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Abstract: Regression problem is currently a popular research topic in the field of machine learning. However, most existing 

research directly performs linear classification on the data after simple preprocessing, or performs classification after feature 

selection. It usually does not take into account the characteristics of the sample itself, especially for data that is linearly 

inseparable in original dimensional space and often produces unsatisfactory classification performance. Furthermore, the 

method of simply mapping the data into a kernel space using kernel trick before classification makes data classification more 

complex. It also results in unsatisfactory classification performance. In this paper, a simple yet effective semi-supervised Kernel 

discriminative Low-Rank Ridge Regression (KLRRR) model is proposed for data classification, which unifies kernel trick and 

discriminant subspace projection together. Specifically, the data is first mapped into kernel space to deal with the linear 

inseparability problem in original dimensional space, and then the projection matrix in the least square regression is 

decomposed into the product of two factor matrices to complete the joint discriminant subspace projection and regression. 

Experiments on 12 benchmark data sets show that the proposed KLRRR model greatly improves the classification performance 

in comparison with some state-of-the-arts. 
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1. Introduction 

Regression problem has always been a popular research 

topic in the machine learning community. Various 

regression models have been applied to many aspects, 

such as image recognition [33], biometric information 

identification [21], medical image analysis [18], data 

mining [32] and some other fields [17, 39]. Regression 

analysis is a statistical method for analyzing data [9]. 

The purpose is attempting to model the relationship 

between predictors and the response by fitting a linear 

equation to the observed data. Generally speaking, 

through regression analysis we can estimate the 

conditional values of the dependent variables using 

known independent variables. Regression is mainly 

divided into the following types: linear regression [16], 

logistic regression [14], polynomial regression [22], 

support vector machine regression [31], decision tree 

regression [34], forest random regression [4], etc., [19, 

30]. Among them, linear regression is the most widely 

used one in the field of statistics as an analysis method. 

It determines the quantity relationship of 

interdependence between several variables. Essentially, 

relying on linear correlation between variables to create 

dependence, which is the theoretical basis of the linear 

regression model. Due to its simplicity and good 

regression effect, linear regression [28] and its 

improvements have attracted more and more research 

enthusiasm in recent years [23]. 

 
Generally, a linear regression model contains the 

following components: the feature matrix, the 

regression target (i.e., the label matrix), and projection 

matrix [16]. The model learns the projection matrix [27] 

to fit the feature matrix and the corresponding label 

matrix, and then predicts the label of unlabeled data 

based on the learned projection matrix. However, the 

data set might be linearly inseparable in original 

dimensional space [15]. In this case, using linear models 

for regression tasks will generate unsatisfactory results, 

and for the complex data set, relying on a single 

projection matrix to reflect the correspondence between 

samples and labels is often difficult to obtain better 

regression results. 

Existing studies have proposed two main solutions to 

solve the problem of linear inseparability of samples in 

original dimensional space. One is to construct a 

nonlinear regression model [6, 10], and the other is to 

the use kernel trick [7, 13]. For the first approach, 

according to whether a nonlinear model can be 

transformed into a linear model, methods for solving 

nonlinear regression models can be divided into the two 

categories. One is transforming a nonlinear model into 

a linear model [1]. The other is solving the nonlinear 

model directly [12]. For the second approach, namely 

kernel trick, it allows us to non-linearly map data from 

an original feature space to a kernel space. Kernel trick 

might enhance the linear separability of data in the 

kernel space. However, the data often become more 
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complex after implicit mapping. Relying solely on the 

projection matrix learned in subsequent linear models to 

represent the relationship between samples matrix and 

labels matrix can be overly simplistic. To solve the 

issue, many methods perform dimensionality reduction 

on the data before executing the regression task [11, 36]. 

These approaches extract regression features of data that 

have a greater impact on the task, thereby reduce the 

complexity of the data. However, they divide feature 

selection and regression into two stages inevitably. It 

breaks the connection between them. Only a few 

methods consider combining the two parts [24]. 

This paper proposes a simple and effective semi-

supervised Kernel discriminative Low-Rank Ridge 

Regression (KLRRR) model for data classification. It 

unifies kernel trick and low-rank structure together, and 

can widely perform regression tasks on various data. It 

uses kernel trick to map the data into kernel space to 

solve the problem of linear inseparability of original 

dimensional data. Furthermore, mathematically, it 

replaces the single projection matrix in least squares 

regression by using the product of two matrices. When 

performing regression tasks, one factor matrix serves as 

the discriminant subspace projection to make the data 

easier to separate, the other factor matrix serves to 

construct the connection between the data matrix and 

the corresponding labels matrix in the discriminant 

subspace. We implement KLRRR model under a semi-

supervised paradigm, where soft label matrices of 

unlabeled samples are jointly estimated to facilitate 

discriminative subspace identification. We conducted a 

large number of experiments on 12 benchmark data sets 

and demonstrated the effectiveness of our proposed 

model in terms of recognition accuracy, function 

convergence, and model robustness. 

Compared with existing researches, the main 

contributions of this paper are as follows: 

 A new machine learning model KLRRR is proposed, 

which unifies the kernel trick and the discriminant 

subspace together. On one hand, the kernel trick tries 

to solve the data nonlinear separability problem in 

original dimensional space. On the other hand, 

KLRRR replaces the single projection matrix in least 

squares with the product of two factor matrices, 

which respectively perform discriminant subspace 

exploration and the establishment of a bridge 

between data and labels matrices. This solves the 

issues of increased complexity caused by mapping 

data into kernel spaces and the inefficiency of a 

single projection matrix. It leads to a robust 

connection between the data and the regression 

target. 

 The KLRRR model is implemented within the semi-

supervised paradigm. The direct benefit of this 

approach is that it effectively guides the learning of 

discriminative subspace projection matrix and the 

projection matrix between data matrix and labels 

matrix through soft label matrix estimation of 

unlabeled sample. Additionally, the semi-supervised 

paradigm has more practical significance in real-

world applications. 

The remainder of this paper is structured as follows. In 

section 2, we introduce the related regression models to 

this work. The formulation and optimization of the 

KLRRR model are introduced in detail in section 3. 

Experiments are performed in section 4 to investigate 

the effectiveness of the KLRRR model. Section 5 

summarizes the full paper and raises our future works. 

Notations. In this article, we use Greek letters, such 

as 𝜆 and 𝜎, to represent the parameters in the model. 

Matrices and vectors in the model are, respectively, 

denoted by italicized boldface uppercase and italicized 

lowercase letters. The F-norm of matrix M∈ℝm×n is 

defined as ‖𝑴‖𝐹 = (∑ ∑ 𝑚𝑖𝑗
𝑛
𝑗=1

𝑚
𝑖=1 )

1/2
, mi is the i-th 

row of M. In particular, 1n denotes an all-one column 

vector, where the subscript n indicates its length. 

2. Related Works 

In this section, we introduce some related works, 

including kernel regression models and low-rank 

regression models. 

2.1. Kernel Regression Models  

Feng et al. [8] proposed an innovative model, named 

Center-based Weighted Kernel Linear Regression 

(CWKLR). It is designed for object and face 

recognition. This model is inspired by regression 

models such as linear regression classification and 

kernel linear regression classification. The CWKLR 

model uses the center of each category to form the 

kernel matrix and test vector. Subsequently, by using the 

Tikhonov matrix to calculate the coefficients of a 

weighted projection, CWKLR provides an effective tool 

for classification tasks. The center-based kernel matrix 

introduces non-linear information between the training 

set and class centers, thus promoting more accurate 

classification. At the same time, the new test vectors 

also introduces nonlinear information between 

predicted samples and class centers, allowing the model 

to effectively model complex relationships. 

Sahoo et al. [29] proposed an approach termed 

Online Multiple Kernel Regression (OMKR). This 

approach requires to get kernel-based regressors in a 

scalable online manner. Notably, it dynamically 

explores a diverse pool of multiple kernels, strategically 

avoiding the pitfalls associated with adhering to a 

single, suboptimal kernel. It serves as a remedy for the 

inherent limitations of manual or heuristic kernel 

selection. The proposed scheme elegantly determines 

the optimal kernel-based regressor for each different 

kernels in real time, and simultaneously identify 

efficient ways to combine multiple kernel regressors. 

Additionally, a family of OMKR models tailored for 



802                                                   The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024 

regression were introduced, with a particular focus on 

their applications in time series prediction. To address 

the challenge of scalability posed by large data sets, the 

scheme devises innovative approaches. These strategies 

are instrumental in mitigating issues arising from an 

unbounded proliferation of support vectors. Overall, 

this scheme marks a significant advancement in the field 

of online kernel regression. It is applicable to various 

regression scenarios and has scalability for processing 

large data sets. 

2.2. Low-Rank Regression Models 

Zhang et al. [38] proposed a low-rank-sparse subspace 

representation for robust regression, termed LRS-RR. 

They consider that some challenging issues in learning 

robust regression models for high-dimensional 

corrupted data. Their approach simultaneously performs 

low-rank sparse subspace recovery and regression 

optimization. It exhibits fast convergence, low 

complexity, and good performance in handling high-

dimensional corrupted data through low-rank structures. 

Zhang et al. [37] proposed to adopt a low-rank 

structure to obtain the global representation and intrinsic 

structure of the residual and coefficient matrices. Which 

ignores the assumption of data being independently and 

identically distributed. This method introduces a non-

convex and non-smooth low-rank regression model 

guided by the power exponential distribution of 

extended matrix variables. By incorporating a 

decomposition strategy into the regression coefficient 

matrices and utilizing the Schatten-p norm with three 

different p values, computational efficiency is 

enhanced. By introducing auxiliary variables and using 

singular values, the subproblem is efficiently solved by 

this method. At the same time, a closed-form solution is 

obtained by using the proposed multivariable 

alternating multiplier direction method. The 

optimization model exhibits good local convergence, 

computational complexity, and superior performance. 

3. Method 

In this section, we formulate the objective function of 

KLRRR model and then introduce the solution and 

optimization method of this model. In addition, we also 

perform an analysis on the convergence and time 

complexity of the KLRRR model’s loss function. 

3.1. Model Optimization 

In semi-supervised learning, we are usually given 

X=[Xl, Xu]∈ ℝd×n to represent a centered data collection 

matrix, namely feature matrix. This matrix contains l 

labeled and u unlabeled samples. Yl∈ℝl×c is a matrix 

indicating the labels of the corresponding samples, in 

the form of one-hot encoding. In particular, if the 

sample 𝒙𝑖|𝑖=1
𝑙  belongs the j-th class and yi∈ℝ1×c is the i-

th row of Yl, then the j-th element in yi is one and the 

remaining elements of yi are zeros. Yu represents an 

unknown label matrix corresponding to the unlabeled 

samples, and Y=[Yl; Yu]∈ℝ
n×c is the complete label 

matrix corresponding to X. Meanwhile, d is the 

dimensionality of samples, c is the number of classes, 

and n=l+u is the total number of labeled and unlabeled 

samples. Our purpose is to obtain Yu∈ℝu×c as accurate 

as possible given X and Yl. 

Usually, connection between feature matrix and the 

corresponding label matrix is directly built by a single 

projection matrix. For example, if the F-norm 

regularization is applied to semi-supervised linear 

regression, we have the following objective, 

min
𝑊,𝑌𝑢

  
‖𝒀 − 𝑿𝑇𝑾‖𝐹

2 + 𝜆‖𝑾‖𝐹
2 , 

𝑠. 𝑡.  𝒀𝑢 ≥ 0, 𝒀𝑢𝟏𝑐 =  𝟏𝑢. 

where 1c∈ℝ
c and 1u∈ ℝu are column vectors with all 

elements equal to 1. The second constraint requires the 

summation of row elements in Yu to be 1. At the same 

time, considering the nonnegativity of Yu, the elements 

in each row of Yu can be considered as the probability 

of a sample belonging to different classes. Therefore, we 

can determine the class of a sample by examining the 

position of the maximal value in each row of Yu. For 

instance, if the fifth row of Yu is [0.1, 0.3, 0.6], then the 

fifth unlabeled sample should be classified into the fifth 

class. 

However, the samples may be linearly inseparable in 

the original data space, which might be necessary to 

map them into a kernel space to get better discriminative 

ability. Considering that the samples are mapped into 

the kernel space, the linear separability of samples in 

kernel space can be achieved, we firstly propose the 

following objective,  

min
𝑊,𝑌𝑢

  
‖𝒀 − 𝜙𝑇(𝑿)𝑾‖𝐹

2 + 𝜆‖𝑾‖𝐹
2 , 

𝑠. 𝑡. 𝒀𝑢 ≥ 0, 𝒀𝑢𝟏𝑐 =  𝟏𝑢 

where  defines a kernel mapping function, 𝜆 

is the regularization parameter and kernel matrix K can 

be expressed as the following equation:  

𝑲𝑖𝑗 = 𝜙𝑇(𝒙𝒊)𝜙(𝒙𝒋) 

where  is a reproducing kernel Hilbert space [35].  

Further, due to the complexity of data in the kernel 

space, it is too difficult to establish the connection 

between the data matrix and the label matrix solely by 

relying on the projection matrix. It might not capture the 

kernel space data properties well. A feasible solution is 

to first project the sample matrix into a discriminant 

subspace to enhance its separability, and then map this 

subspace data representation to the corresponding label 

matrix. To this end, we propose a new model termed 

KLRRR to seamlessly unify discriminant subspace 

exploration and semi-supervised recognition together 

on the basis of kernel space. It is expected to effectively 

alleviate the data linear inseparability limitation in the 

original data space. At the same time, it enables the 

(1) 

(2) 

(3) 
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projection matrix to accurately capture the property 

relationships between the data matrix and the label 

matrix in the kernel space. 

Supposing that A∊ℝn×s, B∊ℝs×c, s<min(n,c), we 

replace W in Equation (2) with 𝜙(X)AB to get the 

objective function of our KLRRR model finally. It can 

be expressed as the following equation 

min
𝑨,𝑩,𝒀𝒖

  
‖𝒀 − 𝑲𝑨𝑩‖𝐹

2 + 𝜆‖𝜙(𝑿)𝑨𝑩‖𝐹
2 , 

𝑠. 𝑡. 𝒀𝑢 ≥ 0, 𝒀𝑢𝟏𝑐 =  𝟏𝑢. 

Based on the definition of F-norm, Equation (4) is 

rewritten to 

min
𝑨,𝑩,𝒀𝒖

  
‖𝒀 − 𝑲𝑨𝑩‖𝐹

2 + 𝜆Tr(𝑩𝑇𝑨𝑇𝑲𝑨𝑩), 

𝑠. 𝑡.  𝒀𝑢 ≥ 0, 𝒀𝑢𝟏𝑐 =  𝟏𝑢. 

3.2. Model Optimization 

There are three variables, i.e., A, B, and Yu, in the 

KLRRR model objective function in Equation (5). We 

propose to solve them in an alternating update manner. 

Denoting Ω(A, B, Yu)= ‖𝒀 − 𝑲𝑨𝑩‖𝐹
2 + 𝜆Tr(𝑩𝑇𝑨𝑇𝑲𝑨𝑩), 

next, we solve each of the variables within the model. 

1. Updating B with A and Yu fixed. Taking the 

derivative of Ω(A, B, Yu) w.r.t. B, we have,  

𝜕Ω(𝑨, 𝑩, 𝒀𝒖)

𝜕𝑩

  
= −2𝑨𝑇𝑲𝑇𝒀 + 2𝑨𝑇𝑲𝑇𝑲𝑨𝑩 + 2𝜆 𝑨𝑇𝑲𝑨𝑩. 

Setting Equation (6) to zero, we have,  

𝑩 = (𝑨𝑇(𝑲𝑇 + 𝜆𝑰)𝑲𝑨)−1𝑨𝑇𝑲𝑇𝒀 

where, I∊ℝn×n is identity matrix. 

2. Updating A with B and Yu fixed. Substituting 

Equation (7) back into Equation (5), we implement 

the sub-objective function through variable A as 

𝑨∗ = argmax
𝑨

{Tr((𝑨𝑇(𝑲𝑇 + 𝜆𝑰)𝑲𝑨)−1𝑨𝑇𝑲𝑇𝒀𝒀𝑇𝑲𝑨) 

Assuming that  St=(KT+𝜆 I)K,  Sb=K
TYYTK, the solution 

of Equation (8) can be written as, 

𝑨∗ = argmax
𝑨

{Tr ((𝑨𝑇𝑺𝑡𝑨)−1𝑨𝑇𝑺𝑏𝑨)}. 

The top s eigenvectors of 𝑺𝑡
−1, Sb corresponding to the 

largest s eigenvalues is global optimal solution to A. 

This is a problem of discriminant subspace projection. 

After we get the optimal solution A with Yu fixed, 

Equation (4) is re-write as,  

min
𝑩

‖𝒀 − (𝑲𝑨)𝑩‖𝐹
2 + 𝜆‖𝜙(𝑿)𝑨𝑩‖𝐹

2  

the B is doing regularized regression. The optimal 

solution is given by Equation (7). Thus, with Yu fixed, 

the KLRRR of Equation (4) is equivalent to performing 

ridge regression in a discriminant subspace. 

3. Updating Yu with A and B fixed. We assume 

Q≜KAB, we can get Yu by solving the following 

subobjective function,  

min
𝒀𝑢

‖𝒀𝑢 − 𝑸‖𝐹
2  𝑠. 𝑡. 𝒀𝑢 ≥ 0, 𝒀𝑢𝟏𝑐 =  𝟏𝑢. 

Denoting  𝒚
𝑖|𝑖=1

𝑢
 as the i-th row of Yu, by solving the 

above objective function row by row we have the 

following equation:  

min
𝑦𝑖

‖𝒚𝑖 − 𝒒𝒊‖
2

2
, 𝑠. 𝑡. 𝒚𝑖 ⩾ 0, 𝒚𝑖𝟏𝑐 =  1 

which specifies the definition form of the Euclidean 

distance on the simplex constraint [25], In fact, there is 

a standard solution method for this problem. In 

summary, the optimal solution is obtained based on the 

Lagrange multipliers method combined with the 

Karush-Kuhn-Tucker (KKT) conditions according to 

the constraints. The detailed optimization method for 

Equation (12) is provided as follows. 

To simplify the notations, we replace the transpose of 

yi and qi with yi and qi. Then, the corresponding 

Lagrangian function of Equation (12) is,  

ℒ(𝒚𝑖 , 𝜂, 𝜷) = ‖𝒚𝑖 − 𝒒𝑖‖2
2 − 𝜂(𝒚𝑖

𝑇1𝑐 − 1)−𝜷𝑇𝒚𝑖 

where, 𝜂 and 𝜷∊ℝc are Lagrange multipliers in scalar 

and vector forms, respectively. Next, we provide a 

method to determine the two Lagrangian multipliers. 

Assume that the optimal solution to problem Equation 

(12) is 𝑦𝑖
∗, and the corresponding Lagrange multiplier is 

𝜂* and 𝛽*. Then, by using KKT criteria, we have the 

following equations and inequalities,  

∀𝑗, 𝑦𝑖𝑗
∗ − 𝑞𝑖𝑗 − 𝜂∗ − 𝛽𝑗

∗ = 0, 

∀𝑗, 𝑦𝑖𝑗
∗ ⩾ 0, 

∀𝑗, 𝛽𝑗
∗ ⩾ 0, 

∀𝑗, 𝑦𝑖𝑗
∗  𝛽𝑗

∗ = 0, 

where 𝑦𝑖𝑗
∗  is the j-th scalar element of vector 𝑦𝑖

∗. 

a) Solving 𝜂*. Equation (14) can be equivalent to the 

following vector form as,  

 𝒚𝑖
∗ − 𝒒𝑖 − 𝜂∗𝟏𝑐 − 𝜷∗ = 𝟎. 

Taking into account the constraints 𝒚𝑖
∗1c=1, Equation 

(18) can be rewritten as the following equation,  

𝜂∗ =
1 − 𝟏𝑐

𝑇𝒒𝑖 − 𝟏𝑐
𝑇𝜷∗

𝑐
. 

b) Solving 𝒚𝑖
∗. Putting Equation (19) into Equation (18), 

we have the following equation,  

 𝒚𝑖
∗ = 𝒒𝑖 −

𝟏𝑐𝟏𝑐
𝑇

𝑐
𝒒𝑖 +

1

𝑐
𝟏𝑐 −

1𝑐
𝑇𝜷∗

𝑐
𝟏𝑐 + 𝜷∗. 

Denote �̅�∗=(𝟏𝑐
𝑇𝜷∗/𝑐) and g=qi-(𝟏𝑐𝟏𝑐

𝑇/𝑐)qi+(1/c)1c. 

Equation (20) can be rewritten as the following 

𝒚𝑖
∗ = 𝐠 + 𝜷∗ − �̅�∗𝟏𝑐 . 

Therefore, considering the situation of each element in 

Equation (21), for each j=1,⋯, c, we have 

𝑦𝑖𝑗
∗ = g𝑗 + 𝛽𝑗

∗ − �̅�∗. 

According to Equations (15), (16), (17) and (22), we 

have g𝑗 + 𝛽𝑗
∗ − 𝛽̅∗ = (g𝑗 − 𝛽̅∗)

+
, where (f(∙))+=max(f(∙)), 

0). Therefore, we can get following formula 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 



804                                                   The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024 

𝑦𝑖𝑗
∗ = (𝑔𝑗 − �̅�∗)

+
∙ 

Now, If we can determine the optimal �̅�∗, the optimal 

solution 𝒚𝑖
∗ can be obtained simply from Equation (23).   

c) Solving 𝛽*. Equation (22) can be rewritten as 

𝛽𝑗
∗ = 𝑦𝑖𝑗

∗ + �̅�∗ − g𝑗 such that 𝛽𝑗
∗ = (�̅�∗ − g𝑗)+. 

With the above analysis, we can get the calculation 

formula of �̅�∗ as,  

�̅�∗ =
1

𝑐
∑(�̅�∗ − g𝑗)+

𝑐

𝑗=1

. 

Taking into account constraints 𝒚𝑖
𝑇𝟏𝑐 = 1 and Equation 

(23), we define the following function 

 𝑓(�̅�) = ∑(g𝑗 − �̅�)+ − 1

𝑐

𝑗=1

. 

The optimal �̅�∗ obtained should satisfy f(�̅�∗)=0. When 

Equation (25) equals zero, we can used Newton method 

to obtain the optimal solution as 

�̅�(𝑚+1) = �̅�(𝑚) −
𝑓(�̅�(𝑚))

𝑓′(�̅�(𝑚))
. 

We know that 𝑓(�̅�) is a monotonically increasing 

piecewise function. When g𝑗 ⩽ �̅�, 𝑓(�̅�) = ∑ g𝑗 − �̅� −𝑐
𝑗=1

1., and we have 𝑓′(�̅�) = −1. When g𝑗 ⩽ �̅�, 𝑓(�̅�) = −1 and 

its derivative 𝑓′(�̅�) = 0. By enumerating the number of 

positive values in (g𝑗 − �̅�)|𝑗=1
𝑐 , we can get 𝑓′(�̅�). 

In summary, Algorithm (1) gives the optimization 

process of Equation (12). 

Algorithm 1: Procedure to Solve Function of Equation (12). 

Input: vector qi∊ℝc; 

Output: vector yi∊ℝc . 

1: obtaining the number of sample classes c;// The value of c can 

be determined by calculating the maximal value among the 

elements in Yl. 

2: Computer 𝐠 = 𝒒𝑖 −
𝟏𝑐𝟏𝑐

𝑇

𝑐
𝒒𝑖 +

1

𝑐
𝟏𝑐; 

3: Obtain the root �̅�
∗
 of Equation (25) by using Newton method; 

// Specifically, �̅�
(𝑚+1)

= �̅�
(𝑚)

−
𝑓(�̅�

(𝑚)
)

𝑓′(�̅�
(𝑚)

)
 

4: Obtain the optimal solution 𝑦𝑖𝑗
∗ = (g𝑗 − �̅�

∗
) + for j=1,⋯, c; 

We summarize the entire optimization solution steps of 

the objective function of Equation (10) in Algorithm (2). 

Algorithm 2: Optimization Procedure to KLRRR. 

Input: data matrix X∊ℝd×n, label matrix Yl∊ℝl×c, low-rank 

parameter s, regularization parameter 𝜆, iter=50; 

Output: projection matrices A∊ℝd×s and B∊ℝs×c, and label 

matrix Yu∊ℝu×c. 

1: Initialize r=0, 𝒀𝑢
(𝑟)

; 

2: Calculation of the Gaussian kernel matrix K; 

3: while not objective function converged and r< iter do 

4:  Calculate B(r+1) by Equation (7); 

5:  Calculate S(r+1)= (𝑺𝑡
𝑟)−1𝑺𝑏

(𝑟)
 

6:  Perform eigenvalue decomposition of matrix S(r+1) 

7:  Calculate A(r+1) by Equation (8); // A(r+1)=top s largest 

eigenvalues of S(r+1). 

8:  Calculate , 𝒀𝑢
(𝑟+1)

  by (12); 

9:  Update Sb base on Y(r+1); 

10: r=r+1 ; 

11: end while 

3.3. Model Property Analysis 

Algorithm convergence analysis. We will prove the 

convergence of our proposed Algorithm (2). 

 Proof: In the t-th iteration, we have the following 

equation 

< 𝑨(𝑡+1), 𝑩(𝑡+1), 𝒀            𝑢
(𝑡+1)

≥ argmin‖𝒀(𝑡) − 𝑲𝑨(𝑡)𝑩(𝑡)‖
𝐹

2
 

         +𝜆Tr(𝑩(𝑡)𝑇 − 𝑨(𝑡)𝑇𝑲𝑨(𝒕)𝑩(𝑡)). 

Bringing A(t+1), B(t+1), 𝒀𝑢
(𝑡+1)

obtained by t+1 iterations into 

the Equation (5), we can get the following inequality 

‖𝒀(𝑡+1) − 𝑲𝑨(𝑡+1)𝑩(𝑡+1)‖
𝐹

2
 

+𝜆Tr(𝑩(𝑡+1)𝑇𝑨(𝑡+1)𝑲𝑨(𝑡+1)𝑩(𝑡)+1) 

 ⩽ 

‖𝒀(𝑡) − 𝑲𝑨(𝑡)𝑩(𝑡)‖
𝐹

2
 

+𝜆Tr(𝑩(𝑡)𝑇 − 𝑨(𝑡)𝑇𝑲𝑨(𝑡)𝑩(𝑡)) 

Specifically, variables A and B use gradient method to 

update, and variable Yu is updated by using the Lagrange 

multiplier method with analytical multipliers. It shows 

that the updating of Yu is also based on the decreasing 

of loss function decreasing. From this we draw the 

conclusion that Algorithm (2) will monotonically 

reduce the loss function values. 

 Computational Complexity Analysis.  

We analyze the computational complexity of Algorithm 

(2) using big 𝒪 notation. Clearly, the most 

computationally expensive step is the update of the 

variable A, B , Yu. The complexity of updating variable 

A is 𝒪(n3), the complexity of updating variable B is 

𝒪(cn2+c2n+c3)), the complexity of updating variable Yu 

is 𝒪(u(c2+c)). Overall, the time complexity of Algorithm 

(2) is 𝒪(r(n3+n2c+nc2+c3)), where r is the number of 

iterations. In our KLRRR model, the solution for Yu is 

performed row-by-row, with each row’s solution being 

independent of the others. Therefore, parallel 

computing can be employed to solve for Yu. 

4. Experiments 

In this section, we compare the proposed KLRRR model 

and its out-of-sample prediction version performance 

with the semi-supervised Kernel space Full-Rank Ridge 

Regression (KFRRR) model base on Equation (4) where 

AB is replaced by C, Semi-supervised Low-Rank Ridge 

Regression (SLRRR) base on [2] and all of their out-of-

sample prediction version across 12 standard data sets. 

Besides, we compare our model with a popular semi-

supervised model Rescaled Linear Square Regression 

(RLSR) [3] and its out-of-sample prediction version in 

(23) 

(24) 

(25) 

(26) 

(27) 

(28) 
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classification accuracy and standard deviation. We also 

evaluate the convergence, parameter sensitivity and 

running time of our model on the benchmark data sets 

under different kernel functions. Regarding the choice 

of kernel function in our experiment, we take the 

Gaussian kernel function as an example. Of course, our 

model is not limited to a specific kernel function, the 

effectiveness of our model with other kernel functions 

will be further demonstrated in the subsequent 

discussion section. The form of Gaussian kernel 

function [35] is as follows 

𝑲𝑖𝑗 = exp (−
‖𝒙𝑖 − 𝒙𝑗‖

2

𝜎2 ). 

Among them, 𝜎 is the bandwidth parameter of Gaussian 

distribution. 

4.1. Data Set Descriptions 

The 12 benchmark data sets from real-world were used 

in the experiments. Ecoli is a biological data set used for 

predicting the location of protein sites. Glass is a data 

set defined by the content of oxides, containing six 

categories. Jaffe is a face data set that includes six 

categories. Binalpha36 consists of 20×16 binary digits 

ranging from ‘0’ to ‘9’ and uppercase letters ‘A’ to ‘Z’, 

with 39 examples for each category. Vehicle is a data 

set that describes the general overview of vehicles, with 

four categories. Umist face data set contains 20 

individuals with a total of 575 images. COIL20 is an 

object data set. Yale is a data set containing 165 

grayscale GIF images from 15 individuals. ORL_32x32 

is an image data set captured under various times, 

lighting conditions, and facial details. Auto is a data set 

that includes the feature specifications of cars, specified 

insurance risk levels, and standardized loss in use. The 

“Control” data set is composed of synthetically 

generated control charts from six categories. 

Dermatology is a data set of clinical pathological used 

to determine the types of psoriasis. We present the main 

characteristics of each data in Table 1. 

Table 1. Main characteristics of the 12 benchmark data sets. 

Data sets # Sample # Dimensions # Class 

ecoli 366 343 8 

glass 241 9 6 

jaffe 212 177 7 

binalpha36 1404 320 36 

vehicle 846 18 4 

umist 575 644 20 

COIL20 1440 1024 20 

Yale 165 1024 15 

ORL_32x32 400 1024 40 

auto 205 25 6 

control 600 60 6 

dermatology 366 34 6 

4.2. Experimental Settings 

For each of the 12 benchmark data sets, we randomly 

divide the samples into 5 parts, each part has a similar 

amount of data. Using five-fold cross validation, in each 

round, we use four parts as labeled data and the other 

parts as unlabeled data. In particular, in the out-of-

sample prediction evaluation, the unlabeled data are 

further randomly divided into two parts of equal 

proportion, one part of them is used as the test set. The 

average classification accuracy and the standard 

deviation of five rounds is reported for different 

methods. In all experiments, We adaptively adjust the 

value of the regularization parameter 𝜆 within the range 

of {10r:r∊{-8, -7, ⋯, 8}}. In addition, for KLRRR and 

the out of sample version (KLRRR-OS) of KLRRR, the 

different low-rank parameter s is in range of [1, c) and 

the parameters 𝜎 is in rank of {2r:r∊{-10, -9, ⋯, 

10}}.For Semi-supervised Low Rank Linear Regression 

and the Out of Sample version (SLRRR-OS) of SLRRR, 

the adjustment range for parameters s is the same as 

KLRRR. For Kernel Full Rank Ridge Regression and 

the Out of Sample version (KFRRR-OS) of it, the 

adjustment range for parameters 𝜎 is the same as 

KLRRR. The maximal number of iterations for each 

variable update is set to 50. When the difference 

between the loss functions of two adjacent iterations is 

less than 10-5, the iteration is terminated. 

4.3. Recognition Results and Analysis 

The classification accuracies and the standard 

deviations of the five-fold cross-validation of our 

proposed model KLRRR, the comparison methods 

LRRR, KFRRR, RLSR and their out-of-sample 

prediction versions are shown in Table 2, where each 

row represents a certain model, and each column 

represents a benchmark data set. The maximal 

classification accuracy in each case is highlighted by 

bold, and the second largest classification accuracy is 

highlighted in underline. From the table we see that our 

proposed KLRRR achieves the maximal classification 

accuracy and demonstrated good robustness in 11 out of 

the 12 benchmark data sets. In terms of classification 

accuracy and robustness, the effectiveness of kernel 

trick and low-rank methods is demonstrated. In 

addition, the results in Table 2 also show that our 

proposed method is superior to the existing and popular 

semi-supervised classification method RLSR in terms 

of classification accuracy. Figure 1 shows the 

comparison of the average classification accuracies of 

kernel model and non-kernel version on the 12 

benchmark data sets under different low- rank 

constraints and low-rank conditions, namely KLRRR, 

SLRRR and their out-of-sample prediction versions. It 

is obvious from the figure that when the low-rank 

parameter s falls within an appropriate range, the 

classification accuracy of the kernel model is higher, 

which demonstrates the effectiveness and advantages of 

the kernel trick. Furthermore, our proposed method 

always has the highest classification accuracy on 11 out 

of the 12 benchmark data sets. Figure 2 shows the 

comparison of classification accuracy between low-rank 

(29) 
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methods and full-rank methods in kernel space on the 

12 benchmark data sets, namely KLRRR, KFRRR and 

their out-of-sample prediction versions. It can also be 

concluded from Figure 2 that when the low-rank 

parameter s falls within an appropriate range, the 

classification accuracy under the low-rank method is 

higher, which demonstrates the effectiveness and 

advantages of low-rank. Overall, our proposed method 

demonstrates excellent classification accuracy and 

robustness on the 12 benchmark data sets. 

 
Table 2. Average classification accuracies (%) and variance of five-fold cross validation on Gaussian kernel. 

 ecoli glass jaffe binalpha36 vehicle umist 

SLRRR-OS 83.86±8.20 56.54±12.27 55.36±11.23 55.97±8.26 72.13±8.30 92.75±4.10 

SLRRR 86.81±5.09 61.94±11.63 59.48±3.51 60.40±3.57 75.06±2.79 98.13±1.23 

KFRRR-OS 80.29±8.54 68.61±10.35 54.31±7.72 71.93±3.26 74.29±5.88 92.11±4.51 

KFRRR 85.24±3.74 76.02±14.15 61.44±8.24 73.08±1.92 75.41±2.39 98.81±1.74 

RLSR-OS 63.66±8.66 56.49±10.29 51.87±11.49 57.41±7.24 72.24±3.98 94.16±4.05 

RLSR 82.86±5.44 63.27±14.89 60.91±5.80 60.18±4.65 77.41±2.98 98.47±1.12 

KLRRR-OS 85.02±6.95 74.98±10.62 55.50±9.93 74.78±2.93 78.06±6.14 93.97±1.53 

KLRRR 87.38±3.27 77.78±6.00 62.35±6.25 75.07±1.55 78.72±6.28 99.66±0.75 

 COIL20 Yale ORL_32x32 auto control dermatology 

SLRRR-OS 97.10±1.02 82.28±6.33 89.07±10.33 44.00±12.52 82.59±7.48 87.37±10.91 

SLRRR 97.23±1.06 86.53±3.68 92.07±8.03 58.53±8.15 83.37±5.20 92.32±6.03 

KFRRR-OS 98.75±1.25 72.39±11.91 91.18±6.00 73.49±9.62 93.33±3.56 97.34±2.04 

KFRRR 98.89±0.76 78.92±6.27 92.97±2.57 73.86±6.07 94.43±1.72 97.52±2.43 

RLSR-OS 95.58±1.42 70.16±14.39 85.43±5.02 44.80±14.23 82.68±8.15 86.54±7.04 

RLSR 96.94±0.39 86.24±5.52 94.53±1.74 59.55±8.03 82.71±5.59 90.96±8.24 

KLRRR-OS 94.63±1.53 74.47±8.74 94.20±3.52 73.13±12.78 96.72±2.47 94.58±8.38 

KLRRR 99.58±0.76 82.01±6.81 95.72±2.42 78.02±7.22 98.80±1.05 98.36±2.25 

 

    

a) Ecoli-G. b) Glass-G. c) Jaffe-G. d) Binalpha36-G. 

    

e) Vehicle-G. f) Umist-G. g) COIL20-G. h) Yale-G. 

    

i) ORL_32x32-G. j) Auto-G. k) Control-G. l) Dermatology-G. 

Figure 1. The comparison of the average classification accuracies (%) of kernel space and non-kernel space on 12 benchmark data sets under 

different low-rank conditions on Gaussian kernel. 
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a) Ecoli-G. b) Glass-G. c) Jaffe-G. d) Binalpha36-G. 

    

e) Vehicle-G. f) Umist-G. g) COIL20-G. h) Yale-G. 

    

i) ORL_32x32-G. j) Auto-G. k) Control-G. l) Dermatology-G. 

Figure 2. The comparison of classification accuracies (%) between low-rank methods and full-rank methods in kernel space on 12 benchmark 

data sets on Gaussian kernel. 

4.4. Discussion 

In this section, we first discuss the flexibility and 

versatility of the KLRRR model under different kernel 

functions. Then, we experimentally show the 

convergence properties of the model. Finally, we 

present the model’s performance sensitivity to the 

regularization parameter and the hyperparameters 

within the kernel functions. 

a) Model Flexibility and Versatility. To demonstrate the 

model flexibility and versatility in different 

scenarios, we also conducted experiments using other 

kernel functions, i.e., the linear kernel and the 

polynomial kernel. The mathematical expression of 

the linear kernel is [5]:  

𝑲𝑖𝑗 = 𝒙𝑖
𝑇𝒙𝑗  

The expression for the polynomial kernel is,  

𝑲𝑖𝑗 = (𝑎𝒙𝑖  𝒙𝑗
𝑇 + 𝑐)𝑑 

In Equation (31), a, c and d are the hyperparameters of 

the polynomial kernel. Inspired by existing studies, we 

set a and c to 1 [20, 26], respectively. The optimal value 

for d is searched within the range [1, 2, ⋯, 5]. In the case 

of using linear kernel, the average classification 

accuracy and standard deviation of the 12 data sets 

across the 8 methods are presented in Table 3. From 

which we observe, our method achieved the highest 

classification accuracy on 11 out of the 12 data sets. 

Besides, our model also demonstrated lower standard 

deviations, indicating its stability and robustness. Figure 

3 shows the comparison of average classification 

accuracy between kernel and non-kernel models under 

different low-rank constraints and conditions across the 

12 benchmark data sets. Figure 4 provides us with the 

comparison of classification accuracy between low-rank 

methods and full-rank methods in kernel space. When 

using the polynomial kernel, the average classification 

accuracies and standard deviations of the 12 data sets 

across the 8 methods are presented in Table 4, where our 

method achieved the highest classification accuracy on 

8 out of the 12 data sets. Our method also has a smaller 

standard deviation value. Figure 5 shows the 

comparison of average classification accuracy between 

kernel and non-kernel models under different low-rank 

constraints and conditions. Figure 6 corresponds to the 

comparison of classification accuracy between low-rank 

methods and full-rank methods in kernel space. 

 

 

 

 

(30) 

(31) 
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Table 3. Average classification accuracies (%) and variance of five-fold cross validation on linear kernel. 

 ecoli glass jaffe binalpha36 vehicle umist 

SLRRR-OS 83.86±8.20 56.54±12.27 55.36±11.23 55.97±8.26 72.13±8.30 92.75±4.10 

SLRRR 86.81±5.09 61.94±11.63 59.48±3.51 60.40±3.57 75.06±2.79 98.13±1.23 

KFRRR-OS 80.39±9.23 59.18±17.41 53.54±11.21 59.83±5.68 76.33±4.15 96.04±1.58 

KFRRR 87.11±4.89 63.01±10.32 59.05±6.07 59.96±4.62 76.82±2.99 98.13±1.10 

RLSR-OS 63.66±8.66 56.49±10.29 51.87±11.49 57.41±7.24 72.24±3.98 94.16±4.05 

RLSR 82.86±5.44 63.27±14.89 60.91±5.80 60.18±4.65 77.41±2.98 98.47±1.12 

KLRRR-OS 82.06±10.72 62.90±18.60 52.78±12.36 56.84±6.68 70.67±7.30 96.40±1.87 

KLRRR 87.40±4.59 66.46±13.11 62.35±5.56 60.61±3.63 77.54±2.80 98.46±0.95 

 COIL20 Yale ORL_32x32 auto control dermatology 

SLRRR-OS 97.10±1.02 82.28±6.33 89.07±10.33 44.00±12.52 82.59±7.48 87.37±10.91 

SLRRR 97.23±1.06 86.53±3.68 92.07±8.03 58.53±8.15 83.37±5.20 92.32±6.03 

KFRRR-OS 96.55±0.97 75.97±13.34 95.09±2.47 56.15±8.64 82.71±7.33 96.86±2.25 

KFRRR 97.02±0.99 85.51±5.34 97.74±1.02 57.63±7.28 83.53±5.12 98.10±2.28 

RLSR-OS 95.58±1.42 70.16±14.39 85.43±5.02 44.80±14.23 82.68±8.15 86.54±7.04 

RLSR 96.94±0.39 86.24±5.52 94.53±1.74 59.55±8.03 82.71±5.59 90.96±8.24 

KLRRR-OS 96.00±0.97 82.53±8.09 94.58±4.11 59.73±11.62 83.27±7.26 96.94±2.65 

KLRRR 97.43±0.90 88.08±5.96 97.98±0.73 60.50±9.05 83.70±5.05 98.37±1.77 

 

    

a) Ecoli-l. b) Glass-l. c) Jaffe-l. d) Binalpha36-l. 

    

e) Vehicle-l. f) Umist-l. g) COIL20-l. h) Yale-l. 

    

i) ORL_32x32-l. j) Auto-l. k) Control-l. l) Dermatology-l. 

Figure 3. The comparison of the average classification accuracies (%) of kernel space and non-kernel space on 12 benchmark data sets under 

different low-rank conditions on linear kernel. 

    

a) Ecoli-l. b) Glass-l. c) Jaffe-l. d) Binalpha36-l. 

    

e) Vehicle-l. f) Umist-l. g) COIL20-l. h) Yale-l. 

    

i) ORL_32x32-l. j) Auto-l. k) Control-l. l) Dermatology-l. 

Figure 4. The comparison of classification accuracies (%) between low-rank methods and full-rank methods in kernel space on 12 benchmark 

data sets on linear kernel. 
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Table 4. Average classification accuracies (%) and variance of five-fold cross validation on polynomial kernel. 

 ecoli glass jaffe binalpha36 vehicle umist 

SLRRR-OS 83.86±8.20 56.54±12.27 55.36±11.23 55.97±8.26 72.13±8.30 92.75±4.10 

SLRRR 86.81±5.09 61.94±11.63 59.48±3.51 60.40±3.57 75.06±2.79 98.13±1.23 

KFRRR-OS 84.42±5.86 69.39±8.70 57.80±10.07 73.65±3.71 77.05±4.66 83.01±2.27 

KFRRR 84.76±3.57 72.66±10.51 59.05±6.11 75.07±1.23 77.06±2.82 97.78±1.43 

RLSR-OS 63.66±8.66 56.49±10.29 51.87±11.49 57.41±7.24 72.24±3.98 94.16±4.05 

RLSR 82.86±5.44 63.27±14.89 60.91±5.80 60.18±4.65 77.41±2.98 98.47±1.12 

KLRRR-OS 86.15±5.45 60.21±14.05 58.09±3.63 74.21±2.93 70.01±7.73 96.08±2.88 

KLRRR 87.99±3.17 73.93±6.15 63.25±5.54 75.35±1.93 74.24±5.39 96.27±2.71 

 COIL20 Yale ORL_32x32 auto control dermatology 

SLRRR-OS 97.10±1.02 82.28±6.33 89.07±10.33 44.00±12.52 82.59±7.48 87.37±10.91 

SLRRR 97.23±1.06 86.53±3.68 92.07±8.03 58.53±8.15 83.37±5.20 92.32±6.03 

KFRRR-OS 91.45±1.43 74.53±13.02 90.20±4.04 62.72±12.52 75.82±5.71 88.01±6.81 

KFRRR 97.23±1.17 85.47±4.16 91.38±3.91 68.80±6.40 77.17±7.34 90.98±8.48 

RLSR-OS 95.58±1.42 70.16±14.39 85.43±5.02 44.80±14.23 82.68±8.15 86.54±7.04 

RLSR 96.94±0.39 86.24±5.52 94.53±1.74 59.55±8.03 82.71±5.59 90.96±8.24 

KLRRR-OS 92.27±2.46 73.81±9.28 92.76±4.10 68.59±5.25 83.56±7.11 91.99±5.69 

KLRRR 96.39±2.39 78.73±6.08 94.71±1.75 71.38±6.43 83.73±6.04 93.99±3.46 

 

    

a) Ecoli-p. b) Glass-p. c) Jaffe-p. d) Binalpha36-p. 

    

e) Vehicle-p. f) Umist-p. g) COIL20-p. h) Yale-p. 

    

i) ORL_32x32-p. j) Auto-p. k) Control-p. l) Dermatology-p. 

Figure 5. The comparison of the average classification accuracies (%) of kernel space and non-kernel space on 12 benchmark data sets under 

different low-rank conditions on polynomial kernel. 

    

a) Ecoli-p. b) Glass-p. c) Jaffe-p. d) Binalpha36-p. 

    

e) Vehicle-p. f) Umist-p. g) COIL20-p. h) Yale-p. 

    

i) ORL_32x32-p. j) Auto-p. k) Control-p. l) Dermatology-p. 

Figure 6. The comparison of classification accuracies (%) between low-rank methods and full-rank methods in kernel space on 12 benchmark 

data sets on polynomial kernel. 
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b) Convergence. In section 3, we have theoretically 

proved that the optimization process described in 

Algorithm (1) would converge. To more intuitively 

display the convergence performance of the loss 

function in the experiment, we present the decreasing 

of the KLRRR objective function values on some 

data sets, where the Gaussian kernel, linear kernel, 

and polynomial kernel are respectively 

corresponding to Figure 7-a), (d), (e), (h), (i), and (l). 

On each benchmark data set, the values of the loss 

function decrease as the iteration increases. From the 

figure, we draw the conclusion that Algorithm (2) 

definitely converge within 50 iterations on the 12 

benchmark data sets. Obviously, our model 

converges within 15 iterations on most of the data 

sets. This also demonstrates the superiority of our 

algorithm. 

c) Parameter Sensitivity. We also presented the 

parameter sensitivity for some data sets under 

different kernel functions. In the case of the Gaussian 

kernel, Figure 8-a) and (d) of shows how the 

classification accuracy of the model on the data sets 

varies in terms of the regularization parameter 𝜆 and 

the standard deviation 𝜎 of the Gaussian kernel 

function. In the case of the linear kernel, Figure 8-e) 

and (h) of shows how the classification accuracy of 

the model on the data sets varies in terms of the 

regularization parameter 𝜆. In the case of the 

polynomial kernel, Figure 8-i) and (l) of shows how 

the classification accuracy of the model on the data 

sets varies in terms of the regularization parameter 𝜆. 

Since KLRRR aims to achieve higher classification 

accuracy, we focused on the parameter range where 

the model achieved high accuracy to explore the 

model’s sensitivity to parameters. It can be observed 

that, our model consistently achieves high 

classification accuracy within a large selectable 

space for parameters 𝜆 and 𝜎. The model is not highly 

sensitive to the two parameters, demonstrating its 

robustness. When using Gaussian kernel function. 

Especially for the glass and umist data sets, the model 

performs well on these two data sets. When the 

highest accuracy is achieved, changes in the two 

parameters have almost no impact on the 

classification accuracy of the model. Similarly, when 

achieving higher accuracy, the regularization 

parameters and kernel hyperparameters in the case of 

linear kernels and polynomial kernels have little 

impact on the accuracy. Since the selection of 

regularization parameter and kernel hyperparameter 

is based on experience and trial, the smaller the 

impact of these two parameters on the accuracy, the 

better the performance of the model. Figure 8 shows 

model robustness our proposed model. 

 

    

a) Ecoli-G. b) Glass-G. c) Jaffe-G. d) Binalpha36-G. 

    

e) Vehicle-l. f) Umist-l. g) COIL20-l. h) Yale-l. 

    

i) ORL_32x32-p. j) Auto-p. k) Control-p. l) Dermatology-p. 

Figure 7. The convergence performance of the loss function on 4 benchmark data sets. (a)-(d) correspond to the Gaussian kernel, (e)-(h) 

correspond to the linear kernel, (i)-(l) correspond to the polynomial kernel. 
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a) Ecoli-G. b) Glass-G. c) Jaffe-G. d) Binalpha36-G. 

    

e) Vehicle-l. f) Umist-l. g) COIL20-l. h) Yale-l. 

    

i) ORL_32x32-p. j) Auto-p. k) Control-p. l) Dermatology-p. 

Figure 8. The parameter sensitivities of part of benchmark data sets. (a)-(d) correspond to the Gaussian kernel, (e)-(h) correspond to the linear 

kernel., (i)-(l) correspond to the polynomial kernel. 

d) Running Time. To demonstrate the scalability of 

KLRRR, Figure 9 shows the running time of KLRRR 

model with Gaussian, linear, and polynomial kernels 

on the 12 benchmark data sets. In this figure, the 

horizontal axis represents the data set, and the 

vertical axis represents the running time for each data 

set under its respective optimal parameters. The 

platform used for these experiments was “Windows 

10 64-bit + Intel(R) Core(TM) i5-7300 CPU @ 2.50 

GHz+16 GB DDR4 2400 MHz+MATLAB 2023b”. 

According to Table 1 and the results of Figure 9, 

overall, the computational efficiency of our 

algorithm is still quite fast, and the effect of sample 

dimensions on running time is relatively minor. This 

indicates that our model has an advantage in 

classifying high-dimensional data. In conclusion, our 

KLRRR model generally demonstrates ideal 

operational efficiency. 

 

   

a) Gaussian kernel. b) Linear kernel. b) Polynomial kernel. 

Figure 9. The running time of KLRR model under different kernel function on 12 benchmark data sets. 

5. Conclusions 

In this paper, we propose a joint kernel trick and low-

rank semi-supervised regression model, called KLRRR, 

to achieve discriminative subspace learning and data 

classification. The advantages of KLRRR are 

summarized as follows: 

1. It effectively solves the problem of linear 

inseparability of data in its current dimension. 

2. It integrates the discriminant subspace projection into 

the regression model, solving the problem that a 

single projection matrix struggles to accurately 

construct the relationship between complex data and 

its labels. 
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3. It is implemented in a semi-supervised paradigm. 

The immediate benefit is that by estimating the soft 

labels of unlabeled samples, it can effectively guide 

discriminative subspace identification.  

Experimental results showed that KLRRR performs 

well in improving classification accuracy, and the model 

is robust to different combinations of parameters. In 

addition, the model has a fast convergence speed. In the 

future, we will focus on the following two aspects: one 

is combining discriminative low-rank regression with 

feature selection of data. We aim to achieve automatic 

feature selection by embedding feature weighting 

factors. The other is improving the learning speed of the 

model. 
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