N-gram geometric mean. The

score ranges from 0 to 1, where 1 is a perfect match

to the reference text. The following equation has been

used to calculate the BLEU score.

Table 4. Performance comparison on the Wiki-Bio, CoNaLA, IMDB

and Gigaword dataset.

Dataset Model
BLEU

-2

BLEU

-3

BLEU

-4
METEOR ROUGE_L CIDEr

Wiki-Bio

RNN 0.36 0.37 0.41 0.3245 0.4238 0.3155

LSTM 0.38 0.43 0.39 0.3445 0.3422 0.4162

Bi-LSTM 0.24 0.28 0.31 0.3578 0.4782 0.5213

Bi-LSTM with

attention
0.41 0.48 0.51 0.4176 0.5321 0.5653

BERT 0.42 0.69 0.59 0.7351 0.6221 0.7212

GPT 2 0.49 0.84 0.61 0.6912 0.7393 0.7382

CANBLWO 0.71 0.64 0.69 0.7629 0.7132 0.6943

CoNaLa

RNN 0.42 0.39 0.46 0.3634 0.3567 0.4163

LSTM 0.43 0.37 0.39 0.2631 0.4131 0.3241

Bi-LSTM 0.29 0.36 0.39 0.3987 0.5182 1.2169

Bi-LSTM with

attention
0.48 0.51 0.44 0.4018 0.5638 0.6542

BERT 0.51 0.45 0.61 0.7512 0.6512 0.5973

GPT 2 0.42 0.75 0.69 0.6987 0.6945 0.6395

CANBLWO 0.68 0.72 0.71 0.7629 0.7132 0.6943

IMDB

RNN 0.36 0.39 0.41 0.3245 0.4238 0.3155

LSTM 0.38 0.43 0.39 0.3445 0.3422 0.4162

Bi-LSTM 0.24 0.28 0.31 0.3578 0.4782 0.5213

Bi-LSTM with

attention
0.41 0.48 0.51 0.4176 0.5321 0.5653

BERT 0.42 0.69 0.59 0.7351 0.6221 0.7212

GPT 2 0.49 0.64 0.61 0.6912 0.7393 0.7382

CANBLWO 0.71 0.79 0.69 0.7629 0.7132 0.6943

Gigaword

RNN 0.42 0.39 0.46 0.3634 0.3567 0.4163

LSTM 0.43 0.37 0.39 0.2631 0.4131 0.3241

Bi-LSTM 0.29 0.36 0.39 0.3987 0.5182 1.2169

Bi-LSTM with

attention
0.48 0.51 0.44 0.4018 0.5638 0.6542

BERT 0.51 0.45 0.81 0.7512 0.6512 0.5973

GPT 2 0.42 0.75 0.69 0.6987 0.6945 0.6395

CANBLWO 0.68 0.72 0.71 0.7629 0.7132 0.6943

𝐵𝐿𝐸𝑈𝑛 =
(∑ (

𝑚𝑖

𝑔𝑖
))

𝑛 ∗ exp (min (0,1 −
𝑟
𝑙
)

Equation (69) calculates the BLEU score, where n

represents the BLEU type such as n=1 is BLEU-1, n=2

is BLEU-2, n=3 is BLEU-3, and n=4 is BLEU-4. In

addition, mi represents the count of N-grams that match

between the reference text and the generated, where gi

is the count of N-grams in the generated text, and the

length of reference text is represented as r, and the

length of the generated text is denoted as l. Table 4

represents the different BLEU scores. It shows the

comparative performance of text generation of other

existing deep-learning language models. The proposed

model, CANBLWO, emerges as the top performer

across most metrics, achieving the highest scores in

BLEU-2 (0.71), BLEU-3 (0.79), METEOR (0.7629),

ROUGE_L (0.7112), and CIDEr (0.6949), showcasing

its exceptional text generation capabilities. BERT and

GPT2 also excel, with BERT leading in METEOR

(0.7351) and GPT2 in ROUGE_L (0.7393). Bi-LSTM

with attention competes well in various metrics,

particularly BLEU-2 (0.41) and ROUGE_L (0.5321). In

contrast, RNN, LSTM, Bi-LSTM attention BERT and

GPT-2 lower scores across all metrics.

Table 4 shows the performance comparison on the

Wiki-Bio, CoNaLa, IMDB and Gigawords dataset,

where we have seen the CANBLWO model represents a

good machine-generated text quality score as compared

to other models such as RNN, LSTM, Bi-LSTM, Bi-

LSTM with attention model, BERT and GPT-2. Some of

the other variations of evaluation metrics are below.

• Recall-Oriented Understudy for Gisting Evaluation

(ROUGE): this algorithm is the most promising

evaluation metric for the machine generation text

[24]. It has been used to compare the reference text

and generated text. ROUGE calculates the

overlapping between references and generated text.

The most commonly used ROUGE scores are

ROUGE-L, ROUGE-N, and ROUGE-W.

• ROUGE-L: it calculates the longest matching

sequence of words based on the Longest Common

Subsequence (LCS) algorithm. To evaluate our

generated text, we use the ROUGE-L matrices.

The ROUGE metric calculates the recall of N-grams,

where n can be 1 (unigrams), 2 (bigrams), or 3

(trigrams). The mathematical expression for ROUGE-n

is:

𝑅𝑂𝑈𝐺𝐸𝑛 =
𝑛𝑔

𝑛𝑓

Equation (70) is used to calculate the ROUGE score,

where ng represents the total number of words in

generated text and nf is the number N-gram in the

reference text. Next, we have considered another

evaluation metric namely METEOR.

METEOR: This metric evaluates the quality of

machine-generated text based on how well it matches

the reference text [7]. Algorithm (4) represent the

calculation of METEOR involves several steps:

Algorithm 4: METEOR Score Calculation.

Input: Machine Generated Text Tgen

Output: Evaluation Score METEOR

Step 1. Tokenization Tokens=tokenize(Tgen)

Step 2. N-gram: N-grams=align_ngrams(Tokens,n)

Step 3. Harmonic mean of precision calculation:

𝑃 =
1

1
∑ 𝑝𝑖

𝑛
𝑖=1

⁄

Step 4. Harmonic mean of recall calculation 𝑅 =
1

1
∑ 𝑅𝑖

𝑛
𝑖=1

⁄

Step 5. Calculate METEOR score by using step4 and step 5

(69)

(70)

706 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

𝑀𝐸𝑇𝐸𝑂𝑅 =
10. 𝑃. 𝑅

𝑅 + 9 . 𝑃

Step 6. END

Equation (71) represents the METEOR calculation,

where the unaligned word is represented as U, S

represents total number of words in reference text,

precision alignment is represented by P, and recall

alignment is denoted as R.

𝑀𝐸𝑇𝐸𝑂𝑅 = (1 − (
|𝑈|

|𝑆|
)) ∗

2 ∗ 𝑃 ∗ 𝑅

(𝑃 + 𝑅)

Table 2 represents, the performance comparison of

different evaluation metrics score on various neural

network models such as RNN, LSTM, Bi-LSTM, Bi-

LSTM with attention, BERT and GPT-2. CoNaLa

Dataset is used as a reference text. Table 2, shows the

performance of various models across multiple text

generation metrics. Our proposed model CANBLWO

here also emerges as the top-performing model,

achieving high scores in BLEU-2 (0.68), BLEU-3

(0.79), BLEU-4 (0.69), METEOR (0.7629), and

ROUGE_L (0.7132). BERT also performs well with

scores in BLEU-4 (0.61) and METEOR (0.7512). GPT2

excels in BLEU-3 (0.75), while Bi-LSTM with attention

achieves a score in ROUGE_L (0.5638). On the other

hand, RNN, LSTM, and Bi-LSTM exhibit

comparatively lower scores across most metrics

• Consensus-based Image Description Evaluation

(CIDEr): it calculate the similarity between a

candidate text and reference text. It checked the

presence of specific words, the order in which they

appear, and the relationships between them [53].

The Algorithm (5) represent the CIDEr score calculation

for our models is as follows:

Algorithm 5: CIDEr Score Calculation.

Input Machine Generated Text Tgen

Output Evaluation Score CIDEr

Step 1. Computed TF-IDF weights

TF-IDFgen=compute_tfidf(Tgen)

TF-IDFref=compute_tfidf(Tref)

Step 2. Cosine similarity

𝑐𝑜𝑠(𝑚, 𝑛) =
𝑚 . 𝑛

||𝑚|| ∗ ||𝑛||

Step 3. Calculated geometric mean of cosine similarity

𝐺𝑒𝑜𝑚𝑀𝑒𝑎𝑛(𝑐𝑜𝑠) = (∏ 𝑐𝑜𝑠(𝑚𝑖 , 𝑛𝑖)

𝑛

𝑖=1

)

1/𝑁

Step 4. IDF weight for cos(m, n) for the rare words

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔 (
𝑁𝑑𝑜𝑐

∑ 𝐼(𝑤 ∈ 𝑑)𝑑 ∈𝑑𝑜𝑐𝑠

)

Step 5. Take exponentially weighted cos(m, n)

𝐸𝑥𝑝𝐶𝑜𝑠(𝑚, 𝑛) = 𝑒𝑐𝑜𝑠 (𝑚,𝑛)

Step 6. Got CIDEr score

𝐶𝐼𝐷𝐸𝑟 = 𝐺𝑒𝑜𝑚𝑀𝑒𝑎𝑛(𝐼𝐷𝐹(𝑤). 𝐸𝑥𝑝𝐶𝑜𝑠(𝑚, 𝑛))

Step 7. End

Algorithm (5) is a stepwise algorithm to generate the

score of CIDEr. Here cos(m, n) is cosine similarity and

m.n is the dot product of a vector, ||m|| * ||n|| is the cross

product of m, and n vectors where ||m|| and ||n|| is the

length of m and n.

5. Conclusions

In this paper, we demonstrated how our proposed model

has performed better in terms of contextual text

generation tasks. The first part of the proposed model

CAN has focussed on every important part of input data

to create the feature map. Bi-LSTM has used such

feature maps and generated human-like text. Wiki-Bio,

CoNaLa, IMDB and Gigawords datasets have been used

for the model training and their sentences have been

used as the reference text for testing the quality of the

machine generated text. Afterwards, WOA is applied to

optimize our proposed model’s outcomes. We

compared other existing models such as RNN, LSTM,

Bi-LSTM, Bi-LSTM with the attention model, and few

of the popular LLMs such as BERT and GPT-2. BERT

and GPT-2 have shown excellent results in larger

datasets, but in smaller dataset, our proposed model

CANBLWO performed well. In the future, we plan to

consider other Indian regional languages, such as Hindi,

Bengali, and Tamil, for text generation. Besides, we will

explore other evaluation metrics such as BERT score,

perplexity, and latent semantics. The proposed model

can be incorporated as a software application so that it

can be used by users to generate semantically enhanced

text.

References

[1] Abadi M., Barham P., Chen J., Chen Z., and Davis

A., “TensorFlow: A System for Large-Scale

Machine Learning,” in Proceedings of the 12th

USENIX Conference on Operating Systems

Design and Implementation, Savannah, pp. 265-

283, 2016.

https://dl.acm.org/doi/10.5555/3026877.3026899

[2] Abujar S., Masum A., Chowdhury S., Hasan M.,

and Hossain S., “Bengali Text Generation Using

Bi-Directional RNN,” in Proceedings of the 10th

International Conference on Computing,

Communication and Networking Technologies,

pp. 1-5, Kanpur, 2019.

DOI:10.1109/ICCCNT45670.2019.8944784

[3] Alqarni M., “Embedding Search for Quranic Texts

Based on Large Language Models,” The

International Arab Journal of Information

Technology, vol. 21, no. 2, pp. 243-256, 2024.

https://doi.org/10.34028/iajit/21/2/7

[4] Ayana., Chen Y., Yang C., Liu Z., and Sun M.,

“Reinforced Zero-Shot Cross-Lingual Neural

Headline Generation,” Transactions on Audio,

Speech, and Language Processing, vol. 28, no. 12,

pp. 2572-2584, 2020.

DOI:10.1109/TASLP.2020.3009487

[5] Bai Y., Li Z., Ding N., Shen Y., and Zheng H.,

(71)

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 707

“Infobox-to-Text Generation with Tree-Like

Planning Based Attention Network,” in

Proceedings of the 29th International Conference

on International Joint Conferences on Artificial

Intelligence, Yokohama, pp. 3773-3779, 2021.

https://dl.acm.org/doi/abs/10.5555/3491440.3491962

[6] Balas V., Roy S., Sharma D., and Samui P.,

Handbook of Deep Learning Applications,

Springer, 2019. https://doi.org/10.1007/978-3-

030-11479-4

[7] Banerjee S. and Lavie A., “METEOR: An

Automatic Metric for MT Evaluation with

Improved Correlation with Human Judgments,” in

Proceedings of the ACL Workshop on Intrinsic

and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, Michigan, pp.

65-72, 2005. https://aclanthology.org/W05-0909

[8] Bao J., Tang D., Duan N., Yan Z., Zhou M., and

Zhao T., “Text Generation from Tables,”

IEEE/ACM Transactions on Audio, Speech and

Language Processing, vol. 27, no. 2, pp. 311-320,

2019. DOI:10.1109/TASLP.2018.2878381

[9] Barros C., Vicente M., and Lloret E., “To What

Extent does Content Selection Affect Surface

Realization in the Context of Headline

Generation?,” Computer Speech and Language,

vol. 67, pp. 101179, 2021.

https://doi.org/10.1016/j.csl.2020.101179

[10] Cao J., “Generating Natural Language

Descriptions from Tables,” IEEE Access, vol. 8,

pp. 46206-46216, 2020.

DOI:10.1109/ACCESS.2020.2979115

[11] Chen X., Jin P., Jing S., and Xie C., “Automatic

Detection of Chinese Generated Essayss Based on

Pre-Trained BERT,” in Proceedings of the IEEE

10th Joint International Information Technology

and Artificial Intelligence Conference,

Chongqing, pp. 2257-2260, 2022.

DOI:10.1109/ITAIC54216.2022.9836571

[12] Dethlefs N., Schoene A., and Cuayáhuitl H., “A

Divide-and-Conquer Approach to Neural Natural

Language Generation from Structured Data,”

Neurocomputing, vol. 433, pp. 300-309, 2021.

DOI:10.1016/j.neucom.2020.12.083

[13] Devlin J., Chang M., Lee K., and Toutanova K.,

“BERT: Pre-Training of Deep Bidirectional

Transformers for Language Understanding,” in

Proceedings of the NAACL-HLT Association for

Computational Linguistics, Minneapolis, pp.

4171-4186, 2019. https://aclanthology.org/N19-

1423.pdf

[14] Ding J., Li Y., Ni H., and Yang Z., “Generative

Text Summary Based on Enhanced Semantic

Attention and Gain-Benefit Gate,” IEEE Access,

vol. 8, pp. 92659-92668, 2020.

DOI:10.1109/ACCESS.2020.2994092

[15] Diwan C., Srinivasa S., Suri G., Agarwal S., and

Ram P., “AI-based Learning Content Generation

and Learning Pathway Augmentation to Increase

Learner Engagement,” Computers and Education:

Artificial Intelligence, vol. 4, pp. 100110, 2023.

https://doi.org/10.1016/j.caeai.2022.100110

[16] Dixit U., Mishra A., Shukla A., and Tiwari R.,

“Texture Classification Using Convolutional

Neural Network Optimized with Whale

Optimization Algorithm,” SN Applied Sciences,

vol. 1, no. 6, pp. 1-11, 2019.

DOI:10.1007/s42452-019-0678-y

[17] Faille J., Gatt A., and Gardent C., “The Natural

Language Generation Pipeline, Neural Text

Generation and Explainability,” in Proceedings of

the 2nd Workshop on Interactive Natural

Language Technology for Explainable Artificial

Intelligence, Dublin, pp. 16-21, 2020.

https://hal.science/hal-03046206

[18] Gharehchopogh F. and Gholizadeh H., “A

Comprehensive Survey: Whale Optimization

Algorithm and its Applications,” Swarm and

Evolutionary Computation, vol. 48, pp. 1-24,

2019. https://doi.org/10.1016/j.swevo.2019.03.004

[19] Jing L., Song X., Lin X., Zhao Z., Zhou W., and

Nie L., “Stylized Data-to-Text Generation: A Case

Study in the E-Commerce Domain,” ACM

Transactions on Information Systems, vol. 42, no.

1, pp. 1-24, 2023.

https://doi.org/10.1145/3603374

[20] Joseph F., Nonsiri S., and Monsakul A., Advanced

Deep Learning for Engineers and Scientists: A

Practical Approach, Springer, 2021.

https://link.springer.com/chapter/10.1007/978-3-

030-66519-7_4

[21] Kumari S. and Pushphavati T., Computational

Methods and Data Engineering, Springer, 2023.

https://doi.org/10.1007/978-981-19-3015-7_8

[22] Lebret R., Grangier D., and Auli M., “Generating

Text from Structured Data with Application to the

Biography Domain,” arXiv Preprint, vol.

arXiv:1603.07771, pp. 1-10, 2016.

https://www.semanticscholar.org/reader/cc6ef7ce

bf340606cb9c2f374474f567880fab38

[23] Lee J. and Hsiang J., “Patent Claim Generation by

Fine-Tuning OpenAI GPT-2,” World Patent

Information, vol. 62, pp. 101983, 2020.

DOI:10.1016/j.wpi.2020.101983

[24] Lin C., “ROUGE: A Package for Automatic

Evaluation of Summaries,” in Proceedings of the

Workshop on Text Summarization Branches out,

Barcelona, pp. 74-81, 2004.

https://aclanthology.org/W04-1013

[25] Liu Y., Wang L., Shi T., and Li J., “Detection of

Spam Reviews through a Hierarchical Attention

Architecture with N-gram CNN and Bi-LSTM,”

Information Systems, vol. 103, no. C, pp. 101865,

2021. DOI:10.1016/j.is.2021.101865

[26] McKeown K., Text Generation, Cambridge

University Press, 1992.

708 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

https://books.google.jo/books/about/Text_Generat

ion.html?hl=fr&id=Ex6xZlxvUywC&redir_esc=y

[27] Mirjalili S. and Lewis A., “The Whale

Optimization Algorithm,” Advances in

Engineering Software, vol. 95, pp. 51-67, 2016.

https://doi.org/10.1016/j.advengsoft.2016.01.008

[28] Mukherjee V., Mukherjee A., and Prasad D.,

Handbook of Research on Predictive Modeling

and Optimization Methods in Science and

Engineering, IGI Global, 2018.

DOI:10.4018/978-1-5225-4766-2.ch023

[29] Niculescu M., Ruseti S., and Dascalu M.,

“RoGPT2: Romanian GPT2 for Text Generation,”

in Proceedings of the IEEE 33rd International

Conference on Tools with Artificial Intelligence,

Washington, pp. 1154-1161, 2021.

DOI:10.1109/ICTAI52525.2021.00183

[30] Palivela H., “Optimization of Paraphrase

Generation and Identification Using Language

Models in Natural Language Processing,”

International Journal of Information Management

Data Insights, vol. 1, no. 2, pp. 100025, 2021.

https://doi.org/10.1016/j.jjimei.2021.100025

[31] Papineni K., Roukos S., Ward T., and Zhu W.,

“BLEU: A Method for Automatic Evaluation of

Machine Translation,” in Proceedings of the 40th

Annual Meeting on Association for Computational

Linguisti, Philadelphia, pp. 311-318, 2002.

DOI:10.3115/1073083.1073135

[32] Pawade D., Sakhapara A., Jain M., Jain N., and

Gada K., “Story Scrambler-Automatic Text

Generation Using Word Level RNN-LSTM,”

International Journal of Information Technology

and Computer Science, vol. 10, no. 6, pp. 44-53,

2018. DOI: 10.5815/ijitcs.2018.06.05

[33] Peters M., Neumann M., Iyyer M., Gardner M.,

Clark C., Lee K., and Zettlemoyer L., “Deep

Contextualized Word Representations,” arXiv

Preprint, vol. arXiv:1802.05365, pp. 1-15, 2018.

http://arxiv.org/abs/1802.05365

[34] Qu Y., Liu P., Song W., Liu L., and Cheng M., “A

Text Generation and Prediction System: Pre-

Training on New Corpora Using BERT and GPT-

2,” in Proceedings of the IEEE 10th International

Conference on Electronics Information and

Emergency Communication, Beijing, pp. 323-326,

2020. DOI:10.1109/ICEIEC49280.2020.9152352

[35] Rahman M., Watanobe Y., and Nakamura K., “A

Bidirectional LSTM Language Model for Code

Evaluation and Repair,” Symmetry, vol. 13, no. 2,

pp. 1-15, 2021.

https://doi.org/10.3390/sym13020247

[36] Rasheed A., San O., and Kvamsdal T., “Digital

Twin: Values, Challenges and Enablers from a

Modeling Perspective,” IEEE Access, vol. 8, pp.

21980-22012, 2020.

DOI:10.1109/ACCESS.2020.2970143

[37] Ren Y., Hu W., Wang Z., Zhang X., Wang Y., and

Wang X., “A Hybrid Deep Generative Neural

Model for Financial Report Generation,”

Knowledge-based System, vol. 227, pp. 107093,

2021. DOI: 10.1016/j.knosys.2021.107093

[38] Roy S., Mallik A., Gulati R., Obaidat M., and

Krishna P., “A Deep Learning Based Artificial

Neural Network Approach for Intrusion

Detection,” in Proceedings of the 3rd International

Conference on Mathematics and Computing,

Haldia, pp. 44-53, 2017.

https://link.springer.com/chapter/10.1007/978-

981-10-4642-1_5

[39] Santhanam S., “Context Based Text-Generation

Using LSTM Networks,” arXiv Preprint, vol.

arXiv:2005.00048, pp. 1-10, 2020.

http://arxiv.org/abs/2005.00048

[40] Seifossadat E. and Sameti H., “Stochastic Data-to-

Text Generation Using Syntactic Dependency

Information,” Computer Speech and Language,

vol. 76, pp. 101388, 2022.

https://doi.org/10.1016/j.csl.2022.101388

[41] Selva Birunda S. and Kanniga Devi R., Innovative

Data Communication Technologies and

Application, Springer, 2021.

https://doi.org/10.1007/978-981-15-9651-3_23

[42] Seo H., Jung S., Jung J., Hwang T., Namgoong H.,

and Roh Y., “Controllable Text Generation Using

Semantic Control Grammar,” IEEE Access, vol.

11, pp. 26329-26343, 2023.

DOI:10.1109/ACCESS.2023.3252017

[43] Sha L., Mou L., Liu T., Poupart P., Li S., Chang

B., and Sui Z., “Order-Planning Neural Text

Generation from Structured Data,” in Proceedings

of the 32nd AAAI Conference on Artificial

Intelligence, New Orleans, pp. 5414-5421, 2018.

https://cdn.aaai.org/ojs/11947/11947-13-15475-

1-2-20201228.pdf

[44] Shedko A., “Semantic-Map-based Assistant for

Creative Text Generation,” Procedia Computer

Science, vol. 123, pp. 446-450, 2018.

https://doi.org/10.1016/j.procs.2018.01.068

[45] Shukla A., Das T., and Roy S., “TRX

Cryptocurrency Profit and Transaction Success

Rate Prediction Using Whale Optimization-based

Ensemble Learning Framework,” Mathematics,

vol. 11, no. 11, pp. 1-27, 2023.

DOI:10.3390/math11112415

[46] Sutskever I., Vinyals O., and Le Q., “Sequence to

Sequence Learning with Neural Networks,” in

Proceedings of the 27th International Conference

on Neural Information Processing Systems,

Montreal, pp. 3104-3112, 2014.

https://dl.acm.org/doi/10.5555/2969033.2969173

[47] Thoppilan R., De Freitas D., Shazeer J., and

Kulshreshtha A., “LaMDA: Language Models for

Dialog Applications,” arXiv Preprint, vol.

CANBLWO: A Novel Hybrid Approach for Semantic Text Generation 709

arXiv:2201.08239, pp. 1-46, 2022.

http://arxiv.org/abs/2201.08239

[48] Tiwari S., Khandelwal S., and Roy S., “E-

Learning Tool for Japanese Language Learning

through English, Hindi and Tamil: A Computer

Assisted Language Learning Based Approach,” in

Proceedings of the 3rd International Conference

on Advanced Computing, Chennai, pp. 52-55,

2011. DOI:10.1109/ICoAC.2011.6165218

[49] Turki T. and Roy S., “Novel Hate Speech

Detection Using Word Cloud Visualization and

Ensemble Learning Coupled with Count

Vectorizer,” Applied Sciences, vol. 12, no. 13, pp.

1-13, 2022. https://doi.org/10.3390/app12136611

[50] Van Deemter K., Theune M., and Krahmer E.,

“Real Versus Template-based Natural Language

Generation: A False Opposition?,” Computational

Linguistics, vol. 31, no. 1, pp. 15-24, 2005.

https://doi.org/10.1162/0891201053630291

[51] Van der Lee C., Krahmer E., and Wubben S.,

“Automated Learning of Templates for Data-to-

Text Generation: Comparing Rule-based,

Statistical and Neural Methods,” in Proceedings

of the 11th International Conference on Natural

Language Generation, Tilburg, pp. 35-45, 2018.

https://aclanthology.org/W18-6504

[52] Vaswani A., Shazeer N., Parmar N., Uszkoreit J.,

Jones L., Gomez A., Kaiser L., and Polosukhin I.,

“Attention is all you Need,” in Proceedings of the

31st Conference on Neural Information

Processing Systems, Long Beach, pp. 5999-6010,

2017.

https://dl.acm.org/doi/10.5555/3295222.3295349

[53] Vedantam R., Zitnick C., and Parikh D., “CIDEr:

Consensus-based Image Description Evaluation,”

in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition,

Boston, pp. 4566-4575, 2015.

DOI:10.1109/CVPR.2015.7299087

[54] Wang H., Hsiao W., and Chang S., “Automatic

Paper Writing Based on a RNN and the TextRank

Algorithm,” Applied Soft Computing, vol. 97, pp.

106767, 2020. DOI:10.1016/j.asoc.2020.106767

[55] Wang Z., Cuenca G., Zhou S., Xu F., and Neubig

G., “MCoNala: A Benchmark for Code

Generation from Multiple Natural Languages,”

arXiv Preprint, vol. arXiv:2203.08388, pp. 1-9,

2023. https://doi.org/10.48550/arXiv.2203.08388

[56] Wei M. and Zhang Y., “Natural Answer

Generation with Attention over Instances,” IEEE

Access, vol. 7, pp. 61008-61017, 2019.

DOI:10.1109/ACCESS.2019.2904337

[57] Yakhchi S., Behehsti A., Ghafari S., Razzak I.,

Orgun M., and Elahi M., “A Convolutional

Attention Network for Unifying General and

Sequential Recommenders,” Information

Processing and Management, vol. 59, no. 1, pp.

102755, 2022.

https://doi.org/10.1016/j.ipm.2021.102755

[58] Yang S., Liu Y., Feng D., and Li D., “Text

Generation from Data with Dynamic Planning,”

IEEE/ACM Trans, Audio, Speech, Lang Process,

vol. 30, pp. 26-34, 2021.

DOI:10.1109/TASLP.2021.3129346

[59] Yin P., Deng B., Chen E., Vasilescu B., and

Neubig G., “Learning to Mine Aligned Code and

Natural Language Pairs from Stack Overflow,” in

Proceedings of the 15th International Conference

on Mining Software Repositories, Gothenburg, pp.

476-486, 2018.

https://doi.org/10.1145/3196398.319640

[60] Zhang R., Wang Z., Yin K., and Huang Z.,

“Emotional Text Generation Based on Cross-

Domain Sentiment Transfer,” IEEE Access, vol. 7,

pp. 100081-100089, 2019.

DOI:10.1109/ACCESS.2019.2931036

[61] Zhao H., Lu J., and Cao J., “A Short Text

Conversation Generation Model Combining

BERT and Context Attention Mechanism,”

International Journal of Computational Science

and Engineering, vol. 23, no. 2, pp. 136-144,

2020. DOI: 10.1504/IJCSE.2020.110536

[62] Zhao J., Zhan Z., Li T., Li R., Hu C., Wang S., and

Zhang Y., “Generative Adversarial Network for

Table-to-Text Generation,” Neurocomputing, vol.

452, pp. 28-36, 2021.

DOI:10.1016/j.neucom.2021.04.036

https://dl.acm.org/doi/10.5555/3295222.3295349

710 The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024

Abhishek Kumar Pandey is

Research scholar at Vellore Institute

of Technology. He is currently

pursuing a Ph.D. degree in generative

AI and large language model with the

University of Vellore Institute, of

Technology. He received the B.E.

degree in computer science engineering and the M.tech

degree in Computer Science engineering from the

R.G.P.V University of Bhopal, India, in 2017 and 2019,

respectively. His current research interests include

Natural Language Processing, Text Generation, Deep

Learning, and Sequential Models.

Sanjiban Sekhar Roy is a Professor

with the School of Computer Science

and Engineering, Vellore Institute of

Technology. He uses deep learning

and machine learning techniques to

solve many complex engineering

problems, especially which are

related to imagery. He has vast experience in research,

especially in the field of advanced machine learning and

deep learning. He is specialized in ML and deep

convolutional neural networks towards solving various

image related complex problem and various engineering

problems, such as computational biology, civil, and

energy inspired problems. He also has edited special

issues for journals and many books with reputed

international publishers, such as Elsevier, Springer, and

IGI Global. Very recently, the Ministry of National

Education, Romania, in collaboration with Faculty of

Engineers (‘‘Aurel Vlaicu’’ University of Arad),

Romania, has awarded him the ‘‘Diploma of

Excellence’’ as a sign of appreciation for the special

achievements obtained in the scientific research

activity, in 2019.

