
690                                                             The International Arab Journal of Information Technology, Vol. 21, No. 4, July 2024 

CANBLWO: A Novel Hybrid Approach for 

Semantic Text Generation 

Abhishek Kumar Pandey 

School of Computer Science and Engineering 

Vellore Institute of Technology, India 

abhishek.pandey2020@vitstudent.ac.in 

Sanjiban Sekhar Roy 

School of Computer Science and Engineering 

Vellore Institute of Technology, India 

s.roy@vit.ac.in 

Abstract: Semantic text generation is critical in Natural Language Processing (NLP) as it faces challenges such as 

maintenance of coherence among texts, contextual relevance, and quality output. Traditional language models often produce 

grammatically inconsistent text. To address these issues, we introduce Convolutional Attention Bi-LSTM with Whale 

Optimization (CANBLWO), a novel hybrid model that integrates a Convolutional Attention Network (CAN), Bidirectional Long 

Short-Term Memory (Bi-LSTM), and Whale Optimization Algorithm (WOA). CANBLWO aims to generate semantically rich and 

coherent text and outperforms the traditional models like Long Short-Term Memory (LSTM), Recurrent Neural Networks (RNN), 

Bi-LSTM, and Bi-LSTM with attention, Bidirectional Encoder Representations from Transformers (BERT), and Generative Pre-

trained Transformer 2 (GPT-2). Our model achieved 0.79, 0.78, 0.76, and 0.82 scores in Metric for Evaluation of Translation 

with Explicit Ordering (METEOR), Bi-Lingual Evaluation Understudy (BLEU), Consensus-based Image Description Evaluation 

(Ciders), and Recall-Oriented Understudy for Gisting Evaluation (ROUGE) metrics, respectively. The proposed model also 

demonstrates 97% and 96% accuracy on Wiki-Bio and Code/Natural Language Challenge (CoNaLa) datasets, highlighting its 

effectiveness against Large Language Models (LLMs). This study underscores the potential capability of hybrid approaches in 

enhancing semantic text generation. 
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1. Introduction 

Natural Language Generation (NLG) has advanced 

rapidly in the last ten years. It has helped to generate 

automatic text such as reports, narratives, and Multiple 

Choice Questions (MCQ). NLG is a challenging task 

that requires effective handling of grammar, sentence 

structure, semantic meaning, contextual relevance, and 

tone or style. Semantically enhanced text generation 

aims to produce text that is not only grammatically 

correct but also semantically meaningful. This means 

that the text should have a clear and coherent meaning 

and be relevant to the context of the input dataset that 

has already been generated. Seo et al. [42] have 

proposed a valuable framework for generating text with 

semantic control by leveraging the power of grammar-

based models. This research uses a transformer-based 

encoder-decoder model. Yang et al. [58] have 

introduced an innovative approach called dynamic 

planning for generating text from data. Using dynamic 

planning techniques, their proposed method addressed 

the challenges of generating coherent and contextually 

relevant text. Zhang et al. [60] presented emotional text 

generation, namely cross-domain sentiment transfer, 

using a Gated Neural Network (GRU)-based encode 

decoder model. 

Semantically enhanced text generation is important  

 
in Natural Language Processing (NLP) because it can 

improve text quality in various ways, such as generating 

more natural and engaging text. It can also improve the 

accuracy of machine translation, create more 

informative, helpful chatbots, and develop more 

effective marketing content. Shedko [44] proposed an 

interactive and intelligent system based on Recurrent 

Neural Networks (RNN) and Long Short-Term Memory 

(LSTM) for generating creative text. Ding et al. [14] 

presented a text summarization that uses semantic 

attention to enhance the quality of the text summary 

generation. The Large Language Model (LLMs) are 

facing same kind of text generation problem as 

mentioned by Qu et al. [34], in Bidirectional Encoder 

Representations from Transformers (BERT) and 

Generative Pre-trained Transformer 2 (GPT-2) 

prediction models have been proposed, and in this work 

authors have used BERT to generate intermediate 

words. Here, GPT-2 has been used to generate a long 

sentence or even articles [34]. LLMs used to go through 

extensive training steps using massive datasets, 

enabling them to utilize a spectrum of functions. These 

include tasks such as translation, generating diverse 

forms of creative content, and providing informative 

responses to questions, even when they are complex, 

unconventional, or puzzling. Therefore, LLMs 

encounter several hurdles when it comes to generating 
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textual output. In our work, the proposed Convolutional 

Attention Network (CAN) has enhanced the model’s 

contextual understanding and feature extraction [57]. It 

has also helped us identify grammatical structures such 

as verb phrases and entities such as person, 

organization, or location names. For example, in our 

work, one instance of the data set, namely Wiki-Bio, is 

“Otto extra is a German award-winning aerobatic pilot,” 

and the proposed CAN model has identified the feature 

map as “Otto extra” as a person’s name and “German” 

as the nationality of that person. Bidirectional Long 

Short-Term Memory (Bi-LSTM) helps us to extract 

salient features such as co-referencing from the input 

text; for example, consider a sentence, “extra was 

trained as a mechanical engineer, and he began his flight 

training in gliders” here the salient feature “extra” 

referred to a named entity. Therefore, it is mapped with 

the pronoun ‘he’ in the same sentence. Finally, we have 

adopted the Whale Optimization Algorithm (WOA) for 

optimizing the hyperparameter tuning [27]. We have 

combined the advantages of CAN, Bi-LSTM, and WOA 

to address the above challenges in generating 

semantically rich text. We also have conducted a 

comparative analysis of the proposed methodology 

against popular LLMs such as BERT, GPT2, and other 

deep learning methods such as Long Short-Term 

Memory (LSTM), Bi-LSTM, and Bi-LSTM with 

attention. BERT and GPT2 have demonstrated good 

results. Moreover, this comparative analysis serves as a 

valuable benchmark for assessing the performance of 

the proposed methodology within the context of 

language models and deep learning frameworks. The 

generated text by proposed model is evaluated using 

standard metrics such as Metric for Evaluation of 

Translation with Explicit Ordering (METEOR), Bi-

Lingual Evaluation Understudy (BLEU), Consensus-

based Image Description Evaluation (CIDEr), and 

Recall-Oriented Understudy for Gisting Evaluation 

(ROUGE). The integration of WOA with the hybrid 

CAN and Bi-LSTM model presents a promising 

direction to achieve grammatically improved text.  

The contributions of the manuscript are as follows: 

• A comprehensive study on the semantic 

enhancement of text generation problems has been 

carried out. Existing models for text generation have 

also been analyzed and how these models have 

improved the quality of natural and engaging text 

generation. 

• We have proposed a hybrid model CANBLWO that 

combines a convolutional attention network, Bi-

LSTM, and whale optimization. The proposed model 

has highlighted the importance of the embedding 

layer, attention layer, Bi-LSTM layer, and dense 

layer as a stacked hybrid architecture. The proposed 

model CANBLWO has obtained promising results in 

comparison with the other existing language models 

for text generation. 

• CAN model has been empowered by Conv1D, and 

we have shown the extraction process of features 

from the text dataset such as Wiki-Bio, Code/Natural 

Language Challenge ConALA, Internet Movie 

Database (IMDb) and Gigaword. The potential 

capability of the proposed Bi-LSTM model for the 

decoding of feature maps of text as a stacking layer 

has also been demonstrated, and finally, whale 

optimization has tuned the model in terms of kernel 

size, neuron, and batch size. 

 

Figure 1. A Generative AI-based approach for context-based text generation. 
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Figure 1 shows the context-based text generation 

using generative AI. This model used to operate in four 

stages: pre-processing, data cleaning, modeling, and 

text generation. In preprocessing steps, the conversion 

of the whole text to lower case letters, replacement of 

the words, removal of several unimportant characters, 

stop-word removal, and finally, tokenization have been 

carried out; afterward, the proposed model powered by 

various computations such as embedding, encoding, 

attention, and decoding are carried out. The standard 

metrics of NLP applications such as BLEU, METEOR, 

and ROUGE have been obtained to evaluate the 

generated text quality. 

The rest of the section of this paper has been 

organized as follows: background work is presents in 

section 2, the proposed model is described in section 3, 

following up we provided results and analysis in section 

4, and finally, the conclusion of the paper is presented 

in section 5. 

2. Related Work 

In the literature, it can be found that traditional and 

recent generative models [26, 40] are mostly adopted for 

text generation. Van der Lee et al. [51] have 

investigated a trainable approach for data-to-text 

generation influenced by the templatization technique. 

This approach has relied upon a rule-based method, so 

it requires manual effort, and this has decreased the text 

quality based on the BLEU score. Rules-based text 

generation relies on the language’s grammar, syntax, 

and semantics and it has been used for tasks like text 

summarization and simplification, but they have 

limitations as they are confined to predefined rules and 

may not produce outcomes as natural as human-written 

text. In the literature, also it can be found that statistical 

methods such as Hidden Markov Models (HMM) and 

N-gram have been used for large text corpora for 

training. This training is accomplished in order to learn 

patterns and dependencies among input text [19]. 

Statistical methods have been used in various Natural 

Language Generation (NLG) tasks, such as language 

modeling, text summarization, and machine translation. 

Another different method such as the template-based 

approach for text generation proposed by Van Deemter 

et al. [50] is notable for its introduction of evolutionary 

computation techniques, where the authors have 

included a set of predefined templates and grammar 

rules. Palivela [30] in his work has shown how to fine-

tune a text-to-text transfer transformer model for 

paraphrase generation. In his work, paraphrasing is 

achieved in two steps: the first step is known as 

paraphrase identification, and the second step is 

paraphrasing generation. Zhao et al. [61] have 

combined BERT and context attention mechanisms to 

generate short conversations. It combines the standard 

Seq2Seq model and BERT embedding to improve the 

quality of the text. BERT and GPT-2 based automatic 

question and answer generation has been proposed by 

Kumari and Pushphavati [21]. Their work has focused 

on generating short answers from the question, where 

BERT and GPT-2 have been used as encoders and 

decoders. Barros et al. [9] proposed a hybrid surface 

realization approach named Hana NLG for news 

headline generation, where the influence of content 

selection on surface realization is the key focus. They 

have generated coherent and linguistically structured 

headlines using Document Understanding Conference 

(DUC) and DUC 2004 standard datasets. Diwan et al. 

[15] have explored the utilization of AI-based 

techniques for learning pathway augmentation and 

content generation and learning to enhance learner 

engagement. Diwan et al. [15] and authors have used 

GPT-2, where they generate personalized and 

interactive learning narratives that cater to individual 

learners. Ayana et al. [4] have developed reinforcement 

learning powered by two models for creating news 

headlines. Their experimental results outperform 

headline generation in Chinese-English cross-lingual, 

but the models are unsuitable for training in different 

source languages. Wei and Zhang [56] worked on an 

LSTM-based attention mechanism to generate natural 

answers that have focused on real-world Knowledge 

Base (KB) question answering. Wang et al. proposed an 

interesting work that has generated the introductory 

parts of any research papers automatically using RNN 

and text rank algorithms [55]. This work suffers from an 

out-of-vocabulary problem, which produces 

meaningless sentences sometimes. Dethlefs et al. [12] 

have developed a divide-and-conquer based on LSTM 

to generate input context text. However, the authors 

mentioned that there is a scope for better hyper-

parameter tuning in memory to sequence and sequence-

to-sequence models. Cao [10] has proposed table-to-text 

generation from weather gov, Wiki-Bio, and Wiki table 

datasets by using RNN and LSTM models. The 

following models are available in the literature mostly 

for generating semantic-rich text [2, 6, 17, 32, 38, 39, 

48]. Chen et al. [11] have fine-tuned the BERT model 

to develop the detection of automatic generation of 

essays in Chinese language. They built an essay 

generator through the GPT-2 model and an essay 

detector by the pre-trained BERT model. Semantically, 

text generation is possible with either a Large Language 

Model (LLM) or a hybrid of the sequential model. In the 

following Table 1, represents the key features and 

approach for different type of text generation system. 
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Table 1. Related work in the field of text generation. 

Author(s) Approach Key Features 

Van der Lee et al. [51] 
Trainable approach for data-to-text generation influenced by 

templatization. 
Rule-based method, manual effort, BLEU score decrease. 

Van Deemter et al. 

[50] 

Template-based approach for text generation. Evolutionary computation techniques, predefined templates and 
grammar rules. 

Palivela [30] 
Fine-tune text-to-text transfer transformer model for paraphrase 

generation. 
Paraphrase identification and generation. 

Zhao et al. [61] 
Combined BERT and context attention mechanisms for short 

conversation generation. 
Seq2seq model, BERT embedding. 

Kumari and 

Pushphavati [21] 

BERT and GPT-2 based automatic question and answer 

generation. 

Short answer generation, BERT and GPT-2 as encoders and 

decoders. 

Barros et al. [9] 
Hybrid surface realization approach (Hana NLG) for news 

headline generation. 

Content selection influence on surface realization, DUC 2004 

datasets. 

Diwan et al. [15] 
AI-based techniques for learning pathway augmentation and 

content generation using GPT-2. 
Personalized and interactive learning narratives. 

Ayana et al. [4] Reinforcement learning for news headline generation Outperforms Chinese-English cross-lingual headline generation. 

Wei and Zhang [56] LSTM-based attention mechanism for natural answer generation. Real-world KB question answering. 

Wang et al. [55] Automatic paper writing using RNN and TextRank algorithms. 
Introductory part generation of research papers, out-of-

vocabulary problem. 

Dethlefs et al. [12] 
Divide-and-conquer approach based on LSTM for input context 

text generation. 

Better hyper-parameter tuning in memory-to-sequence and 

sequence-to-sequence models. 

Cao [10] Table-to-text generation using RNN and LSTM models. Weather gov, Wiki-Bio, and Wiki table datasets. 

Chen et al. [11] 
Fine-tuned BERT for detecting automatically generated essays in 

Chinese. 

Essay generator through GPT-2, essay detector by pre-trained 

BERT model. 

 

2.1. Text Generation Using Seq2Seq Model 

Seq2Seq model was first introduced [46] where the 

Sutskever et al. [39] proposed a single-layer LSTM-

based encoder-decoder architecture to translate English 

to French text. Since then, the Seq2Seq model for text 

generation can be represented as a series of 

computations performed on the input and output text. 

The mathematical representation of the encoder-

decoder model is as follows: 

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟: 𝑥𝑡 =  𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑥𝑡) 

𝐸𝑛𝑐𝑜𝑑𝑒𝑟 𝐿𝑆𝑇𝑀/𝑅𝑁𝑁: ℎ𝑡 =  𝐸𝑛𝑐𝑜𝑑𝑒𝑟(𝑥𝑡, ℎ𝑡−1) 

Equations (1) and (2) represent the text encoder of the 

model, where xt and ht represents the input text, and 

hidden state at time step t. Embedding and Encoder are 

functions that are applied to the input text. The 

embedding function converts the input text dataset into 

a dense representation and hidden state update by 

encoder function.  

𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑙𝑎𝑦𝑒𝑟: 𝑦𝑡 =  𝐸𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔(𝑦𝑡) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚: 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 =  𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑡, ℎ𝑡−1) 

𝐷𝑒𝑐𝑜𝑑𝑒𝑟
𝐿𝑆𝑇𝑀

𝑅𝑁𝑁
: 𝑦𝑡, ℎ𝑡 = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝑦𝑡, ℎ𝑡−1, 𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 

Equations (3), (4), and (5) represent the decoder parts of 

the sequence model. Where yt, and ht are the output text 

and hidden state respectively at the t time step. Three 

functions, embedding, attention, and decoder, are 

applied to the output text. The embedding function i.e., 

Equation (3) converts the output text into a dense 

representation, whereas the attention function Equation 

(4) computes the attention mechanism, and the decoder 

function generates the output text and updates the 

hidden state [5]. 

Figure 2 shows the detailed architecture of encoder-

decoder for sentence generation. Here, RNN is the 

encoder and LSTM is the decoder [55]. 

 

Figure 2. Sentence generation architecture using an LSTM-based 

encoder and decoder model. 

2.2. Contextual Generation Using Bi-LSTM 

Attention Model 

Bidirectional Long Short-Term Memory (Bi-LSTM) 

consists of two LSTM models. It works in both 

directions: forward and backward [2, 35]. Bi-LSTM 

captures contextual information, so it understands the 

whole sentence context and it generates semantically 

enhanced text. This typical forward and backward 

structure is useful for generating coherent and 

semantically enhanced text [36, 48]. For example, the 

input text is “john m. walker is” and our model 

completes this sentence by generating “john m. walker 

is” an American politician and business man”. 

Figure 3 shows the overall flow of the text generation 

using our proposed model. It can be seen from the figure 

that we first collected the Wiki-Bio dataset which has 

been represented as W, and n represents the input words. 

Bi-LSTM captures features such as word 

interdependency, grammar patterns, co-referencing, and 

Named Entity Recognition (NER) from the dataset [32]. 

Next, we have provided initial 2-3 words for text 

(1) 

(2) 

(3) 

(4) 

(5) 
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generation as input, represented as outline text which 

can be seen in Figure 3. Next LSTM with attention 

model analyzes the outline text and predicts the next 

word t using the Bi-LSTM feature map. The target text 

is represented as (M) [37]. Onwards LSTM processes 

the text features and generates the sentence based on the 

input corpus. 

 

Figure 3. A framework for contextual text generation using LSTM, 

Bi-LSTM with Attention mechanism on the Wiki-Bio dataset. 

In this work, we assigned the embedding layer 

dimension as 16 and two Bi-LSTM layers with 256 and 

512 hidden neurons. We provided the input initial text 

from Wiki-Bio data “Jon tester born” and it assigns to k 

𝑘𝑛
𝑞
as the input gate. The an is the variable that takes 

“Jon”, “tester”, and “born” words as input in the time 

stamp n=1,2 and 3, respectively.  

𝑘𝑛
𝑞

=  𝜎(𝑤𝑘 , 𝑎𝑛 + 𝑆𝑘𝑚𝑛−1
𝑞

+ 𝑜𝑘
𝑞

) 

𝑞𝑛
𝑞

=  𝜎(𝑤𝑞 , 𝑎𝑛 + 𝑆𝑞𝑚𝑛−1
𝑞

+ 𝑜𝑞
𝑞

) 

𝑖𝑡
𝑞

=  𝜎(𝑤𝑖 , 𝑎𝑛 + 𝑆𝑖ℎ𝑛−1
𝑞

+ 𝑜𝑖
𝑞

) 

In Equations (6), (7), and (8), 𝑎𝑛, 𝑚𝑛
𝑞

, 𝑚𝑛
𝑜 , 𝑝𝑛

𝑞
,  𝑎𝑛𝑑 𝑝𝑛

𝑜, 

represent the forward hidden state, backward hidden 

state memory cell, backward memory cell, and output 

get respectively. We have initialized the forward LSTM 

hidden state 𝑚𝑛
𝑞
 with zero vector. The forward input 

gate represents as 𝑘𝑛
𝑞
in Equation (6). Next, the variable 

𝑞𝑛
𝑞
 represents the forward forget gate in Equation (7) 

and 𝑖𝑡
𝑞
 has been represented as a backward output gate 

in Equation (8). Further, we assign our initial values 

“Jon tester born” in Equation (6), which is shown in 

Equations (9), (10), and (11).  

𝑘1
𝑞

(1) =  𝜎("𝐽𝑜𝑛" +  𝑆0(0)) 

𝑘2
𝑞

(2) =  𝜎("𝑡𝑒𝑠𝑡𝑒𝑟" +  𝑆1(1)) 

𝑘3
𝑞

(3) =  𝜎("𝑏𝑜𝑟𝑛" +  𝑆2(2)) 

Similarly, in Equations (9), (10), and (11) represents the 

backward input gate, forget gate, and output gate are 

represented at time step n as following equations.  

𝑘𝑛
𝑜 =  𝜎(𝑤𝑘 , 𝑎𝑛 + 𝑆𝑘𝑚𝑛+1

𝑜 + 𝑜𝑘
𝑜) 

𝑞𝑛
𝑜 =  𝜎(𝑤𝑞 , 𝑎𝑛 + 𝑆𝑞𝑚𝑛+1

𝑜 + 𝑜𝑞
𝑜) 

𝑖𝑡
𝑏 =  𝜎(𝑤𝑖 , 𝑎𝑛 + 𝑆𝑖𝑚𝑛+1

𝑜 +  𝑜𝑖
𝑜) 

In the above Equations (12), (13), and (14), σ represents 

the sigmoid function, Sn, Sq, Si represent the weight 

matrices and 𝑜𝑘
𝑜, 𝑜𝑞

𝑜, 𝑜𝑖
𝑜 represents the bias. Further, we 

assign our initial value in the backward input gate in the 

below equations 

𝑘1
𝑜(1) =  𝜎("𝑏𝑜𝑟𝑛" + 𝑆0(0)) 

𝑘2
𝑜(2) =  𝜎("𝑡𝑒𝑠𝑡𝑒𝑟" + 𝑆1(1)) 

𝑘3
𝑜(3) =  𝜎("𝐽𝑜𝑛" + 𝑆2(2)) 

In Equation (15), model assigned a0=“born”; in 

Equation (16) a1=“tester”, and in Equation (17) the 

variable a2 has been assigned as “jon”. Bi-LSTM learns 

the sentence structure with the help of a forward hidden 

state and a backward hidden state. The next step of the 

process is to decide whether the information is stored in 

a memory cell or not.  

𝑝𝑛
𝑞

=  𝑞𝑛
𝑞

∗  𝑝𝑛−1
𝑞

 𝑘𝑛
𝑞

∗  𝑡𝑎𝑛ℎ (𝑊𝑝𝑎𝑛 +  𝑆𝑝 + 𝑚𝑛−1
𝑞

+ 𝑜𝑝
𝑞

 ) 

𝑝𝑛
𝑜 =  𝑞𝑛

𝑜 ∗  𝑝𝑛+1
𝑜  𝑖𝑡

𝑏 ∗  𝑡𝑎𝑛ℎ (𝑊𝑝𝑎𝑡 +  𝑆𝑝 + 𝑚𝑛−1
𝑜 + 𝑜𝑝

𝑜) 

Equations (18) and (19) are used to calculate forward 

and backward memory cells at time step n, where, 𝑝𝑛
𝑞

 is 

the forward memory cell and 𝑝𝑛
𝑜 is the backward 

memory cell. All initial information are stored in the 

memory cell, and based on this information output gate 

predicts the next words by using forward and backward 

hidden states.  

𝑚𝑛
𝑞

=  𝑖𝑛
𝑞

∗ 𝑡𝑎𝑛ℎ (𝑝𝑛
𝑞

) 

𝑚𝑛
𝑜 =  𝑖𝑛

𝑜 ∗ 𝑡𝑎𝑛ℎ (𝑝𝑛
𝑜) 

Finally, Equations (20) and (21) represents the forward 

and backward hidden states concatenate and generate 

the output at n time step.  

𝑧𝑛 =  𝑔 (𝑚𝑛
𝑞

, 𝑚𝑛
𝑜) 

Equation (22), shows the concatenation of forward and 

backward hidden state, [𝑚𝑛
𝑞

, 𝑚𝑛
𝑜] and g represents a 

fully connected layer of linear function. Finally the 

output zn represents the processing of the prediction of 

the next word and generates contextual text.  

𝑧𝑛+1 =  "𝑖𝑛" 

Next, the input text is updated with “jon tester born in” 

in Equation (23). All equations starting from Equations 

(6) to (23) have generated one word at a one-time step 

and it has worked in the loop to generate complete 

words for a sentence. In the following equation, we see 

that this process has accomplished 3 times and predict 

the next three words. Next, the input text has been 

updated with “jon tester born in” in Equation (23) and 

the Equations (6), (7), and (8), ……up to (22) were 

again repeated for the next time step t+1, t+2………n 

till the last word of the sentence is predicted.  

𝑧2 =  "𝑎𝑢𝑔𝑢𝑠𝑡" 

𝑧3 =  "21" 

𝑧4 =  "1956" 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(17) 

(16) 

(15) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 
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In Equations (24), (25), and (26), our model generates 

the complete sentence that is z=“jon tester born in 

august 21 1956”. In this work, the LSTM model has 

generated the next word in the output sequence, based 

on the previous sentence context provided by the Bi-

LSTM hidden states. 

2.3. Data-to-text Generation Using CAN Model 

In the convolutional attention model, Convolutional 

Neural Network (CNN) is used to process the input text 

by extracting features at different levels of abstraction 

[62]. In our proposed model, it has extracted the features 

from the text such as text pattern and grammatical 

structure of the text; then it has created a word feature 

vector. Conv1D has analyzed the grammatical 

ambiguity in the sentence so that error-free sentences 

can be generated. We used N-gram model for a better 

understanding of sentence structure. The embedding, 

Conv1D, and attention functions help the model in the 

training phase so that it can predict the next word of the 

sentence. 

 

Figure 4. CAN for data-to-text generation. 

Figure 4 represents a framework to generate context-

based text, here we have used the attention mechanism 

with Conv1D. Further, this model has enhanced the 

performances of Bi-LSTM model. 

The following equations represent a 1D 

Convolutional neural network (Conv1D) for a data-to-

text generation:  

ℎ𝑡 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑡 , 𝑊) + 𝑏 

Equation (27) represents the vector representation of 

input of the data, of conv1d which W, and b represents 

the convolutional filter and bias at t time step. The 

convolutional layer output is passed through the non-

linear activation function ReLU, which is represented 

below:  

ℎ𝑡 = 𝑓(ℎ𝑡) 

In Equation (28), the convolutional layer is passed to a 

pooling layer, where f represents the activation function. 

Then pooling layer output passed through the fully 

connected layer, which generates the final output:  

𝑦𝑡 = 𝑔(ℎ𝑡) 

In Equation (29), g represents a linear function for a 

fully connected layer, and yt represents the final output 

of the model. 

2.4. Model Optimization Using Humpback 

Whale Optimization 

The Whale Optimization Algorithm (WOA) has been 

inspired by the hunting behavior of humpback whales. 

It has been proposed by Mirjalili and Lewis [27]. The 

algorithm consists of two main phases: exploration and 

exploitation. During the exploration phase, the 

algorithm explores the search space by randomly 

moving in different directions so that it can achieve the 

solution or goal state [18]. It allows for broad 

exploration and helps to discover potential areas of 

improvement. The exploitation phase usually is used for 

search so that the best solution can be found quickly in 

the given search space [25]. 

WOA utilizes a set of mathematical equations 

inspired by bubble-net feeding and bubble searching. 

The following equations govern virtual whales’ 

movement and behavior representing potential solutions 

in the optimization process [16].  

�⃗� =  2𝑚⃗⃗⃗⃗⃗⃗⃗ . �⃗⃗� −  �⃗⃗⃗� 

�⃗⃗� =  2 . �⃗⃗� 

𝑍 =  |�⃗⃗� . 𝑇∗⃗⃗⃗⃗⃗ (𝑝) − �⃗⃗� (𝑝)| 

�⃗⃗�(𝑝 + 1) =  𝑇∗⃗⃗⃗⃗⃗ (𝑃) − �⃗� . 𝑍 

𝑍 =  |�⃗⃗� . 𝑇𝑟𝑎𝑛𝑑𝑜𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗  − �⃗⃗� | 

�⃗⃗�(𝑃 + 1) =  𝑇𝑟𝑎𝑛𝑑𝑜𝑚
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ − �⃗� . 𝑍 

𝑍′⃗⃗ ⃗⃗ =  | 𝑇∗⃗⃗⃗⃗⃗ (𝑝) − �⃗⃗� (𝑝)| 

�⃗⃗�(𝑡 + 1) =  𝑍′⃗⃗ ⃗⃗  . 𝑒ℎ𝑙⃗⃗ ⃗⃗ ⃗⃗ . 𝑐𝑜𝑠 (2𝜋𝑘)  + 𝑇∗⃗⃗⃗⃗⃗ (𝑝) 

Here �⃗� represents variable linearly decreases from 2 to 

0, with iterations, and ⃗n represents a random vector in 

[0, 1]. h and Z⃗’ represent the constant and distance 

between the whale and best solutions, respectively. L 

shows a random number in [−1, 1]. P, �⃗⃗�, �⃗⃗�, and T 

represent the current iteration, coefficient vectors, and 

the best solution’s position vector and position vector. 

The behavior of encircling prey has been shown in 

Equations (30) and (31), Equations (32), and (33) 

describe the ‘search for prey’ mechanism, and bubble-

net attacking behavior has been shown in Equations (34) 

and (35), which are exhibited by humpback whales. 

Additionally, specific modifications have been made, 

such as hyperparameter tuning with iteration. One 

notable aspect of WOA, it has easily been implemented 

with our model to optimize the hyperparameters such as 

(27) 

(28) 

(29) 

(37) 

(36) 

(35) 

(34) 

(33) 

(32) 

(31) 

(30) 
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the number of iterations, number of neurons, and 

number of batch sizes. 

2.5. Text Generation Using LLM 

LLM is a language model with large number of 

parameters i.e., the model can be trained with huge 

amount of data. This model usually are powered by deep 

learning technique especially such as transformer model 

[3, 52]. This transformer based LLMs are capable of 

recognizing, translating, predicting, or generating text. 

Various transformer models generate text, including 

popular ones like BERT [13], GPT, and LaMDA [47]. 

To validate our proposed model, we have compared our 

proposed model’s outcome even with conventional 

LLM models, such as checking the potential capabilities 

of BERT and GPT-2 to generate text. In below, we have 

discussed about BERT model and how it has been used 

for our use case experimentations. 

2.5.1. Bidirectional Encoder Representations from 

Transformers (BERT) 

BERT can convert structured data into readable text 

using tokenizing techniques. It processes data and 

remembers contextual connections among tokens for 

understanding of the context of the text. In our work, we 

have fine-tuned the BERT-base pre-trained model to 

predict words or phrases and finally printed the human 

readable text. 

 

Figure 5. BERT model for data tot text generation. 

In Figure 5, every sentence has been separated by 

[CLS] token, and the word or token is separated with 

[SEP] token [13]. Here, w represents the word, and in 

the output layer, S and N represent the sentence and 

word, respectively. In our work, BERT has employed 

essential intermediate tokens: [CLS], [SEP], and 

[MASK]. [CLS] represents the input context, [SEP] 

marks sentence separation, and [MASK] predicts the 

next word. Using BERT, we have achieved % accuracy 

and 0.73, 0.6221, and 0.7612 of BLEU3, ROUGE L, 

METEOR, and CIDERr score. Our BERT model has 

generated next-word predictions for a sentence’s [mask] 

label based on surrounding words [13]. Our process uses 

a BERT tokenizer to convert the sequence into a vector, 

denoted as {yt} (t=1, 2, 3, ….) where t represents the 

sequence length. Following this, we proceed to train the 

BERT model, using the input vector {yt} and saving the 

model output sequence as {outputj} (j=1, 2, 3 ….) where 

j represents the total number of outputs. To find the next 

probable text, we use a linear layer,  

𝑥𝑖 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑢𝑡𝑝𝑢𝑡𝑗) 

Equation (38) represents the process {outputj} output of 

BERT, we take the top five {yi} probabilities for the 

next character in the dictionary for comparison. We run 

through the model in four datasets, Wiki-Bio, CoNaLa, 

IMDB and Gigaword where we evaluate the generated 

text with BLEU, ROUGE, METEOR, and CIDEr. 

2.5.2. GPT-2 

We have accomplished the successful experimentation 

using Generative Pre-trained Transformer 2 (GPT-2) 

powered by the Hugging Face Transformers library in 

Python. This has helped us immensely as tool for text-

generation tasks. In the below Table 2 and 3, it can be 

observed that how the GPT2 has generated coherent and 

contextually relevant text across various domains from 

its BLUE, ROUGH and METEOR and CIDEr score. 

GPT 2 nowadays is incorporated for creative writing to 

content generation. In our case, using the Hugging face 

API integration, we have able to show the power of pre-

trained language models like GPT2. The highest BLUE 

score is 0.75, the maximum score in-terms of ROUGH 

is, and CIDER metric have the maximum value as 

0.6987, 0.6945, and 0.6395. GPT-2 via Hugging Face in 

Python enhances productivity and fuels innovation in 

NLP and text generation. GPT-2, which is an upgraded 

version of GPT-1, excelled in various tasks by 

predicting sequence items accurately but occasionally 

produced repetitive or nonsensical content in longer 

passages. It’s been succeeded by non-open-source GPT-

3 and GPT-4 [23]. 

Algorithm 1: For Text Generation Using GPT2. 

Input Keyword k, model M, length l 

Output Sentence y 

 y  k  

 for j=len(k) to l do  

  M.init() 

  next word  M(y) 

  next word  M(y) 

  y  y + next word 

 End for 
 return y 

In the above Algorithm (1), the keyword k represents 

the starting word, the model M is the GPT2 model, and 

l represents the length of the output sentence. Sentence 

y is the final generated sentence, which the model 

returns. Here, the input form is defined as {k, M, l} [29]. 

(38) 
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3. CANBLWO for Generation of 

Semantically Enhanced Text 

This section describes the proposed model of 

Convolutional Attention Bi-LSTM with Whale 

Optimization (CANBLWO). In our proposed hybrid 

model, semantic text generation has been achieved 

through data pre-processing, feature map creation using 

CAN encoder, text generation using Bi-LSTM decoder, 

model optimization using WOA, and finally text quality 

testing with evaluation matrices such as BLEU, 

METEOR, ROUGE, and CIDEr. These metrics have 

been used to find the ratio between reference text and 

machine-generated text and the ratio represents the 

quality. 

3.1. Data Pre-Processing 

In our work, we have applied various pre-processing 

steps such as lowercasing, tokenization using the NLTK 

Punkt library, and data cleaning using Python libraries 

like pandas for removing duplicate entries, and regular 

expressions to correct inconsistent formatting. In the 

pre-processing, we also define the end of a sentence by 

<end> symbol, which help us to identify the compilation 

of the sentence and the start of the next sentence. In the 

final step, we applied Scikit learn library for the data 

validation, where it handled missing values and checked 

data consistency in terms of dates and time formatting. 

3.2. Feature Gathering from Input Text 

The N-gram model extracts the features from the 

dataset. This model helps in process and understanding 

the text [25, 38]. In this work, the bigram model has 

been used for the Wiki-Bio dataset to identify common 

two-word phrases such as “United States” or “Prime 

Minister,” while in the CoNaLa dataset, a trigram model 

has been used to identify common sequences of words 

in natural language commands such as “show me all” or 

“give me the”. 

The trigram model has considered the previous two 

words as context to predict the next word. By 

considering this contextual information, it generates a 

probability distribution for the vocabulary of the dataset. 

wi is the word probability with preceding context kj-2, kj-

1 would be as follow:  

𝑃(𝑘𝑗|𝑘𝑗−2, 𝑘𝑗−1) = 𝑐𝑜𝑢𝑛𝑡(𝑘𝑗−2, 𝑘𝑗−1, 𝑘𝑗) / 𝑐𝑜𝑢𝑛𝑡(𝑘𝑗−2, 𝑘𝑗−1) 

Equation (39) shows the probability distribution of N-

gram trigram model, where count(kj-2, kj-1, kj) is the total 

number of times of trigram, where (kj-2, kj-1, kj) appears 

in the corpus. count(kj-2, kj-1) is the total number of times 

of bigram (kj-2, kj-1) is presented in the dataset. 

Figure 6 represents the sample of word prediction by 

N-gram model, where 3 is the value of n. In every step, 

three-word sequence appears for the process, and on the 

basis of these three words next word has predicted. 

𝑃(𝑘𝑗|𝑘𝑗−2, 𝑘𝑗−1) = 𝑐𝑜𝑢𝑛𝑡( 𝑘𝑖−1, 𝑘𝑗) / 𝑐𝑜𝑢𝑛𝑡( 𝑘𝑗−1) 

The bigram probability distribution is shown in 

Equation (40), count(kj-1, kj) is the total number time of 

bigram of (kj-1, kj) appears in the corpus. 

 

Figure 6. N-gram word prediction with trigram model. 

3.3. Data Encoding  

We have used the Embedding from Language Model 

(ELMO) data encoding technique [41]. It has been used 

for contextual text generation on the Wiki-Bio, 

CoNaLa, IMDB and Gigawords datasets, which 

provided a sentence structure and word meaning of the 

input data. ELMO generates word embedding for the 

input data that can be used for our hybrid model 

CANBLWO to generate text. It is a context-dependent 

embedding method that provides a good understanding 

of different words in the input data [33], the ELMO 

model is trained using the following mathematical 

function:  

𝐽(𝜃) =  ∑ 𝑙𝑜𝑔 𝑝(𝑤𝑖|𝑤1: 𝑖 − 1, 𝜃)
𝑖

 

In Equation (41), θ is the model parameter, wi is ith the 

word for input sequence, and the probability of ith word 

is p(wi|w1:i-1) for input sequence given by the previous 

word sequences. 

3.4. Text Generation Model Architecture 

We mentioned earlier that the proposed model is a 

fusion of CAN, Bi-LSTM, and WOA. Conv1D model 

extracts the internal features from the text, such as 

identifying the subject, verb, and object from the 

sentence. It has found all the Part of Speech (POS) tags 

and entity relationships in the sentence words. POS tag 

has helped to understand each word’s context, and entity 

relationship has been used to identify the 

interdependency relationship of the text in a sentence. 

For example, we have a sentence from the Wiki-Bio 

dataset “john m. walker is an American politician and 

businessman”. The proposed CAN first tokenizes the 

sentence into Part-Of-Speech tags (POS) for every 
(40) 

(39) 

(41) 
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token. In the POS tag report, “john”, “m.”, and “walker” 

are referred to as consecutive nouns so they can 

represent as person's full name. 

The proposed CAN model also finds the referencing 

among sentences such as “john m. walker is an 

American politician and businessman from Colorado. A 

republican, he is a member of the Colorado state 

senate”. The attention models divide the sentence into 

small ones such as “john m. walker is an American 

politician”, “john m. walker is a businessman”. “john m. 

walker from Colorado”, and “john m. walker is an 

American politician member of Colorado state senate”. 

In all sentences, the subject is mapped with john m. 

walker. Likewise, the proposed attention model i.e., 

CAN modes builds the feature maps which further can 

be fed to the Bi-LSTM.  

Next the proposed Bi-LSTM model decodes the 

feature map and generates the text based on initial input. 

Bi-LSTM encodes initial text into fixed-length 

representation, and it also supports long dependency. 

For example, the initial word “john m. walker is an”, Bi-

LSTM considers this initial text as input and encodes 

this input text into a fixed-length representation. To start 

the text generation process, a special token <start> is 

provided as the first input to the decoder. The decoder 

takes the initial word one by one and the encoded 

context as input, to generate the next word in the 

sequence so that prediction of the most likely word can 

be accomplished based on the current context. The 

newly generated word is now embedded into a dense 

vector representation to capture its semantic meaning. 

The embedded word and the updated context are fed 

back into the decoder. Decoder utilizes the recurrent 

connections within the Bi-LSTM to capture the 

dependencies between the previously generated 

sentence and the current word context. In every step, the 

decoder outputs depend on a probability distribution 

over the vocabulary. This distribution is generated using 

a softmax activation function. After this generated word 

is appended to the previously generated words and 

forms a new partial sentence. This partial sentence, 

along with the updated context, has been used as input 

for the next iteration of the decoding process. These 

steps are repeated until reaching a maximum sentence 

length or generating a special token <end>. Finally, the 

complete generated sentence by our proposed model is 

“John m. walker is an American politician and 

businessman from Colorado”. 

Our proposed model consists of the following three 

main approaches. 

 Capture local features of text using CAN. 

 Capture long-term dependency using the Bi-LSTM 

model. 

 Optimize the learning rate, number of layers, and 

neurons using WOA. 

In Equation (42), x represents input data, and it passes 

through the Conv1D encoder to generate the feature 

map. The attention mechanism calculates the attention 

weight, represented by the symbol ‘a’ for each position 

of the ‘h’ feature map. Here, h and a have been fed into 

decoder Bi-LSTM that in terms predicts one word at a 

time. The complete operation is shown below. 

 Encoding: xi is an encoded vector representation of 

input data x in Equation (42). 

 Feature extraction: the encoded input data is passed 

through a Conv1D encoder to extract features from 

the data. We have provided different neuron sizes, 

such as 64, 128, and 256 for feature selection, finally 

at 256 neuron size provides better results in the model 

stacking. We have used two layers of Conv1D, and 

shape of the layer is (5, 32, 128) and (5, 128, 256) 

respectively.  

ℎ𝑡 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑖) 

 Attention: the feature map is passed through an 

attention mechanism to calculate attention weights 

for each position in the feature map, which is shown 

in Equation (43).  

𝑎 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑥𝑖) 

 Text generation: while generating text, the feature 

map and attention weights are passed through Bi-

LSTM decoder. Equation (44) shows the Bi-LSTM 

decoder model, 

𝑦𝑡 = 𝐵𝑖 − 𝐿𝑆𝑇𝑀(ℎ, 𝑎, 𝑦𝑡−1) 

where yt represents generated text at time step t. yt-1 is 

the previous time step of generated text. 

 Loss function: cross-entropy has been used as a loss 

function for model training. Basically, it finds the 

difference between ground truth output and predicted 

output.  

𝐿 =  −𝑠𝑢𝑚(𝑦𝑡 ∗ 𝑙𝑜𝑔 (𝑦ℎ,𝑎,𝑡) 

In the Equation (45), loss function L calculates the error 

between the predicted probabilities yh,a,t and the true 

labels yt. The negative summation ensures that higher 

probabilities assigned to the correct class lead to lower 

loss values. 

Figure 7 represents the contextual text generation 

model using Conv1D, Attention, and Bi-LSTM. The 

following layers have been essential in our proposed 

model. 

 Embedding layer: in this layer each data point is 

converted into a numerical vector representation 

using an embedding matrix we. Shape of embedding 

layer is (10622, 32), where 10622 is vocab size and 

the dimension is 32. Mathematical representation of 

the embedding layer is as follows 

𝑥𝑖 = 𝑤𝑒[𝑖] 

In Equation (46), i represents the index of words in the 

vocabulary. Here, the input data is passed through a 

series of one-dimensional convolutional filters to 

(42) 

(43) 

(44) 

(45) 

(46) 
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extract local patterns in the biography data from Wiki-

Bio. The mathematical representation of the layer is 

𝑥𝑖 = 𝑦𝑖 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑖 , 𝑤𝑐) +  𝑏𝑐 

where wc, bc are the filter weights and bias terms, 

respectively in Equation (47). 

 

Figure 7. CAN with Bi-LSTM model architecture to contextual text 

generation. 

 Attention layer: this layer selectively focuses on 

certain parts of input data. It uses the dot product of 

a set of learned weights and input data. The 

representation of the attention layer in terms of the 

equation can be written as follows:  

𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖 ∗ 𝑤𝑎) 

In the above Equation (48), we proposed the weight 

modification which represents by wb 

𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝑦𝑖 ∗  𝑤𝑎) + 𝑤𝑏) 

𝑧𝑖 = 𝑠𝑢𝑚(𝑎𝑖 ∗  𝑦𝑖) 

Equations (49) and (50) calculate the attention weight, 

where attention weight is wa, and attention output is zi. 

 Bi-LSTM layer: feature map of the attention layer zi 

is the input for this layer. It processes in both 

directions to capture long-term dependencies in 

paragraphs or sentences of Wiki-Bio dataset.  

ℎ𝑖 = 𝐵𝑖𝐿𝑆𝑇𝑀(𝑧𝑖  , ℎ𝑖−1) 

In Equation (51), hi is represents hidden state at t time 

step. 

 Dense layer: hi represents the output of the Bi-LSTM 

layer which contains all sentence dependencies such 

as pronoun-to-noun mapping and the context of the 

initial text. That dependency and context are input for 

the dense layer, which projects onto vocabulary 

space. This layer generates a probability distribution 

by using the SoftMax activation function. It predicts 

the next word in the sequence over the vocabulary. 

𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑑 ∗ ℎ𝑖 +  𝑏𝑑) 

Equation (52) is the mathematical representation of 

dense layer, where wd represents dense layer and bias 

term denoted as bd. 

Algorithm 2: Algorithm for CAN based Bi- LSTM. 

Input  Wiki Bio, CoNaLa, IMDB and Gigaword 

dataset 

Output Semantic rich text generation based on dataset 

Step 1. Begin 

Step 2. Import dataset  

Step 3. Data cleaning: Removing irrelevant columns, 

handling missing values, Removing duplicate 

rows, Data validation 

Step 4. Data tokenization  

Step 5. Convert into bi-gram and trigram sequence of 

token 

Step 6. Token pre-padding as per the max length of 

sentence 

Step 7. Model Building 

 Step 7.1. Embedding Layer with dimension 16: 

𝑥𝑖 =  𝑤𝑒[𝑖] 
 Step 7.2. Conv1D layer: 𝑦𝑖 = 𝑐𝑜𝑛𝑣1𝑑(𝑥𝑖 , 𝑤𝑐) +

 𝑏𝑐  

 Step 7.3. Attention layer: 𝑎𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑦𝑖 ∗
 𝑤𝑎) & 𝑧𝑖 = 𝑠𝑢𝑚(𝑎𝑖 ∗  𝑦𝑖) 

  Step 7.4. Bi-LSTM layer: ℎ𝑖 = 𝐵𝑖 −
𝐿𝑆𝑇𝑀(𝑧𝑖  , ℎ𝑖−1) 

 Step 7.5. Dense layer: 𝑝𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑑 ∗
 ℎ𝑖 +  𝑏𝑑) 

Step 8. Fitting of the network means adapting the 

weight on a training dataset 

Step 9. Evaluation the network 

Step 10. Make prediction of next word and generate the 

whole text 

Step 11. End 

Algorithm (2) represents the stepwise process of 

generating the text using the CAN with Bi-LSTM 

model. 

3.5. Model Hybridization with WOA 

WOA has inspired by the hunting behavior of humpback 

whales. It combines exploration and exploitation 

strategies to search for optimal solutions in a search 

space [28, 45]. This algorithm has been used in our 

proposed model to fine-tune hyper-parameters such as 

number of neurons, learning rate and adding the epoch 

size of the model. 

Figure 8 represents the architecture of the proposed 

model CANBLWO. It represents the stepwise process 

of model architecture for generating semantically 

enhanced text. In Figure 8, whale optimization uses an 

objective function to evaluate the model’s performance 

based on text generation quality metrics. The WOA 

algorithm updates the positions of the whales iteratively 

by considering the current best solution, random values, 

and coefficients. To optimize the filter values of the 

convolutional layers, it searches space and exploits 

promising regions. The process continues for a 

predefined number of iterations, allowing the algorithm 

to converge toward optimal or near-optimal solutions. 

(47) 

(50) 

(49) 

(48) 

(51) 

(52) 
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Semantic text generation using the CANBLOW model 

has been defined as 

𝐿𝑒𝑡 𝑋 =  (𝑥₁, . . . , 𝑥ₙ)  

𝐿𝑒𝑡 𝑌 =  (𝑦₁, . . . , 𝑦ₘ) 

 

Figure 8. Proposed model architecture powered by CANBLWO. 

In Equation (53), X is the input sequence, where xᵢ 

represents the i-th input token. In Equation (54), Y is the 

generated output sequence, where yᵢ represents the i-th.  

𝐸(𝑋)  =  (𝑒₁, . . . , 𝑒ₙ), ∶  𝑤ℎ𝑒𝑟𝑒 𝑒ᵢ ∈  ℝᵈ 

Equation (55) represents the embedding layer, where E 

is an embedding function, eᵢ is an embedded 

representation of the input token xᵢ, and d represents the 

embedding dimension. 

ℎ =  𝜑(𝑊_𝑐 ∗  𝐸(𝑋)  +  𝑏_𝑐)  

Equation (56) represents the CAN, φ represents 

activation function (e.g., ReLU), W_c is the 

convolutional weight matrix, b_c is the convolutional 

bias vector and h shown feature map output from 

convolution.  

𝛼 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑎 ℎ +  𝑏_𝑎)  

In Equation (57), W_a, and b_a represent the attention 

weight matrix and attention bias vector, respectively. α 

represents the attention weights. 

𝑧 =  𝛴ᵢ 𝛼ᵢℎᵢ 

Equation (58) represents the context vector z, which 

aggregates information from the input weighted by the 

attention context vector. 

→ ℎ_𝑡 =  𝐿𝑆𝑇𝑀(𝑧_𝑡, → ℎ_{𝑡 − 1}) 

← ℎ_𝑡 =  𝐿𝑆𝑇𝑀(𝑧_𝑡, ← ℎ_{𝑡 + 1}) 

Equations (59) and (60) represent the Bi-LSTM layer, 

which processes sequential data and captures long-term 

dependencies. In Equation (59) →h_t represents the 

forward hidden state at time t, and ←h_t in Equation 

(60) is the backward hidden state at time t. z_t represents 

the context vector at time t.  

ℎ_𝑡 =  [→ ℎ_𝑡; ← ℎ_𝑡] 

In Equation (61), h_t represents the concatenated 

bidirectional hidden state at time t, where [;] is for 

concatenation operation. 

𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑜 ℎ_𝑡 +  𝑏_𝑜) 

Equation (62) represents the output layer to produce 

output probabilities, Where p(y_t|y<t, X) is a probability 

distribution over vocabulary for the next token. W_o and 

b_o represents the output weight matrix and output bias 

vector 

𝑦_𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋) 

In Equation (63) y_t is generated token at time t and 

argmax is a function that returns the element with the 

highest probability. 

𝐿(𝜃)  =  −𝛴ᵗ 𝑙𝑜𝑔 𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋) 

In Equation (64), L(θ) is Loss function and θ represents 

all learnable parameters of the model.  

θ(t+1)={θ*-A|C θ*-θ(t)| 
if r<0.5 D'e^{bℓ}cos(2πℓ)+θ* 

else θ(t): Model parameters at iteration t 

Equation (65) represents the best-performing set of 

parameters found so far by the WOA. Here θ* is the 

current best solution. A and C represent the coefficient 

vectors that control the search behavior in the WOA. D’ 

is the distance to the best solution, b represents the 

constant for defining spiral shape, ℓ is the random 

number in [-1, 1], and r denotes the random number in 

[0, 1].  

𝜃 ∗ =  𝑎𝑟𝑔𝑚𝑖𝑛_𝜃 𝐿(𝜃) 

In Equation (66), θ* represents optimal model 

parameters. 

The complete CANBLWO model for text generation 

can be expressed as:  

𝐹𝜃(𝑋) =  𝑌 =  
(𝑦1 , … , 𝑦ₘ), 𝑤ℎ𝑒𝑟𝑒 𝑦𝑡 =  𝑎𝑟𝑔𝑚𝑎𝑥 𝑝(𝑦_𝑡|𝑦 < 𝑡, 𝑋) 

Equation (67) represents the entire text generation 

process where F_θ denotes the complete CANBLWO 

model function.  

𝑝(𝑦𝑡|𝑦 < 𝑡, 𝑋) =  
𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊_𝑜 𝐵𝑖𝐿𝑆𝑇𝑀(𝐶𝐴𝑁(𝐸(𝑋)))  +  𝑏_𝑜) 

In Equation (68), Bi-LSTM denotes bidirectional-

LSTM function and CAN represents convolutional 

attention network function 

The CANBLWO model processes input X through an 

embedding layer E(X), followed by a Convolutional 

Attention Network (CAN) that extracts features h and 

computes attention weights α to produce a context 

vector z. This context is then processed by a Bi-LSTM 

to capture temporal dependencies, resulting in hidden 

(54) 

(53) 

(56) 

(55) 

(57) 

(59) 

(58) 

(60) 

(64) 

(62) 

(63) 

(61) 

(65) 

(66) 

(67) 

(68) 
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states h_t. The model generates text Y by iteratively 

predicting the next token y_t based on the probability 

distribution p(y_t|y<t, X). The model’s parameters θ are 

optimized using the WOA to minimize the loss function 

L(θ). 

 

Figure 9. Flow diagram of proposed model CANBLOW. 

Figure 9 represents the flow diagram of proposed 

model CANBLOW, Where the proposed CANBLWO 

system for semantic text generation utilizes datasets 

from Wiki-Bio, Code/Natural Language-Intent Shift 

With Open Code (CoNaLa-ISWOC), IMDB, and 

Gigaword. The data preprocessing phase includes 

lowercasing, tokenization, and stop-word removal, 

followed by encoding into vector representations and 

word embeddings. Feature extraction is performed 

using a 1D convolutional layer, which applies filters to 

extract relevant features, enhanced through activation 

functions and pooling operations. These features are 

aggregated in an activation layer for further processing. 

Contextual information is extracted using a Bi-

LSTM layer, combining forward and backward LSTM 

units to capture comprehensive contextual information. 

A Bi-LSTM decoder with recurrent connections 

generates the next word in the sequence using a softmax 

function. Model optimization is achieved using the 

WOA, involving position updates, encircling behavior, 

and bubble-net attacking strategies. The system 

evaluates the generated text with BLEU, ROUGE, 

METEOR, and CIDEr metrics, ensuring high-quality 

semantic text generation. 

The following algorithm is used to hybridize of 

CANBLWO model. 

Algorithm (3) represents the optimization technique, 

which is used for hybridization of the CANBLWO 

model. This algorithm firstly initializes whale 

population Ti (i=1, 2, 3……n) within the search space 

and the objective function that is mentioned in the 

algorithm is used to evaluate the model performance. 

Step 5.1.1. is used to update the value of A, C, and D 

which refer to Equations (30), (31), and (32). �⃗⃗�(𝑝 + 1) 

and 𝑇∗⃗⃗⃗⃗⃗ (𝑝) are the current positions of the whale and the 

best position respectively. The optimization positions 

are referred to in Equations (35) and (37). WOA utilizes 

the positions of the best and current solutions as 

guidance to search techniques. 

Algorithm 3: Algorithm for Optimization of CANBLWO. 

Step 1. Begin 

Step 2. Initialization of the whale population 𝑇𝑖(𝑖 = 1,2,3 … … 𝑛 )  

Step 3. Calculation of the objective function of each whale based 

on model performance  

Step 4. 𝑇  ∗ = 𝐵𝑒𝑠𝑡 𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛  
Step 5. Loop: while (i < maximum number of iteration):  

 Step 5.1. for each whale 

  Step 5.1.1. Update X, Y, and Z  

�⃗� =  2𝑚⃗⃗⃗⃗⃗⃗⃗ . �⃗⃗� −  �⃗⃗⃗� 

�⃗⃗� =  2 . �⃗⃗� 

𝑍 = 𝑎𝑏𝑠 (|�⃗⃗� . 𝑇∗⃗⃗⃗⃗⃗ (𝑝) − �⃗⃗� (𝑝)| ) 
  Step 5.1.2. Calculate the new position of  𝑇∗⃗⃗⃗⃗⃗(𝑝) 

 �⃗⃗�(𝑝 + 1) = 𝑇∗⃗⃗⃗⃗⃗(𝑝) − �⃗� . 𝑍 

  Step 5.1.3. If (k < 0.5) and (abs(X) < 1): 

   Step 5.1.3.1. Updating the current 

position search agent 

or objective function  

�⃗⃗�(𝑝 + 1) = 𝑍′⃗⃗ ⃗⃗  . 𝑒ℎ𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗.

𝑐𝑜𝑠  (2𝜋𝑘)  + 𝑇∗⃗⃗⃗⃗⃗ (𝑝)  

  Step 5.1.4. else 

   Step 5.1.4.1. �⃗⃗�(𝑝 + 1) =  𝑍′⃗⃗ ⃗⃗  . 𝑒ℎ𝑘⃗⃗ ⃗⃗ ⃗⃗ ⃗.

𝑠𝑖𝑛  (2𝜋𝑘)  + 𝑇∗⃗⃗⃗⃗⃗ (𝑝)  

 Step 5.2. end for loop 

 Step 5.3. If any search goes beyond the search space end 

it 

 Step 5.4. Process optimization based on evaluation matrix 

Step 6. End while 

Step7. Return 𝑋  ∗ 

3.6. Experimental Settings 

The experimental setup utilizes 8 GB of RAM, Intel i5 

processor, and macOS as an operating system. In 

addition, the experimentation of the proposed 

CANBLWO model has been carried out on Google 

Collab Pro hosted Jupiter notebook. Tesla V100-SXM2-

16G GPU and 12.7 GB of RAM have been set as the 

configuration of the collab notebook. We have used the 

Python library Keras [20] and Google TensorFlow 

library [1] as open-source software for our experiments. 

The details of the software and hardware configuration 

are shown in Table 2. 

Table 2. Experimental configuration. 

Experimental configuration 

Processors Intel i5 

Operating system macOS 

RAM 8Gb 

Google colab pro GPU Tesla V100-SXM2-16GB 

Google colab pro RAM 12.7GB 

Tensorflow Version 2.12.0 

4. Result and Discussion 

In below, we have discussed detailed results that we 

have obtained by our proposed model. As mentioned 
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earlier our proposed model is a combination of CAN, 

Bi-LSTM, and WOA. Prior to that we also discussed the 

mechanism of preprocessing which included 

tokenization, stopword removal, lower casing and word 

sequence generation on the data sets (Wiki-Bio and 

CoNaLa dataset) and other necessary steps required for 

building the input corpus. 

4.1. Dataset 

We performed the experimentation on two well-known 

standard datasets namely Wiki-Bio, CoNaLa, IMDB 

and Gigaword. Wiki-Bio dataset has been collected 

from Wikipedia and it is frequently used in NLP 

research such as biography generation, table-to-text 

generation [8, 10, 43], and the CoNaLa dataset has been 

obtained from stack overflow [59]. 

 

Figure 10. Word cloud graph using Wiki-Bio dataset. 

The Wiki-Bio data set is a large dataset that 

comprises of articles of biography that used to get stored 

in info-box tables [22]. Infobox tables are common 

features of Wikipedia articles, and they provide key 

information about the subject of the article, such as date 

of birth, occupation, and education etc. It contains over 

358,321 Wikipedia articles. The articles are sourced 

from English Wikipedia, which cover extensive 

subjects, including people, organizations, and locations. 

The infobox table usually are represented in a structured 

format, such as JSON or XML. It has been designed to 

train machine learning models to generate natural 

language text. In our work, we have trained our 

proposed model namely CANBLWO to understand the 

structure of the infobox tables and the relationships 

between the different pieces of information. The Wiki-

Bio dataset has been used in several research studies [8], 

and it has been proven to be a valuable resource for text 

generation. It is also a benchmark for the performance 

evaluation of data-to-text generation models. Figure 10 

represents the word cloud of the Wiki-Bio dataset, 

where the larger font words represent the significant 

words in the Wiki-Bio dataset [49]. 

We also have considered CoNaLa dataset which 

comprises a large collection of question-query pairs 

from stack overflow. Researchers at the university of 

California, and Maryland, created this dataset [54]. 

CoNaLa dataset mainly comprise of programming and 

sciences related data. It has 2379 number of training 

examples and 500 test examples. Every example has 

natural language related information and its 

corresponding answer. In our proposed work, the 

CANBLWO model has been able to generate the 

various questions automatically by feeding input as two 

or three words. 

The IMDb Reviews dataset is a widely used 

benchmark for sentiment analysis, NLP and NLG tasks. 

It consists of 50,000 highly polar movie reviews labeled 

as either positive or negative, split equally into training 

and testing sets. This dataset allows researchers to 

evaluate and develop models for sentiment 

classification, making it a critical resource for 

understanding how well algorithms can interpret and 

analyze subjective text. 

The Gigaword dataset, on the other hand, is a 

comprehensive and large-scale collection of news 

articles from various sources, including the New York 

Times, Associated Press, and the Washington Post. This 

dataset comprises over 4 million news articles, 

providing a rich resource for tasks such as text 

summarization, language modeling, and text generation. 

The diversity and volume of the Gigaword corpus make 

it an invaluable asset for training and evaluating NLP 

models, especially for developing algorithms that can 

handle a wide range of topics and writing styles. 

4.2. Result and Analysis 

This section compared the performance of our proposed 

model CANBLWO with other deep neural network 

models such as RNN, Bi-LSTM, LSTM, and Bi-LSTM 

with the attention mechanism on Wiki-Bio and CaNoLa 

datasets. The outcome of this comparative study has 

been shown in Table 3 in terms of accuracy and loss. 

Table 3 shows a comparative study of various deep 

learning models’ performance on Wiki-Bio, CoNaLa, 

IMDB, and Gigaword datasets. For Wiki-Bio data set 

our proposed model CANBLWO has achieved 97% 

accuracy, followed by Bi-LSTM (87%), RNN (85%), 

and others. On the other hand, in terms of loss, 

CANBLWO has the lowest (0.6109), followed by Bi-

LSTM with Attention (0.9744), RNN (1.089), and 

others. In addition, we also have conducted experiment 

on CoNaLa data set. It can be seen that CANBLWO 

again excels with 96% accuracy and 0.7469 loss, while 

Bi-LSTM with Attention follows with 90% accuracy. 

Our proposed CANBLWO model achieves 97% 

accuracy on Wiki-Bio and 96% accuracy on the 

CoNaLa dataset. Additionally, our experiments on the 

IMDb and Gigaword datasets further demonstrate the 

robustness of CANBLWO. The model consistently 

outperforms other approaches, underscoring its 

effectiveness across different types of text generation 

task. The accuracy graph is shown in Figures 10. 
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Table 3. Accuracy and loss comparison on the Wiki-Bio and CoNaLa, IMDB and Gigaword dataset. 

Dataset Model Accuracy Loss 

Wiki-Bio 

RNN 85% 1.089 

LSTM 81% 1.1950 

Bi-LSTM 87% 0.8438 

Bi-LSTM with attention 84% 0.9744 

BERT 96% 0.4234 

GPT 2 92% 0.84 

CANBLWO 97% 0.6109 

CoNaLa 

RNN 90% 0.8726 

LSTM 71% 1.6195 

Bi-LSTM 89% 1.3178 

Bi-LSTM with attention 90% 1.2565 

BERT 94% 0.6254 

GPT 2 93% 0.90 

CANBLWO 96% 0.7469 

IMDB 

RNN 72% 1.124 

LSTM 75% 1.041 

Bi-LSTM 78% 0.936 

Bi-LSTM with attention 80% 0.821 

BERT 88% 0.512 

GPT 2 85% 0.672 

CANBLWO 90% 0.489 

Gigaword 

RNN 68% 1.251 

LSTM 70% 1.164 

Bi-LSTM 73% 1.043 

Bi-LSTM with attention 75% 0.928 

BERT 84% 0.693 

GPT 2 81% 0.821 

CANBLWO 87% 0.632 

 

Figure 11. Accuracy graph on Wiki-Bio, CoNaLa, IMDB and Gigaword. 

 

Figure 12. Loss graph on Wiki-Bio, CoNaLa, IMDB and Gigaword. 
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The accuracy of Wiki-Bio and CoNaLa datasets 

present in Figure 11. Figure 12 represent the loss graph. 

We also have compared the generated text evaluation 

score using different popular metrics such as BLEU, 

ROUGE, CIDEr, and METEOR evaluation matrices. 

The below figure shows the comparison graph of these 

metrics. 

 
a) BLEU score on Wiki-Bio. 

 
b) BLEU score on CoNaLa. 

Figure 13. BLEU-2, BLEU-3, and BLEU -4 score comparison on Wiki-Bio and CoNaLa. 

  

a) Evaluation metrics score on CoNaLa. b) Evaluation metrics score on Wiki-Bio. 

Figure 14. METEOR, CIDEr, and ROUGE score comparison on Wiki-Bio and CoNaLa. 

Figure 13-a) and (b) represent the BLEU-2, BLEU-

3, and BLEU 4 scores on Wiki-Bio and CoNaLa 

datasets. Figure14-a) and (b) show a comparison of 

different evaluation metrics such as ROUGE, 
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METEOR, and CIDEr score using Wiki-Bio and 

CoNaLa dataset. 

4.3. Evaluation Matrices 

To evaluate the generated text, we have used BLEU, 

METEOR, ROUGE, and CIDEr scores has been used 

to evaluate the quality of the machine-generated text 

using our proposed model. 

 Bi-Lingual Evaluation Understudy (BLEU): the 

BLEU mechanism has been used to evaluate the 

quality of the generated text [31]. It is based on the 

concept of N-gram, where we compare word by word 

of generated text and reference text. It is calculated 

as a precision score by N-gram geometric mean. The 

score ranges from 0 to 1, where 1 is a perfect match 

to the reference text. The following equation has been 

used to calculate the BLEU score. 

Table 4. Performance comparison on the Wiki-Bio, CoNaLA, IMDB 

and Gigaword dataset. 

Dataset Model 
BLEU

-2 

BLEU

-3 

BLEU

-4 
METEOR ROUGE_L CIDEr 

Wiki-Bio 

RNN 0.36 0.37 0.41 0.3245 0.4238 0.3155 

LSTM 0.38 0.43 0.39 0.3445 0.3422 0.4162 

Bi-LSTM 0.24 0.28 0.31 0.3578 0.4782 0.5213 

Bi-LSTM with 

attention 
0.41 0.48 0.51 0.4176 0.5321 0.5653 

BERT 0.42 0.69 0.59 0.7351 0.6221 0.7212 

GPT 2 0.49 0.84 0.61 0.6912 0.7393 0.7382 

CANBLWO 0.71 0.64 0.69 0.7629 0.7132 0.6943 

CoNaLa 

RNN 0.42 0.39 0.46 0.3634 0.3567 0.4163 

LSTM 0.43 0.37 0.39 0.2631 0.4131 0.3241 

Bi-LSTM 0.29 0.36 0.39 0.3987 0.5182 1.2169 

Bi-LSTM with 

attention 
0.48 0.51 0.44 0.4018 0.5638 0.6542 

BERT 0.51 0.45 0.61 0.7512 0.6512 0.5973 

GPT 2 0.42 0.75 0.69 0.6987 0.6945 0.6395 

CANBLWO 0.68 0.72 0.71 0.7629 0.7132 0.6943 

IMDB 

RNN 0.36 0.39 0.41 0.3245 0.4238 0.3155 

LSTM 0.38 0.43 0.39 0.3445 0.3422 0.4162 

Bi-LSTM 0.24 0.28 0.31 0.3578 0.4782 0.5213 

Bi-LSTM with 

attention 
0.41 0.48 0.51 0.4176 0.5321 0.5653 

BERT 0.42 0.69 0.59 0.7351 0.6221 0.7212 

GPT 2 0.49 0.64 0.61 0.6912 0.7393 0.7382 

CANBLWO 0.71 0.79 0.69 0.7629 0.7132 0.6943 

Gigaword 

RNN 0.42 0.39 0.46 0.3634 0.3567 0.4163 

LSTM 0.43 0.37 0.39 0.2631 0.4131 0.3241 

Bi-LSTM 0.29 0.36 0.39 0.3987 0.5182 1.2169 

Bi-LSTM with 

attention 
0.48 0.51 0.44 0.4018 0.5638 0.6542 

BERT 0.51 0.45 0.81 0.7512 0.6512 0.5973 

GPT 2 0.42 0.75 0.69 0.6987 0.6945 0.6395 

CANBLWO 0.68 0.72 0.71 0.7629 0.7132 0.6943 

𝐵𝐿𝐸𝑈𝑛 =
(∑ (

𝑚𝑖

𝑔𝑖
))

𝑛 ∗ exp (min (0,1 −
𝑟
𝑙
)
 

Equation (69) calculates the BLEU score, where n 

represents the BLEU type such as n=1 is BLEU-1, n=2 

is BLEU-2, n=3 is BLEU-3, and n=4 is BLEU-4. In 

addition, mi represents the count of N-grams that match 

between the reference text and the generated, where gi 

is the count of N-grams in the generated text, and the 

length of reference text is represented as r, and the 

length of the generated text is denoted as l. Table 4 

represents the different BLEU scores. It shows the 

comparative performance of text generation of other 

existing deep-learning language models. The proposed 

model, CANBLWO, emerges as the top performer 

across most metrics, achieving the highest scores in 

BLEU-2 (0.71), BLEU-3 (0.79), METEOR (0.7629), 

ROUGE_L (0.7112), and CIDEr (0.6949), showcasing 

its exceptional text generation capabilities. BERT and 

GPT2 also excel, with BERT leading in METEOR 

(0.7351) and GPT2 in ROUGE_L (0.7393). Bi-LSTM 

with attention competes well in various metrics, 

particularly BLEU-2 (0.41) and ROUGE_L (0.5321). In 

contrast, RNN, LSTM, Bi-LSTM attention BERT and 

GPT-2 lower scores across all metrics. 

Table 4 shows the performance comparison on the 

Wiki-Bio, CoNaLa, IMDB and Gigawords dataset, 

where we have seen the CANBLWO model represents a 

good machine-generated text quality score as compared 

to other models such as RNN, LSTM, Bi-LSTM, Bi-

LSTM with attention model, BERT and GPT-2. Some of 

the other variations of evaluation metrics are below. 

• Recall-Oriented Understudy for Gisting Evaluation 

(ROUGE): this algorithm is the most promising 

evaluation metric for the machine generation text 

[24]. It has been used to compare the reference text 

and generated text. ROUGE calculates the 

overlapping between references and generated text. 

The most commonly used ROUGE scores are 

ROUGE-L, ROUGE-N, and ROUGE-W. 

• ROUGE-L: it calculates the longest matching 

sequence of words based on the Longest Common 

Subsequence (LCS) algorithm. To evaluate our 

generated text, we use the ROUGE-L matrices. 

The ROUGE metric calculates the recall of N-grams, 

where n can be 1 (unigrams), 2 (bigrams), or 3 

(trigrams). The mathematical expression for ROUGE-n 

is:  

𝑅𝑂𝑈𝐺𝐸𝑛 =
𝑛𝑔

𝑛𝑓
 

Equation (70) is used to calculate the ROUGE score, 

where ng represents the total number of words in 

generated text and nf is the number N-gram in the 

reference text. Next, we have considered another 

evaluation metric namely METEOR. 

METEOR: This metric evaluates the quality of 

machine-generated text based on how well it matches 

the reference text [7]. Algorithm (4) represent the 

calculation of METEOR involves several steps: 

Algorithm 4: METEOR Score Calculation. 

Input: Machine Generated Text Tgen 

Output: Evaluation Score METEOR 

Step 1. Tokenization Tokens=tokenize(Tgen) 

Step 2. N-gram: N-grams=align_ngrams(Tokens,n) 

Step 3. Harmonic mean of precision calculation: 

𝑃 =  
1

1
∑ 𝑝𝑖

𝑛
𝑖=1

⁄
 

Step 4. Harmonic mean of recall calculation 𝑅 =  
1

1
∑ 𝑅𝑖

𝑛
𝑖=1

⁄
 

Step 5. Calculate METEOR score by using step4 and step 5 

(69) 

(70) 
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𝑀𝐸𝑇𝐸𝑂𝑅 =  
10. 𝑃. 𝑅

𝑅 + 9 . 𝑃
 

Step 6. END 

Equation (71) represents the METEOR calculation, 

where the unaligned word is represented as U, S 

represents total number of words in reference text, 

precision alignment is represented by P, and recall 

alignment is denoted as R.  

𝑀𝐸𝑇𝐸𝑂𝑅 = (1 − (
|𝑈|

|𝑆|
)) ∗

2 ∗ 𝑃 ∗ 𝑅

(𝑃 + 𝑅)
 

Table 2 represents, the performance comparison of 

different evaluation metrics score on various neural 

network models such as RNN, LSTM, Bi-LSTM, Bi-

LSTM with attention, BERT and GPT-2. CoNaLa 

Dataset is used as a reference text. Table 2, shows the 

performance of various models across multiple text 

generation metrics. Our proposed model CANBLWO 

here also emerges as the top-performing model, 

achieving high scores in BLEU-2 (0.68), BLEU-3 

(0.79), BLEU-4 (0.69), METEOR (0.7629), and 

ROUGE_L (0.7132). BERT also performs well with 

scores in BLEU-4 (0.61) and METEOR (0.7512). GPT2 

excels in BLEU-3 (0.75), while Bi-LSTM with attention 

achieves a score in ROUGE_L (0.5638). On the other 

hand, RNN, LSTM, and Bi-LSTM exhibit 

comparatively lower scores across most metrics 

• Consensus-based Image Description Evaluation 

(CIDEr): it calculate the similarity between a 

candidate text and reference text. It checked the 

presence of specific words, the order in which they 

appear, and the relationships between them [53]. 

The Algorithm (5) represent the CIDEr score calculation 

for our models is as follows: 

Algorithm 5: CIDEr Score Calculation. 

Input Machine Generated Text Tgen 

Output Evaluation Score CIDEr 

Step 1. Computed TF-IDF weights  

TF-IDFgen=compute_tfidf(Tgen) 

TF-IDFref=compute_tfidf(Tref) 

Step 2. Cosine similarity  

𝑐𝑜𝑠(𝑚, 𝑛) =  
𝑚 . 𝑛

||𝑚||  ∗  ||𝑛|| 
 

Step 3. Calculated geometric mean of cosine similarity 

𝐺𝑒𝑜𝑚𝑀𝑒𝑎𝑛(𝑐𝑜𝑠) =  (∏ 𝑐𝑜𝑠(𝑚𝑖 , 𝑛𝑖)

𝑛

𝑖=1

)

1/𝑁

  

Step 4. IDF weight for cos(m, n) for the rare words 

𝐼𝐷𝐹(𝑤) = 𝑙𝑜𝑔 (
𝑁𝑑𝑜𝑐

∑ 𝐼(𝑤 ∈ 𝑑)𝑑 ∈𝑑𝑜𝑐𝑠

) 

Step 5. Take exponentially weighted cos(m, n)  

𝐸𝑥𝑝𝐶𝑜𝑠(𝑚, 𝑛) =  𝑒𝑐𝑜𝑠 (𝑚,𝑛) 

Step 6. Got CIDEr score 

𝐶𝐼𝐷𝐸𝑟 = 𝐺𝑒𝑜𝑚𝑀𝑒𝑎𝑛(𝐼𝐷𝐹(𝑤). 𝐸𝑥𝑝𝐶𝑜𝑠(𝑚, 𝑛)) 

Step 7. End 

Algorithm (5) is a stepwise algorithm to generate the 

score of CIDEr. Here cos(m, n) is cosine similarity and 

m.n is the dot product of a vector, ||m|| * ||n|| is the cross 

product of m, and n vectors where ||m|| and ||n|| is the 

length of m and n. 

5. Conclusions 

In this paper, we demonstrated how our proposed model 

has performed better in terms of contextual text 

generation tasks. The first part of the proposed model 

CAN has focussed on every important part of input data 

to create the feature map. Bi-LSTM has used such 

feature maps and generated human-like text. Wiki-Bio, 

CoNaLa, IMDB and Gigawords datasets have been used 

for the model training and their sentences have been 

used as the reference text for testing the quality of the 

machine generated text. Afterwards, WOA is applied to 

optimize our proposed model’s outcomes. We 

compared other existing models such as RNN, LSTM, 

Bi-LSTM, Bi-LSTM with the attention model, and few 

of the popular LLMs such as BERT and GPT-2. BERT 

and GPT-2 have shown excellent results in larger 

datasets, but in smaller dataset, our proposed model 

CANBLWO performed well. In the future, we plan to 

consider other Indian regional languages, such as Hindi, 

Bengali, and Tamil, for text generation. Besides, we will 

explore other evaluation metrics such as BERT score, 

perplexity, and latent semantics. The proposed model 

can be incorporated as a software application so that it 

can be used by users to generate semantically enhanced 

text. 
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