
786 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

Effective Test Cases Generation with Harmony

Search and RBF Neural Network

Hemant Kumar

Department of Computer Science

Babasaheb Bhimrao Ambedkar Central University, India

hemant20192@gmail.com

Vipin Saxena

Department of Computer Science

Babasaheb Bhimrao Ambedkar Central University, India

profvipinsaxena@gmail.com

Abstract: Software testing is one of the integral activities during development of software products. Generation and selection

of the test cases either in static or dynamic form play pivot role for ensuring the quality of software products. There are numerous

approaches in the literature for automatic generation of test cases but coverage criteria and fault detection rate are prominent

metrics for checking the effectiveness of the software products during testing phase of software development. In the present, a

new Harmony Radial Testing (HRT) is proposed by combining the concepts of Harmony Search Algorithm (HSA) and Radial

Basis Function-Neural Network (RBF-NN) approaches. The main objective of the proposed HRT method is to generate automatic

test cases by considering the criteria of branch coverage with improvement in the Maximum branch Coverage (MaxC), Average

Coverage (AC) and Average Percentage Fault Detection (APFD) rates. The proposed approach combined with the Radial Basis

Function (RBF), denoted as a HRT approach. The proposed approach is used to optimize harmony search over the randomly

selected sample test cases, training the RBF-NN to simulate the fitness function. Seven Python codes have been tested through

proposed approach and computed results are compared with Primal-Dual Genetic Algorithm (PDGA), Simple Genetic

Algorithm (SGA) and random methods. It is observed that the proposed HRT algorithm optimizes consistently yielded reliable

results, which may be used in future for enriching the software testing process by the software industries.

Keywords: Algorithm optimization, automated testing, test cases, hybrid algorithm and software testing efficiency.

Received December 25, 2023; accepted August 26, 2024

https://doi.org/10.34028/iajit/21/5/2

1. Introduction

Through the effective software testing strategies,

software development team may lead to produce the

high quality of the software products in the optimized

time frame assigned by the project leader during the

testing phase. Software testing is a vital activity for

ensuring the reliability and as well as for the correctness

of the complex software code. There are numerous

kinds of the software testing strategies like analytical,

model-driven, methodological, regression and many

more which consume test cases for evaluating the

performance of the software code. For different kinds of

testing strategies, automatic generation of the effective

test cases is a challenging talks and it is necessary to

execute the code for producing the results in the

optimized time. In the present work, the challenges like

coverage criteria and early fault detection of code are

considered by combining the Harmony Search Method

(HSM) alongwith Radial Basis Function-Neural

Network (RBF-NN) in the hybrid form and a new

algorithm Harmony Radial Testing (HRT) is

investigated for generation of the effective test cases.

The aim of the proposed algorithm is not only to

streamline the test cases generation but also to enhance

the diversity and efficacy of the generated test cases.

Let us introduce a word ‘Harmony’ which contents

of the chords, played alongwith melody. It was

investigated in the year 1902 and elements of harmony

are well described in [2]. On the basis of elements of

harmony, a search algorithm was proposed in the year

2001 and research work was published in the year 2016

[12]. It was based on the random search, rules were

based on the Harmony Memory (HM) and pitch was

adjusting the operators. Later, it became as the heuristic

optimization technique which strikes a balance between

exploration and exploitation and finally adopted in

observing the complexities of the software systems. On

the other hand Radial Basis Function is a real valued

function which was first reported in the literature in the

year 1988 [4]. The real values depend on the difference

between the inputs and some fixed points [16].

In the present work, HAS is complemented through

the capabilities of RBF-NN approach for generation of

quality test cases based on the learned patterns, further

refining the search for the solution, reflective of desired

program’s behavior. The proposed methodology is

encapsulated in the form of system model for new HRT

approach as shown in Figure 1.

The model seeks to optimized test coverage, ensuring

through testing of critical aspects of program

functionality. The approach is considered as hybrid

approach which begins by initializing the environment

of the target code. A grid of potential solutions is

generated and RBF-NN is trained to assess the fitness

function. Thereafter, HAS optimizes the test cases in the

iterative manner for the target code which shows the

https://doi.org/10.34028/iajit/21/5/2

Effective Test Cases Generation with Harmony Search and RBF Neural Network 787

efficacy of the proposed approach for generation of

effective test cases. Section 2 describes overview of the

proposed approach, section 3 describes formation of

HRT, section 4 describes results and discussion while

last section 5 describes conclusions and future direction

for further use of HRT hybrid algorithm.

Figure 1. A system model for HRT.

2. Overview

The generation of test cases even for the small software

code is a very complex activity and generated test cases

must be optimized for ensuring the highly reliable

software system. It is observed from the recent research

that the generation of test cases based on branch

coverage forms a foundation of the presented approach.

Let us first describe the test case in the next sub-section.

2.1. Test Case

It is well explained as inputs to be used to produce

expected outcomes. This term was first coined in the

literature in the year 1896 through Plessy v. Ferguson

legal case. Later on, this terminology was first used in

the software testing in the year 1957 by Charles Baker

[11]. Later on, this concept is used by many researchers

and scientists for the testing of the software code and for

ensuring the quality of the software code. There are two

categories of test cases, one is certainty of test cases and

another is uncertainty of test cases and both categories

are covered under automatic generation of test cases.

Further prioritization of test cases is another important

activity during software testing and which saves the

time of testing. It is done especially for uncertainty of

the test cases [37]. The process of prioritization of test

cases contains initial analysis to identify the variables

based on the software code. The systematic generation

of a diverse set of test cases spanned a wide spectrum of

scenario. Mahalakshmi et al. [24] introduced a method

for test case generation using named entity recognition.

The approach focused on automating the identification

of key entities within use cases, which were then used

to create a scenario matrix for generating test cases. The

named entity recognition system, trained on features

extracted from use cases, enhanced the efficiency of test

case generation, reducing the need for manual tagging

and minimizing errors. The method was domain-

independent and adaptable, offering a streamlined

process for early-stage testing in software development.

From time to time, different approaches of software

testing were appeared in the literature, but for sake of

completeness of the proposed approach, only related

software testing approaches are described below in

brief.

2.1.1. Data-Flow Oriented Testing

It is based upon the theory of control flow and used to

detect illogical variables that interrupt flow of data for

producing the correct output. Therefore, anomalies in

the flow of data among the various modules of the

software code may be detected. For example, if

variables are used without correct declaration of the

variables then errors among the modules associated with

flow of data may be detected. Further paths within the

software code may be checked for correct flow of data

via execution of various paths over the test cases, hence

also called as path-oriented testing. Ji et al. [19]

proposed this methodology for generation of test cases

which involved leveraging neural networks for

enhancing the testing efficiency and coverage criteria

within the data-flow oriented scenario. Bao et al. [3]

generated path-oriented test cases based on adaptive

genetic control and applied over the six industrial

software codes and found that the novel approach

enhances the quality of software products. Lin and Yeh

[22] also generated automatic test cases through path

testing using the concept of Genetic Algorithm (GA). A

concept of Harmony distance used for generation of

effective test cases which produces highly reliable

software products. Su el al. [34] also emphasized

search-based algorithm, addressing the search-based

algorithm, addressing the crucial problem of Path

Coverage (PC) in the Automatic Test Case Generation

(ATCG) by introducing Hypercube-based Learning

(HBL) and Tailored Hypercube Based Learning

(THBL) which are employed hypercube through an

opposition based learning strategy. Experimental

research demonstrated the higher PC with fewer test

cases and optimized running time.

788 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

2.1.2. Metamorphic Testing

It is a property based testing strategy for generation of

test cases with addressing test oracles which are written

for determining the expected results over selected test

cases to check whether the output based on test oracle is

matching with the output generated through test case.

On this ground, Chen et al. [6] presented a pioneer

metamorphic testing approach with main aim to

generate subsequent test cases through metamorphic

relations. It is an inventive strategy for systematic

derivation of new test cases, thereby making substantive

combination to the progression of software testing

techniques. Sun et al. [36] have explored this testing

approach to construct follow-up test cases from existing

source test cases which are generated associated path

constraints symbolic execution. The path distance

among test cases guided the prioritization of source test

cases, hence enhancing the efficiency of the software

products.

2.1.3. Regression Testing

It is a type of testing which works over the functional

test cases and misbehaves over the nonfunctional test

cases. In this testing, software code is slightly modified

and checking over the generated test cases whether the

code is giving the expected outcome or not. Solanki et

al. [33] produces experimental analysis for Ant Colony

Optimization (ACO) through regression testing

approach. Test cases are prioritized against Meta

heuristic techniques and improves sources of the quality

and diversity of the food.

2.1.4. State Based Testing

It is type of testing which works on the transition of the

states and one state is treated as a module of the software

and tested over the test cases which flow from one state

to another state. In this reference, Pradhan et al. [30]

proposed an algorithm for state-based test case

generation from diverse coverage criteria, by

transforming state chart diagrams into a State Chart

Intermediate Graph (SCIG). The study introduced

efficient algorithms for Round Trip Path (RTP) and All

Transition Pair (ATP) criteria, showcasing insights from

case studies on Stack Operation and Vending Machine

Automation (SOVMA) systems. Experimental findings

revealed ATP challenges, resource consumption in All

Transition (AT), and RTP’s efficiency in addressing

transition explosion, contributing insights to semi-HBL

in Model-Based Testing (MBT).

2.1.5. Fuzzy Testing

It is a dynamic testing approach and investigated by

Barton Miller in the year 1980. It considers coverage

criteria and behavior aspect of software code and it is

much faster for uncovering the bugs for automatic

generation of the test cases. Hasan et al. [15] reviewed

research work on software testing, considered various

approaches of testing and observed that the fuzzy logic

enhanced software quality using operational profiles,

while fault propagation path design predicted the

defects during testing. ATCG reduced required tests for

large software programs. The entire review offers

valuable insights into diverse test cases generation

methods and input on software performance,

contributing to a nuanced uncertainty of effective

strategies in the Software Development Life Cycle

(SDLC).

2.1.6. Hybrid Testing

It is a combination of two or more than two testing

approaches. Lakshminarayana and SureshKumar [20]

introduced a hybrid approach based on fitness function

for optimizing the software test cases. The computed

results are compared with Particle Swarm Optimization

(PSO), Cuckoo Search (CS), Bee Colony Algorithm

(BCA), and Firefly Algorithm (FA) and achieving 65%

of success rate. The application is performed over

Automated Teller Machine (ATM) which outperforms

over the above mentioned algorithms and completes

ATM withdrawal operations in just 16.4 seconds,

thereby suggesting the approach for applicability in the

software testing, especially for banking industries.

Sulaiman et al. [35] focused on the increasing

implementation of optimization algorithms for test case

generation in MBT for Software Product Line (SPL).

The demand for optimal test case results with a balanced

trade-off between cost and effectiveness motivated

hyper-heuristic test case generation approach in MBT

for SPL, termed Improvement Selection Rules-

Modified Choice Function (ISR-MCF) which

incorporated three search operators like Non-

Dominated Sorting Genetic Algorithm 2 with Low-

Level Heuristic (NSGA-2-LLH), Strength Pareto

Evolutionary with 2 Low-Level Heuristic (SPEA-2-

LLH), and Particle Swarm Optimization with Low-

Level Heuristic (PSO-LLH). The evaluation, conducted

on a test model, demonstrated that ISR-MCF with

NSGA-2-LLH outperformed existing rules in terms of

minimization measures (test suite size and execution

time) and maximization measures (coverage criteria).

De Santiago Junior et al. [8] introduced the “many-

objective perspective” to enhance Graphical User

Interface (GUI) test cases generation, combining

search-based optimization with MBT. Meta and hyper-

heuristics were employed for both code-driven and use

case-driven GUI testing, translating C++ source code

into Event Flow Graphs (EFG) and creating EFG’s

directly via use cases. The evaluation included 32

problem instances, assessing three multi-objective

evolutionary algorithms and six selection hyper-

heuristics. Authors measured performance through five

indicators and a new Multi-Metric Indicator (MMI),

highlighted the superior performance of meta-

Effective Test Cases Generation with Harmony Search and RBF Neural Network 789

heuristics, especially Non-dominated Sorting Genetic

Algorithm (NSGA)-2, with the choice function hyper-

heuristic proving the most effective.

2.2. Tools and Models for Testing

For testing the software, technologists also developed

testing tools from time to time. One of such tools is the

Detection and Refactoring Tool (DaRT) which is used

to address redundant test cases generation in the SDLC

by identifying and refactoring the code in small-lazy

classes, small methods and duplicate classes [17]. The

above tool has android based application whose main

aim is to reduce test case generator redundancy through

structure and modifications without affecting external

functionality. The tool has a notable 28% reduction in

the generated test cases and upto 5% improvement in

branch coverage. Clark et al. [7] also examined the role

of agent-based models in simulating complex

phenomena and supporting decisions, despite potential

consequences from software faults. Positing five

research questions addressed the key aspects of test case

generation in agent-based models. From an initial search

yielding 464 results, the study identified 24 primary

publications, utilizing taxonomy to summarize

advanced techniques for test cases generation. Results

indicated that, while many techniques effectively tested

functional requirements at agent and integration levels,

few addressed society-level behaviour, and most did not

encompass non-functional requirements or “soft goals”.

2.3. Grid Search

Grid search is a systematic method used for exploring a

specified input space by generating a grid of potential

solutions and evaluating each one to find the optimal or

near-optimal solutions. The process is particularly

useful in scenarios where the input space is continuous

and multidimensional, and it can be applied to various

optimization problems, including hyper-parameters

tuning in machine learning models. It consists of the

following steps:

Step 1. Define input ranges and grid resolution.

a) There are ranges of values for each feature or

dimension in the input space. For example, if we have

two features, then ranges might be (0,1000) (0,1000)

for both.

b) The grid resolution is the number of evenly spaced

values to generate within each input range. A higher

resolution means more values and a finer grid.

Step 2. Generate values for each dimension.

Using a function like numpy. linspace, generate evenly

spaced values within each defined input range. For

example:

 For a range of (0, 1000) (0, 1000) with a resolution

of 20, the values might be [0, 52.63, 105.26, …,

947.37, 1000][0, 52.63, 105.26, …, 947.37, 1000].

Step 3. Generate the Cartesian product.

 The Cartesian product of the lists of values from each

dimension is computed to create all possible

combinations of the values across dimensions. This

results in a comprehensive set of grid solutions that

cover the entire input space.

Step 4. Evaluate each solution.

 Each point in the generated grid is evaluated using a

target function (e.g., the Greatest Common Divisor

(GCD) function in this case). The evaluation results

are then adjusted for normalization and scoring using

a specified criterion, such as a power function to

compute a coverage score.

Hence, grid search is a kind of process of the search for

selection of the certainty of the test cases and generally

the approach of search has vast application in the

machine learning. On the basis of above, a grid search

is shown below in the Figure 2.

Figure 2. Grid search under HRT.

In this reference, Pontes et al. [29] conducted a

literature review and proposed an optimized Multi-

Layer Perceptron (MLP) network for predicting

Average Surface Roughness (ASR) in machining

processes. The tuning algorithm, incorporating Design

Of Experiments (DOE) techniques, significantly

reduced roughness prediction errors, providing an

effective method for systematically designing Artificial

Neural Network (ANN) models. The concept is applied

to two machining processes, the method identified

network topologies with substantial reductions in

training and testing, resulting in an 82.3% and 71.5%

reduction in prediction error compared to original ANN

790 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

models and a 9.7% and 46.3% reduction compared to

ANNs optimized by a computational tool. The results

demonstrated a significant reduction in the dispersion of

prediction errors as compared to networks proposed by

case studies and a computer package. Liashchynskyi

and Liashchynskyi [21] compared three widely used

algorithms for hyper-parameter i.e. optimization-grid

search, random search, and GA-specifically focusing on

application in Neural Architecture Search (NAS). The

primary objective was to use the algorithms for

constructing a convolutional neural network, and the

experimental evaluation was carried out on the

Canadian Institute For Advanced Research (CIFAR-10)

dataset. The comparison was based on the execution

time of the algorithms and the accuracy of the resulting

models, providing insights into the performance

differences among the approaches. The findings and

analyses contributed to the understanding of the

effectiveness of the hyper-parameter optimization

algorithms in the context of NAS.

2.4. Radial Basis Function (RBF)

It is a mathematical function which takes real valued

inputs and produces real valued outputs by considering

the distance of real valued inputs from some fixed points

as shown in the Figure 3 [9].

Figure 3. A concept of RBF_NN.

On the basis of definition of RBF, networks are

designed using RBF which are known as RBF-NN.

Scientists and researchers used the concept of RBF in

the field of neural networks. Let us describe some of the

important references. Musavi et al. [28] employed the

RBF technique for training RBF classifiers, addressing

objectives related to efficient clustering and

determining kernel function widths. The study outlined

techniques and conducted empirical tests, confirming

the effectiveness of the proposed approach in terms of

processing speed and scalability for nonlinear patterns.

The research provided valuable insights for enhancing

RBF efficiency in interpolation and classification,

offering solutions for improved performance in diverse

applications. Further, Mulgrew [27] investigated the

application of neural networks, specifically general and

radial basis functions, with an emphasis on adaptive

equalization and interference rejection problems. The

article deliberated on the utilization of neural-network-

based algorithms, aiming to strike a balance between

performance and complexity in the domain of adaptive

equalization. The study encompassed a thorough

examination of the application of radial basis functions

to address challenges associated with adaptive

equalization and interference rejection. The results

underscored the effectiveness of neural-network-based

algorithms, particularly in achieving a favourable trade-

off between performance and complexity within the

realm of adaptive equalization. Buhmann [5] undertook

an exhaustive examination of RBF methods,

highlighting the modern applications for approximating

multivariate functions, especially in situations where

grid data is unavailable. Buhmann [5] focused on

current survey of recent advancements, explicating the

theoretical underpinnings of RBF techniques and

introducing novel categories of RBF’s. Particular

emphasis is placed on recent discoveries concerning

convergence rates in RBF-based interpolation, progress

in approximations on spheres, and the efficient

numerical computation of inter-polants for large

datasets. Schwenker et al. [32] investigated learning

algorithms for RBF networks, categorizing RBF

training into one, two, and three-phase schemes. Two

phases RBF learning involves initially training the RBF

layer, adjusting centers and scaling parameters,

followed by adapting output layer weights. Numerical

experiments demonstrated enhanced performance of

RBF classifiers through a third back propagation-like

training phase, termed three-phase learning, allowing

the use of unlabeled training data. Support Vector (SV)

learning in RBF networks, a distinct approach,

represents a specialized form of one-phase learning.

Numerical experiments comparing classifiers showed

superior performance of RBF classifiers trained through

SV and three-phase learning over two-phase learning.

Liu et al. [23] used the concept of RBF for generation

of test cases through GA.

2.5. Harmony Search

This kind of the search is used for finding the exact or

approximate solution of the problem which is inspired

by the music and called as meta-heuristic approach of

searching the optimized solution. In the present work,

this approach is used for efficient generation of

automatic test cases which shall be used for enhancing

the productivity and reliability of the software projects.

A concept of HS is shown below in the Figure 4 [25].

Effective Test Cases Generation with Harmony Search and RBF Neural Network 791

Figure 4. A concept of harmony search.

The details of the Harmony Search Algorithm (HSA)

shall be discussed in the subsequent section; however

some of the important references are added for clarity of

the algorithm. Geem et al. [12] explored various

optimization algorithms to solve problems in different

fields. Traditional techniques, such as Linear

Programming (LP), Non-Linear Programming (NLP),

and Dynamic Programming (DP), played significant

roles, but the limitations led to the exploration of

heuristic optimization approaches like simulated

annealing, tabu search, and evolutionary algorithms.

The study introduced harmony search, a novel heuristic

algorithm inspired by the improvisation of music

players. The algorithm’s performance was

demonstrated through applications to a traveling

salesman problem and a least-cost pipe network design

problem, highlighting its effectiveness in addressing

optimization challenges. The study contributed to the

broader understanding of heuristic optimization

algorithms and provided insights into the potential of

new approaches like harmony search. Dubey et al. [10]

systematically reviewed the HSA, a recently developed

meta-heuristic known for its efficient optimization

across diverse real-life problems. The paper provided a

comprehensive overview of HSM, covering its natural

inspiration, conceptual framework, control parameters,

and mathematical foundations. It explored HSM’s

improvement and hybridization with other meta-

heuristics, emphasizing its broad applicability in

engineering, networking, scheduling, classification,

bioinformatics, and more. The study also analyzed HSM

variants, including binary, chaotic, multi-objective, and

hybridized versions, highlighting the strengths and

weaknesses. The findings are based on an analysis of

over 100 papers, underscored HSM’s adaptability and

robustness. The conclusion discussed the future

research directions, focusing on HSM’s potential

through parameter adjustments and hybridization with

different algorithms.

Further, Qin et al. [31] conducted a systematic

review on the HSA and its variants, a novel meta-

heuristic inspired by musicians’ adjustments. The study

covered the basic principle, impact of improvements,

and characteristics of different HS variants, analysing

the applications. Approximately 100 papers were

reviewed, revealing a focus on parameter enhancement

and integration with other meta-heuristic algorithms for

HS improvements. The primary application domain was

engineering optimization and authors emphasized the

algorithm’s growing real-world applications. Ghiduk

and Alharbi [14] also reviewed search-based algorithms

in software engineering, focusing on comparing GAs

and HSM for test data generation. The study assessed

the efficiency in terms of time performance,

significance of generated test data, and adequacy for

testing criteria. Results showed that HSM’s significant

speed advantage over GAs, supported by t-Test

analysis. Jalila and Mala [18] conducted a literature

review on early-stage software testing, emphasizing the

need for techniques enabling automated test case

generation in initial software development phases and

proposed a framework using formal specifications in

Object Constraint Language (OCL) for automated test

data generation, featuring a novel fitness function, Exit-

Predicate-Wise Branch Coverage (EPWBC), and

employing the HSA to optimize the test case generation

process. Experimental results demonstrated the

framework’s superiority over other OCL-based test case

generation techniques, showcasing the effectiveness of

OCL-based testing with the HS algorithm in achieving

extensive test coverage and an optimal test suite for

improved system quality. Muazu and Maiwada [26]

conducted a literature review on pairwise testing, an

approach that tests all possible combinations of

parameter values to achieve comprehensive coverage.

The optimization of generating efficient test suites with

minimal size is treated as a search problem, and the

HSA is applied to address it. The research introduced

PWiseHA, a pair-wise software testing tool developed

with an optimization focus using the HSA. Results from

PWiseHA demonstrated competitive performance

compared to existing pairwise testing tools. Alsewari et

al. [1] conducted a literature review on combinatorial

test case generation strategies, specifically focusing on

t-way testing strategies. The paper introduced a novel

792 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

approach, the General T-way Harmony Search-based

Strategy (GTHS), utilizing the HSA to generate test

lists. The chosen algorithm aimed to balance

intensification and diversification. Experimental results,

benchmarking GTHS against existing optimization-

based strategies, demonstrated competitive

performance, and particularly supporting high

combination degrees (t≤12). Ghiduk and Alharbi [13]

investigated the performance of GA’s and HS

algorithms in test data generation, comparing the ability

and speed. The study empirically compared HSA and

GAs, assessing time performance, significance of

generated test data, and adequacy to satisfy a given

testing criterion. Results indicated that HSA was

significantly faster than GA’s, supported by a p-value of

0.026, while no significant difference was observed in

generating adequate test data, with a p-value of 0.25.

The findings contributed to understanding the

comparative efficiency of HSA and GAs in the test data

generation process.

2.6. Research Gaps

On the basis of exhaustive literature survey, it is

observed that different combinations of existing testing

approaches in hybrid form may produce better outcome

in the optimized time frame and generation of the

effective test cases via HSM with RBF-NN is still

missing in the literature. The type of hybrid approach is

used for automatic generation of test cases by

combining the concepts of HS with RBF-NN, called as

the HRT approach. The proposed work has the

following key contributions:

a) HSA integration: integration of the HSA introduces

an adaptive and balanced approach to automated test

case generation, effectively optimizing the input

space.

b) RBF-NNs for fitness evaluation: utilization of RBF-

NN for dynamic test case quality evaluation and

guidance enhances the adaptability and efficacy of

the HSA.

c) Dynamic fitness landscape adaptation: the model

dynamically adapts over multiple iterations, refining

its strategy based on changing fitness landscapes.

This dynamic adaptation accommodates evolving

program complexities.

d) Testing across diverse program types: demonstrating

versatility, the model proves effective across various

program types, ensuring adaptability in diverse

testing scenarios.

e) Enhanced test coverage and quality: the combined

use of harmony search and RBF-NN’s aims to

enhance test coverage, providing high-quality test

cases through an iterative refinement process.

f) Automated optimization of test case generation: the

model automates test case generation, reducing

manual effort. Harmony search explores the solution

space, while RBF-NN’s provides automated

evaluation, making the testing process more efficient

and adaptive.

g) Practical application demonstration: practical

applications illustrate the model’s efficacy in

generating test cases covering critical program

functionality. These applications span mathematical

algorithms, control flow-intensive functions, and

complex arithmetic operations.

3. Methodology

In this section, the proposed methodology is described

on the basis of framework given in the figure 1 for the

automated generation of test cases by integrating HS

and RBF-NN techniques. The primary objective is to

methodically traverse the input space of a designated

program, characterize its intricate behaviour through

machine learning, and leverage a heuristic search

algorithm to iteratively enhance the quality of generated

test cases.

3.1. Test Generator Initialization

The followings are considered for initialization of the

test cases generation:

 Target Program: a software code, for which test cases

will be generated, is defined as a target program. In

the present work, seven Python target programs are

selected which are frequently used by the researchers

and scientists however the presented approach shall

be applicable for other Python scripts.

 Input Ranges: the ranges which are considered for the

selected target programs are defined as input ranges.

This range is varying from one target program to

another based of the involvement of parameters.

 Instantiate RBF-NN: an instance of RBF-NN

provides code uses the MLPRegressor class from

scikit-learn with specific configurations, such as one

hidden layer with 10 neurons and logistic activation.

3.2. Grid Solution and Evaluation

A set of grid solutions is generated by covering the

specified input ranges. The algorithm uses the

numpylinspace function to create evenly spaced values

within the defined input ranges, resulting in a grid of

solutions, then evaluated each solution in the generated

grid using the target program as GCD function. The

results are adjusted for normalization and scoring, using

a power function to compute a coverage score.

In the proposed work, the steps for generating the

grid solutions are given below:

Grid_Solution()

Input

Feature Ranges: [(0,1000), (0,1000)]

Grid Resolution: 20

Output

Grid Solutions: set of solutions covering the input space

Begin

Effective Test Cases Generation with Harmony Search and RBF Neural Network 793

Initialize Grid Solutions as an empty list

for each dimension in Feature Ranges do

values = linspace(dimension[0], dimension[1], Grid Resolution)

Append values to Grid Solutions alongwith the current

dimension

end for

Generate Cartesian Product of Grid Solutions

return Cartesian Product as Grid Solutions

End

The above Grid_Solution() function generates a set of

solutions that span the input feature space. It begins by

defining the input feature ranges from 0 to 1000 for each

dimension. The grid resolution is set to 20, meaning

each dimension will be divided into 20 evenly spaced

points. The function initializes an empty list called Grid

Solutions. It then iterates over each dimension in the

feature ranges, using the linspace function to generate

evenly spaced values between the minimum and

maximum of each range. These values are appended to

Grid Solutions for each dimension. Once the values for

all dimensions are gathered, the function calculates the

Cartesian product of these values, which results in all

possible combinations of the grid points across the

dimensions. The Cartesian product represents the set of

grid solutions that cover the entire input space. Finally,

the function returns this Cartesian product as the output.

3.3. RBF Neural Network Training

In this activity, the RBF-NN is trained using the

generated solutions and the corresponding evaluations.

This step involves for creating a training set with

features (input solutions) and targets (normalized GCD

scores) and using it to fit the neural network. The steps

are summarized below:

RBF_NN_Train()

Input

Program: target program for training

Population: set of solutions for training

Output

RBF-NN: trained neural network

Begin

Features = Extract_Features_From_Population(Population)

Targets = Evaluate_Solutions(Population)

rbf_nn = Initialize_RBF_NeuralNetwork()

rbf_nn.Train(Features, Targets)

End

The above RBF_NN_Train() function is designed to

train a Radial Basis Function Neural Network (RBF-

NN) using a set of solutions from a target program. The

process begins by taking the target program and a

population of solutions as input. First, the function

extracts features from the population using

Extract_Features_From_Population(Population), which

processes the population to generate relevant input

features. Next, it evaluates these solutions using

Evaluate_Solutions(Population) to produce the

corresponding target values. An RBF Neural Network

(rbf_nn) is then initialized with

Initialize_RBF_NeuralNetwork(). The extracted

features and their corresponding target values are used

to train the RBF-NN via rbf_nn Train(Features,

Targets). Once trained, the function outputs the trained

RBF Neural Network, ready for further tasks.

3.4. Harmony Search Algorithm

When RBF-NN is trained then, HSA is applied to

further refine the test cases. The algorithm initializes a

memory of solutions, iteratively generates and evaluates

new solutions, updates the memory based on fitness, and

adjusts mutation and crossover probabilities. The reason

for selection of said approach is that it produces faster

results in comparison of other optimization algorithms

[13].

The steps of HSA are given below:

Harmony_Search()

Input

Program: target program to be tested

Feature Ranges: [(0,1000), (0,1000)]

Max Iterations: 100

Initial_Mutation_Probability: 0.2

Initial_Crossover_Probability: 0.7

Output

Best Solution: optimal solution found by harmony search

Begin

Harmony Memory Initialization()

best_solution = None

best_score=0

mutation_prob = Initial_Mutation_Probability

crossover_prob = Initial_Crossover_Probability

iteration = 0

while iteration < Max Iterations do

new_solution = Generate_Random_Solution_From_Grid()

Add new_solution to Harmony Memory

Sort Harmony Memory based on Fitness_Function

Select Top Solutions from Harmony Memory

if Fitness Function(new_solution) >best_score then

best_solution = new_solution

best_score = Fitness_Function(new_solution)

end if

mutation_prob = max(0.01, mutation_prob * 0.95)

crossover_prob = min(0.9, crossover_prob * 1.05)

iteration = iteration + 1

end while

returnbest_solution

End

The above RBF_NN_Train() function is designed to

train a (RBF-NN) using a set of solutions from a target

program. The process begins by taking the target

program and a population of solutions as input. First, the

function extracts features from the population using

Extract_Features_From_Population(Population), which

processes the population to generate relevant input

features. Next, it evaluates these solutions using

Evaluate_Solutions(Population) to produce the

corresponding target values. An RBF Neural Network

(rbf_nn) is then initialized with

Initialize_RBF_NeuralNetwork(). The extracted

features and their corresponding target values are used

to train the RBF-NN via rbf_nn Train(Features,

Targets). Once trained, the function outputs the trained

794 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

RBF Neural Network, ready for further tasks.

3.5. Harmony Radial Testing

The concept of RBF-NN is integrated with the harmony

search and expanded in the form of HRT which is given

below:

HRT()

Input:

• GCD_function: A function that calculates the Greatest

Common Divisor (GCD) of two integers.

Output:

• A test case (pair of integers) that maximizescoverage score

for the GCD_function.

Parameters:

• feature_ranges: A list of tuples defining the minimum and

maximum values for each input feature (integer);

• max_iterations: The maximum number of iterations for the

HSA;

• initial_mutation_prob: The initial probability of mutating a

solution during an iteration;

• initial_crossover_prob: The initial probability of performing

crossover between solutions during an iteration;

• num_iterations (for run_experiment): The number of

independent experiments to run.

Algorithm Steps:

1. Initialization:

• Define feature ranges for input integers;

• Create an RBF Neural Network (NN) for fitness

estimation;

• Initialize a Harmony Memory (HM) with 5 randomly

chosen test cases from the defined grid.

• Set best_solution and best_score to None;

• Set initial values for mutation_prob and crossover_prob.

2. Harmony Search Loop (for each iteration):

• Generate a new random test case;

• Add the new solution to the HM;

• Select the top 5 solutions (based on fitness) from the HM

as the new HM;

• Update best_solution and best_score if the new solution

has a higher fitness score;

• Adjust mutation_prob and crossover_prob using decay

and amplification factors.

3. Fitness Function:

• Use the trained RBF NN to predict the coverage score for

a given test case.

4. Training RBF NN (within run_experiment):

• Generate a set of initial test cases using

generate_grid_solutions;

• Train the RBF-NN using the generated test cases and their

corresponding coverage scores (obtained using

evaluate_solution).

5. Run Experiment :

• Perform multiple independent runs of the HSA;

• Return a list containing information about the best

solution found in each run.

6. Selection and Output:

• Find the best test case (highest coverage score) across all

experiment runs.

• Print details about the chosen test case and its coverage

score.

The HRT() function is an optimization algorithm

designed to find a test case that maximizes the coverage

score programs such as triangle, GCD, bessel, calday,

numbers, remainderSth, and Complex, using harmony

search. function using harmony search. It starts by

defining the input parameters, including the feature

ranges for the integer inputs, maximum iterations, initial

mutation and crossover probabilities, and the number of

independent experiments to run. The process begins

with initialization: it defines the feature ranges, creates

a RBF-NN for fitness estimation, and initializes HM

with 5 randomly chosen test cases from a predefined

grid. Both best_solution and best_score are set to none,

and initial values for mutation and crossover

probabilities are established. During each iteration of

the harmony search loop, a new random test case is

generated and added to the HM. The memory is then

sorted based on the fitness scores, and the top 5

solutions are retained. If the new test case has a higher

fitness score than the current best, it updates the

best_solution and best_score. Mutation and crossover

probabilities are adjusted over time to balance

exploration and exploitation. The fitness function used

in this process is based on the trained RBF-NN, which

predicts the coverage score for each test case. Before

running the main optimization, the RBF-NN is trained

with a set of initial test cases generated by

generate_grid_solutions, with their coverage scores

obtained from evaluating the GCD function. The

function executes multiple independent runs of the HSA

(based on num_iterations), recording the best solution

found in each run. After all experiments, the test case

with the highest coverage score across all runs is

selected as the final result, and details of this test case,

including its coverage score, are printed. This method

effectively integrates machine learning with

optimization techniques to ensure comprehensive

testing of the GCD function.

3.6. ExperimentalExecution

In this, a series of experiments is conducted by

executing the HRT algorithm for a specified number of

iterations. New solutions are generated in each iteration,

evaluated using the RBF-NN, and the memory is

updated to keep the best solutions.

3.7. Results Analysis

The results of the experiments are analyzed to identify

the best-generated test cases. The analysis includes

computing and comparing coverage scores obtained

from the HSA. The best test case and its coverage score

are reported.

3.8. Evaluation of the Solution

Individual solutions are evaluated using the target

program and compute coverage scores. This step is

essential for both the initial grid solutions and the

Effective Test Cases Generation with Harmony Search and RBF Neural Network 795

solutions generated by the HRT algorithm. The

methodology involves for initializing the test case

generator with the target program and input ranges,

generating an initial set of solutions using a grid,

training an RBF-NN to approximate the program’s

behavior, and refining the solutions using the HRT

algorithm. The experiments are conducted to find the

best test case based on coverage scores, and individual

solutions are evaluated using the target program.

4. Results and Discussion

The HRT algorithm reveals the key parameters which

are influencing its performance. The population size is

considered as 50which determine candidate solutions

per iteration, crucial for comprehensive exploration. A

larger population enhances thorough search. The

maximum iterations is considered as 100, influences

overall runtime by specifying the number of iterations.

Initial mutation probability is taken as 0.2, introduces

randomness, aiding effective exploration, while initial

crossover probability is 0.7, promote feature sharing.

Collectively, above-mentioned parameters shape the

behaviour of HSA and efficacy in search and

optimization tasks.

4.1. Test Case Generation and Verification of

Branch Coverage

In the context of generating branch coverage test cases,

the experiment utilized seven Python programs to assess

the viability and efficacy of the test cases generation

method as proposed in this paper, which leverages the

HSA and RBF-NN. The Python programs employed in

this experiment include GCD, triangle, remainderSth,

and numbers. To elucidate the advantages of the

proposed test case generation algorithm defined HRT,

we will compare it against three alternative methods for

branch coverage test case generation: the adaptive GA

as Primal-Dual Genetic Algorithm (PDGA), traditional

GA as Simple Genetic Algorithm (SGA), and random

test generation method as random. The assessment

metrics for the experiment encompass the average

branch coverage rate, Maximum branch Coverage

(MaxC) rate, and average convergence algebra. It is

crucial to scrutinize the results to ensure the accuracy

and reliability of the information provided. The branch

coverage rate is calculated as in the Equation (1) [23]:

𝑡 =
𝑛

𝑚
× 100

where, t symbolizes the branch coverage rate, n denotes

the count of evaluation results, and m represents the

aggregate of judgment results. The standardized

parameters across the four branch coverage test case

generation methods, dictate a fixed population size of

50 and a maximum threshold of 100 evolutionary

iterations. To mitigate the potential impact of stochastic

variables on experimental outcomes, each method

undergoes 50 iterations for every program subject to

analysis. The evaluative metrics for this experiment

encompass the average branch coverage rate, the MaxC

rate, and the average convergence algebra. This

methodological stringency ensures a thorough and

quantitatively precise assessment of the performance

attributes and reliability metrics inherent in the methods

under examination. The average branch coverage rate

Ac is calculated as in Equation (2) [23]:

 𝐴𝑐 =
∑ 𝑡𝑛

1 (1,2, … . . , 𝑛)

𝑛

where, Ac represents the average branch coverage rate

and t represents the branch coverage rate of the program

under test after it is executed in the algorithm.

MaxC rate is the highest branch coverage rate

achieved by the program under test after multiple

executions in an algorithm. The proposed HRT method

is evaluated using existing techniques such as PDAG

[3], SGA [22], and the random approach.

The results from 50 runs of each of the four

algorithms for the seven tested programs are tabulated

in the Table 1, presenting both the Average Coverage

(AC) rate and the MaxC rate.

The branch coverage rates of the four algorithms are

used on program p1 GCD are shown in the Table 1.

Notably, all four algorithms have MaxC of 100%;

however, the random method is unable to reach an

average branch coverage rate higher than 80%. For

program p2 (triangle), the random algorithm fails to

meet the 80% requirement for branch coverage, whereas

the HRT based test case generation techniques produce

a MaxC rate of 100%.

Table 1. Comparison of branch coverage under HRT with existing approaches.

 Random SGA PDAG HRT

Programs Ac% MaxC% Ac% MaxC% Ac% MaxC% Ac% MaxC%

P1 (GCD) 77.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00

P2 (triangle) 55.60 75.36 93.80 100.00 100.00 100.00 100.00 100.00

P3 (beseel) 52.81 76.19 95.86 100.00 100.00 100.00 100.00 100.00

P4 (calday) 67.39 91.91 94.27 100.00 100.00 100.00 100.00 100.00

P5 (remainderSth) 65.89 83.33 94.65 100.00 100.00 100.00 100.00 100.00

P6 (numbers) 45.68 72.10 90.61 97.43 98.23 100.00 100.00 100.00

P7 (complex) 48.21 63.27 92.86 92.33 100.00 100.00 100.00 100.00

More specifically, the random method only reaches

55.60%, whereas the SGA algorithm obtains an

excellent average branch coverage rate of 93.80%.

Programs p3, p4, and p5 demonstrate that the PDGA,

(1)

(2)

796 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

SGA, and HRT algorithms get 100% MaxC, while the

random algorithm obtains 76.19%, 91.91%, and 83.33%

for the comparable programs. The SGA and Random

algorithms only achieve 100% branch coverage on the

maximum levels, only the PDGA and HRT algorithms

in program p7 achieve 100% branch coverage on both

the average and maximum levels. The comparison

demonstrates that the SGA algorithm consistently

outperforms the Random approach in terms of average

and MaxC rates. With program p6, the proposed HRT

technique achieves a remarkable 98.23% average

branch coverage for the PDGA algorithm, as well as

100% maximum coverage and average branch

coverage. When the number of branches reaches a

certain point, the PDGA algorithm notably becomes

unstable, while the proposed HRT technique shows

relative stability.

Figure 5. Comparison of average coverage rate.

Figure 6. Comparison of maximum coverage rate.

The highlights as shown in the Figures 5 and 6,

represent the performance of HRT for test case

generation. The HRT algorithm, which is new to this

study, is more effective than the other three approaches.

The software achieves a notable feat of 100% coverage

in both average and maximum metrics, which are

derived from the six previously described occurrences.

This result validates both the technical viability and

efficacy of the methods described in this research.

4.2. Average Percentage Fault Detection Rate

Average Percentage Fault Detection Rate (APFD) is a

pivotal metric in software testing, quantifies the average

effectiveness by considering both efficacy and

efficiency for individual test cases. It evaluates a test

case’s ability to detect faults and sequencing, optimizing

testing effectiveness. This aids in prioritizing test cases

and refining fault detection strategies, providing

valuable insights for enhancing software testing

protocols. The APFD is computed using in Equation (3):

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝑓1 + 𝑇𝑓2 + ⋯ + 𝑇𝑓𝑛

𝑛𝑚

where, Tf1, Tf2, …, Tfn denote the fault detection

positions, representing the sequential order in which

each fault is identified by the test cases within the test

suite, n signifies the total number of faults present in the

system, m represents the total number of test cases

within the test suites. Table 2 presents an in-depth

comparative analysis of four optimization algorithms-

GA, ACO, Bee Colony Optimization (BCO), and HRT

with a focus on their APFD [33].

Table 2. Comparison of APFD under HRT with exiting approaches.

APFD

Programs GA ACO BCO HRT

Triangle 0.88 0.93 0.95 1.0

GCD - - - 1.0

Beseel - - - 1.0

Calday - - - 1.0

Numbers - - - 1.0

remainderSth - - - 1.0

Complex - - - 1.0

The APFD scores serve as quantitative indicators of

the algorithms’ efficacy in fault detection within the

context of software testing. GA exhibited a

commendable APFD score of 0.88, underscoring its

robust performance in fault identification. ACO

surpassed GA, demonstrating a higher APFD score of

0.93, indicative of a more proficient fault detection

capability. BCO outperformed both GA and ACO,

achieving an APFD score of 0.95. However, the HRT

showcased unparalleled effectiveness by achieving a

perfect APFD score of 1.0. This exceptional

performance suggests that HRT, leveraging the HSA in

conjunction with RBF-NN, excelled in fault detection

with unparalleled precision and completeness compared

to its algorithmic counterparts. The incorporation of the

HSA and the utilization of an RBF-NN in HRT

contribute to its superior fault detection capabilities,

making it a compelling choice for optimizing fault

detection strategies in the realm of software testing.

4.3. Strengths and Limitations of HRT

The followings are the strengths of the presented

approach:

a) Enhanced Branch Coverage.

• Focused Testing: the HRT approach is designed to

address the challenges of branch coverage in

software testing, ensuring that more branches of

the software code are tested, leading to more

(3)

Effective Test Cases Generation with Harmony Search and RBF Neural Network 797

thorough testing and detection of potential errors.

b) Efficiency in Test Case Generation.

• Automatic Generation: by automating the

generation of test cases, the HRT approach

significantly reduces the manual effort and time

required, which is typically resource-intensive and

subjective.

• Optimization: harmony search optimizes the

selection of test cases by exploring the input space

more effectively compared to random or less

sophisticated methods.

c) Adaptive Learning.

• RBF-NN: the integration of RBF-NNs allows for

adaptive learning, which helps in simulating the

fitness function dynamically. This improves the

accuracy and relevance of the generated test cases

based on the evolving software code.

d) Comparative Performance.

• Benchmarking: the document provides empirical

results comparing the HRT approach with other

methods like PDGA, SGA, and random methods.

The HRT approach shows superior performance in

these comparisons, as depicted in the form of

tables and graphs.

e) Improved Software Quality.

• Systematic Coverage: the method ensures

systematic coverage of the software, contributing

to higher reliability and correctness of the

software systems by uncovering defects that might

be missed by less thorough testing methods.

The followings are the limitations of the presented

approach:

a) Complexity in Implementation.

• Integration Challenges: combining harmony

search with RBF-NNs may be complex.

Implementing this hybrid model requires

advanced understanding and expertise in both

heuristic optimization and neural networks.

• Parameter Tuning: the success of the approach

heavily relies on appropriate parameter tuning for

both harmony search and the RBF-NN which can

be time-consuming and require expert knowledge

of datasets.

b) Resource Intensive.

• High Computational Demand: training the RBF-

NN and running the HSA on large and complex

datasets can be computationally intensive. This

might necessitate high-performance computing

resources, which may not be available in all

environments.

• Memory and Processing Power: significant

memory and processing power are required, which

could be a limitation for smaller organizations or

projects with limited computational resources.

c) Scalability and Adaptability.

• Scalability Issues: while the approach works well

for the tested Python codes, its scalability to very

large and complex software systems is not yet

fully validated.

• Adaptability to Different Domains: the approach

may need customization and adaptation to work

effectively across different domains and types of

software, which could limit its general

applicability.

d) Empirical Validation.

• Limited real-world testing: although the document

presents comparative results, the HRT approach

requires more extensive empirical validation

across a wider range of real-world applications to

establish its robustness and reliability fully.

• Potential overfitting: there’s a risk that the RBF-

NN might over fit to the specific examples used in

training, which could limit its effectiveness on

unseen or significantly different software.

5. Conclusions and Future Scope

From the above work, it is concluded that HRT

algorithm which is the integration of the HSA with

RBF-NN is a very useful for automatic generation of

test cases with outstanding performance over the

software codes. In this work seven software codes,

consistently achieved 100% for both the maximum

branch coverage rate and average branch coverage rate.

In contrast to previous algorithms such as Random,

SGA, and PDGA, HRT achieved full branch coverage

and could automatically produce complete test cases.

Since it is a new approach of testing and outperforming

over the Python software codes, therefore, it can also be

applied for the various software codes developed during

the phases of software development by the software

industries. The HSA with RBF-NN optimization

consistently yielded reliable results, demonstrating the

usefulness of HRT as a tool for enhancing software

testing processes. The presented technique improved the

test coverage for the software codes as 100% which was

not through other algorithms. Strengths and weaknesses

are also described in the work. The HRT approach offers

significant benefits, particularly in enhancing branch

coverage and automating the test case generation

process, thus improving software reliability and

efficiency. However, in future, its complexity, resource

intensity, need for extensive empirical validation, and

potential issues with scalability and adaptability pose

challenges that need to be addressed to fully realize its

potential across diverse software development

scenarios.

798 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024

References

[1] Alsewari A., Poston R., Zamli K., Balfaqih M.,

and Aloufi K., “Combinatorial Test List

Generation based on Harmony Search

Algorithm,” Journal of Ambient Intelligence and

Humanized Computing, vol. 13, no. 6, pp. 3361-

3377, 2020. https://doi.org/10.1007/s12652-020-

01696-7
[2] Aristoxenus., Macran., and Stewart H.,

Aristoxenus Harmonika Stoicheia. The Harmonics

of Aristoxenus, Oxford, Clarendon Press, 1902.

https://archive.org/details/aristoxenouharmo00ari

suoft/aristoxenouharmo00arisuoft/

[3] Bao X., Xiong Z., Zhang N., Qian J., Wu B., and

Zhang W., “Path-Oriented Test Cases Generation

Based Adaptive Genetic Algorithm,” PloS One,

vol. 12, no. 11, pp. 1-17, 2017.

https://doi.org/10.1371/journal.pone.0187471

[4] Broomhead D. and Lowe D., “Multivariable

Functional Interpolation and Adaptive Networks,”

Complex Systems, vol. 2, pp. 321-355, 1988.
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/19

88-Broomhead-CS.pdf

[5] Buhmann M., “Radial Basis Functions,” Acta

Numerica, vol. 9, pp. 1-38, 2000.

https://doi.org/10.1017/S0962492900000015

[6] Chen T., Cheung S., and Yiu S., “Metamorphic

Testing: A New Approach for Generating Next

Test Cases,” arXiv Preprint, arXiv:2002.12543,

pp. 11, 2020.

https://doi.org/10.48550/arXiv.2002.12543

[7] Clark A., Walkinshaw N., and Hierons R., “Test

Case Generation for Agent-Based Models: A

Systematic Literature Review,” Information and

Software Technology, vol. 135, pp. 106567, 2021.

https://doi.org/10.1016/j.infsof.2021.106567

[8] De Santiago Junior V., Ozcan E., and Balera J.,

“Many-Objective Test Case Generation for

Graphical User Interface Applications Via Search-

Based and Model-Based Testing,” Expert Systems

with Applications, vol. 208, pp. 118075, 2022.

https://doi.org/10.1016/j.eswa.2022.118075

[9] Ding S., Xu L., Su C., and Jin F., “An Optimizing

Method of RBF Neural Network based on Genetic

Algorithm,” Neural Computing and Applications,

vol. 21, no. 2, pp. 333-336, 2012.

DOI:10.1007/s00521-011-0702-7

[10] Dubey M., Kumar V., Kaur M., and Dao T., “A

Systematic Review on Harmony Search

Algorithm: Theory, Literature, and Applications,”

Mathematical Problems in Engineering, vol.

2021, pp. 1-22, 2021.

https://doi.org/10.1155/2021/5594267

[11] GeeksforGeeks, History of Software Testing,

https://www.geeksforgeeks.org/history-of-

software-testing/, Last Visited, 2024.

[12] Geem Z., Kim J., and Loganathan G., “A New

Heuristic Optimization Algorithm: Harmony

Search,” Simulation, vol. 76, no. 2, pp. 60-68,

2001. https://doi.org/10.1177/003754970107600201

[13] Ghiduk A. and Alharbi A., “Generating of Test

Data by Harmony Search Against Genetic

Algorithms,” Intelligent Automation and Soft

Computing, vol. 36, no. 1, pp. 647-665, 2023.

https://doi.org/10.32604/iasc.2023.031865

[14] Ghiduk A. and Alharbi A., “Generating Test Data

using Harmony Search Versus Genetic

Algorithms,” Intelligent Automation and Soft

Computing, vol. 36, no. 1, pp. 647-665, 2023.

https://www.techscience.com/iasc/v36n1/50002/html

[15] Hasan D., Hussan B., Zeebaree S., Ahmed D.,

Kareem O., and Sadeeq M., “The Impact of Test

Case Generation Methods on the Software

Performance: A Review,” International Journal

of Science and Business, vol. 5, no. 6, pp. 33-44,

2021. https://ijsab.com/volume-5-issue-6/3860

[16] Hassoun M., Fundamentals of Artificial Neural

Networks, MIT Press, 1995.
https://books.google.jo/books/about/Fundamental

s_of_Artificial_Neural_Networ.html?id=Otk32Y

3QkxQC&redir_esc=y

[17] Ibrahim R., Ahmed M., Nayak R., and Jamel S.,

“Reducing Redundancy of Test Cases Generation

Using Code Smell Detection and Refactoring,”

Journal of King Saud University-Computer and

Information Sciences, vol. 32, no. 3, pp. 367-374,

2020. https://doi.org/10.1016/j.jksuci.2018.06.005

[18] Jalila A. and Mala D., “Automated Optimal Test

Data Generation for OCL Specification with

Harmony Search Algorithm,” International

Journal of Business Intelligence and Data Mining,

vol. 16, no. 2, pp. 231-259, 2020.

https://doi.org/10.1504/IJBIDM.2020.104743

[19] Ji S., Chen Q., and Zhang P., “Neural Network-

Based Test Case Generation for Data-Flow-

Oriented Testing,” in Proceedings of the IEEE

International Conference on Artificial

Intelligence Testing, Newark, pp. 35-36, 2019.

https://doi.org/10.1109/AITest.2019.00-11

[20] Lakshminarayana P. and SureshKumar T.,

“Automatic Generation and Optimization of Test

Case Using Hybrid Cuckoo Search and Bee

Colony Algorithm,” Journal of Intelligent

Systems, vol. 30, no. 1, pp. 59-72, 2021.

https://doi.org/10.1515/jisys-2019-0051

[21] Liashchynskyi P. and Liashchynskyi P., “Grid

Search, Random Search, Genetic Algorithm: A

Big Comparison for NAS,” arXiv Preprint,

arXiv:1912.06059, pp. 1-11, 2019.

https://doi.org/10.48550/arXiv.1912.06059

[22] Lin J. and Yeh P., “Automatic Test Data

Generation for Path Testing Using GAs,”

Information Sciences, vol. 131, no. 1-4, pp. 47-64,

2001. https://doi.org/10.1016/S0020-0255(00)00093-1

[23] Liu Z., Yang X., Zhang S., Liu Y., Zhao Y., and

https://doi.org/10.1007/s12652-020-01696-7
https://doi.org/10.1007/s12652-020-01696-7
https://archive.org/details/aristoxenouharmo00arisuoft/aristoxenouharmo00arisuoft/
https://archive.org/details/aristoxenouharmo00arisuoft/aristoxenouharmo00arisuoft/
https://doi.org/10.1371/journal.pone.0187471
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1988-Broomhead-CS.pdf
https://doi.org/10.1017/S0962492900000015
https://doi.org/10.48550/arXiv.2002.12543
https://doi.org/10.1016/j.infsof.2021.106567
https://doi.org/10.1016/j.eswa.2022.118075
http://dx.doi.org/10.1007/s00521-011-0702-7
https://doi.org/10.1155/2021/5594267
https://www.geeksforgeeks.org/history-of-software-testing/
https://www.geeksforgeeks.org/history-of-software-testing/
https://doi.org/10.1177/003754970107600201
https://doi.org/10.32604/iasc.2023.031865
https://ijsab.com/volume-5-issue-6/3860
https://books.google.jo/books/about/Fundamentals_of_Artificial_Neural_Networ.html?id=Otk32Y3QkxQC&redir_esc=y
https://books.google.jo/books/about/Fundamentals_of_Artificial_Neural_Networ.html?id=Otk32Y3QkxQC&redir_esc=y
https://books.google.jo/books/about/Fundamentals_of_Artificial_Neural_Networ.html?id=Otk32Y3QkxQC&redir_esc=y
https://doi.org/10.1016/j.jksuci.2018.06.005
https://doi.org/10.1504/IJBIDM.2020.104743
https://doi.org/10.1109/AITest.2019.00-11
https://doi.org/10.1515/jisys-2019-0051
https://doi.org/10.48550/arXiv.1912.06059
https://doi.org/10.1016/S0020-0255(00)00093-1

Effective Test Cases Generation with Harmony Search and RBF Neural Network 799

Zheng W., “Automatic Generation of Test Cases

Based on Genetic Algorithm and RBF Neural

Network,” Mobile Information Systems, vol. 2021,

no. 1, pp. 1-9, 2022.

https://doi.org/10.1155/2022/1489063

[24] Mahalakshmi G., Vijayan V., and Antony B.,

“Named Entity Recognition for Automated Test

Case Generation,” The International Arab Journal

of Information Technology, vol. 15, no. 1, pp. 112-

120, 2018.

https://www.iajit.org/PDF/January%202018,%20

No.%201/9172.pdf

[25] Manjarres D., Landa-Torres I., Gil-Lopez S.,

Del Ser J., Bilbao M., Salcedo-Sanz S., and

Geem Z., “A Survey on Applications of the

Harmony Search Algorithm,” Engineering

Applications of Artificial Intelligence, vol. 26,

no. 8, pp. 1818-1831, 2013.

https://doi.org/10.1016/j.engappai.2013.05.008

[26] Muazu A. and Maiwada U., “PWiseHA: Harmony

Search Algorithm for Test Suites Generation using

Pairwise Techniques,” International Journal of

Computer and Information Technology, vol. 9, no.

4, pp. 91-98, 2020.

https://doi.org/10.24203/ijcit.v9i4.23

[27] Mulgrew B., “Applying Radial Basis Functions,”

IEEE Signal Processing Magazine, vol. 13, no. 2,

pp. 50-65, 1996.

https://doi.org/10.1109/79.487041

[28] Musavi M., Ahmed W., Chan K., Faris K., and

Hummels D., “On the Training of Radial Basis

Function Classifiers,” Neural Networks, vol. 5, no.

4, pp. 595-603, 1992.

https://www.sciencedirect.com/science/article/ab

s/pii/S0893608005800383

[29] Pontes F., Amorim G., Balestrassi P., Paiva A.,

and Ferreira J., “Design of Experiments and

Focused Grid Search for Neural Network

Parameter Optimization,” Neurocomputing, vol.

186, pp. 22-34, 2016.

https://doi.org/10.1016/j.neucom.2015.12.061

[30] Pradhan S., Ray M., and Swain S., “Transition

Coverage-Based Test Case Generation from State

Chart Diagram,” Journal of King Saud University-

Computer and Information Sciences, vol. 34, no.

3, pp. 993-1002, 2022.

https://doi.org/10.1016/j.jksuci.2019.05.005

[31] Qin F., Zain A., and Zhou K., “Harmony Search

Algorithm and Related Variants: A Systematic

Review,” Swarm and Evolutionary Computation,

vol. 74, pp. 101126, 2022.

https://doi.org/10.1016/j.swevo.2022.101126

[32] Schwenker F., Kestler H., and Palm G., “Three

Learning Phases for Radial-Basis-Function

Networks,” Neural Networks, vol. 14, no. 4-5, pp.

439-458, 2001. https://doi.org/10.1016/S0893-

6080(01)00027-2

[33] Solanki K., Singh Y., and Dalal S., “Experimental

Analysis of m-ACO Technique for Regression

Testing,” Indian Journal of Science and

Technology, vol. 9, no. 30, pp. 1-7, 2016.

DOI:10.17485/ijst/2016/v9i30/86588

[34] Su Q., Cai G., Hu Z., and Yang X., “Test Case

Generation Using Improved Differential

Evolution Algorithms with Novel Hypercube-

Based Learning Strategies,” Engineering

Applications of Artificial Intelligence, vol. 112,

pp. 104840, 2022.

https://doi.org/10.1016/j.engappai.2022.104840

[35] Sulaiman R., Jawawi D., and Halim S., “Cost-

Effective Test Case Generation with the Hyper-

Heuristic for Software Product Line Testing,”

Advances in Engineering Software, vol. 175, pp.

103335, 2023.

https://doi.org/10.1016/j.advengsoft.2022.103335

[36] Sun C., Liu B., Fu A., Liu Y., and Liu H., “Path-

Directed Source Test Case Generation and

Prioritization in Metamorphic Testing,” Journal

of Systems and Software, vol. 183, pp. 111091,

2022. https://doi.org/10.1016/j.jss.2021.111091

[37] Zhang M., Ali S., and Yue T., “Uncertainty-Wise

Test Case Generation and Minimization for

Cyber-Physical Systems,” Journal of Systems and

Software, vol. 153, pp. 1-21, 2019.

https://doi.org/10.1016/j.jss.2019.03.011

Hemant Kumar received MCA

degree from Subharti University in

the year 2018 and presently pursuing

a Ph.D. programme in Computer

Science from Babasaheb Bhimrao

Ambedkar University, Lucknow. He

has published several research

articles in the field of Software Testing and Machine

Learning. His research interests are Software

Engineering, Artificial Intelligence, Machine Learning,

and Cyber Security.

Vipin Saxena received his Ph.D.

degree from Indian Institute of

Technology, Roorkee, Uttarakhand,

India. Presently, he is working as a

Professor in the Department of

Computer Science, at Babasaheb

Bhimrao Ambedkar University,

Lucknow, India. He has 30 years of teaching and 33

years of research experience and published more than

250 research articles in International and National

Journals and Conferences, authored 05 books in the

field of Computer Science and Scientific Computing,

attended 62 International and National Conferences, and

received three National Awards for meritorious research

work in the field of Computer Science.

https://onlinelibrary.wiley.com/authored-by/Zheng/Weihua
https://doi.org/10.1155/2022/1489063
https://www.iajit.org/PDF/January%202018,%20No.%201/9172.pdf
https://www.iajit.org/PDF/January%202018,%20No.%201/9172.pdf
https://doi.org/10.1016/j.engappai.2013.05.008
https://doi.org/10.24203/ijcit.v9i4.23
https://doi.org/10.1109/79.487041
https://www.sciencedirect.com/science/article/abs/pii/S0893608005800383
https://www.sciencedirect.com/science/article/abs/pii/S0893608005800383
https://doi.org/10.1016/j.neucom.2015.12.061
https://doi.org/10.1016/j.jksuci.2019.05.005
https://doi.org/10.1016/j.swevo.2022.101126
https://doi.org/10.1016/S0893-6080(01)00027-2
https://doi.org/10.1016/S0893-6080(01)00027-2
https://doi.org/10.1016/j.engappai.2022.104840
https://doi.org/10.1016/j.advengsoft.2022.103335
https://doi.org/10.1016/j.jss.2021.111091
https://doi.org/10.1016/j.jss.2019.03.011

