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Abstract: Software testing is one of the integral activities during development of software products. Generation and selection 

of the test cases either in static or dynamic form play pivot role for ensuring the quality of software products. There are numerous 

approaches in the literature for automatic generation of test cases but coverage criteria and fault detection rate are prominent 

metrics for checking the effectiveness of the software products during testing phase of software development. In the present, a 

new Harmony Radial Testing (HRT) is proposed by combining the concepts of Harmony Search Algorithm (HSA) and Radial 

Basis Function-Neural Network (RBF-NN) approaches. The main objective of the proposed HRT method is to generate automatic 

test cases by considering the criteria of branch coverage with improvement in the Maximum branch Coverage (MaxC), Average 

Coverage (AC) and Average Percentage Fault Detection (APFD) rates. The proposed approach combined with the Radial Basis 

Function (RBF), denoted as a HRT approach. The proposed approach is used to optimize harmony search over the randomly 

selected sample test cases, training the RBF-NN to simulate the fitness function. Seven Python codes have been tested through 

proposed approach and computed results are compared with Primal-Dual Genetic Algorithm (PDGA), Simple Genetic 

Algorithm (SGA) and random methods. It is observed that the proposed HRT algorithm optimizes consistently yielded reliable 

results, which may be used in future for enriching the software testing process by the software industries. 
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1. Introduction 

Through the effective software testing strategies, 

software development team may lead to produce the 

high quality of the software products in the optimized 

time frame assigned by the project leader during the 

testing phase. Software testing is a vital activity for 

ensuring the reliability and as well as for the correctness 

of the complex software code. There are numerous 

kinds of the software testing strategies like analytical, 

model-driven, methodological, regression and many 

more which consume test cases for evaluating the 

performance of the software code. For different kinds of 

testing strategies, automatic generation of the effective 

test cases is a challenging talks and it is necessary to 

execute the code for producing the results in the 

optimized time. In the present work, the challenges like 

coverage criteria and early fault detection of code are 

considered by combining the Harmony Search Method 

(HSM) alongwith Radial Basis Function-Neural 

Network (RBF-NN) in the hybrid form and a new 

algorithm Harmony Radial Testing (HRT) is 

investigated for generation of the effective test cases. 

The aim of the proposed algorithm is not only to 

streamline the test cases generation but also to enhance 

the diversity and efficacy of the generated test cases. 

Let us introduce a word ‘Harmony’ which contents 

of the chords, played alongwith melody. It was 

investigated in the year 1902 and elements of harmony  

 
are well described in [2]. On the basis of elements of 

harmony, a search algorithm was proposed in the year 

2001 and research work was published in the year 2016 

[12]. It was based on the random search, rules were 

based on the Harmony Memory (HM) and pitch was 

adjusting the operators. Later, it became as the heuristic 

optimization technique which strikes a balance between 

exploration and exploitation and finally adopted in 

observing the complexities of the software systems. On 

the other hand Radial Basis Function is a real valued 

function which was first reported in the literature in the 

year 1988 [4]. The real values depend on the difference 

between the inputs and some fixed points [16]. 

In the present work, HAS is complemented through 

the capabilities of RBF-NN approach for generation of 

quality test cases based on the learned patterns, further 

refining the search for the solution, reflective of desired 

program’s behavior. The proposed methodology is 

encapsulated in the form of system model for new HRT 

approach as shown in Figure 1. 

The model seeks to optimized test coverage, ensuring 

through testing of critical aspects of program 

functionality. The approach is considered as hybrid 

approach which begins by initializing the environment 

of the target code. A grid of potential solutions is 

generated and RBF-NN is trained to assess the fitness 

function. Thereafter, HAS optimizes the test cases in the 

iterative manner for the target code which shows the 
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efficacy of the proposed approach for generation of 

effective test cases. Section 2 describes overview of the 

proposed approach, section 3 describes formation of 

HRT, section 4 describes results and discussion while 

last section 5 describes conclusions and future direction 

for further use of HRT hybrid algorithm. 

 

 

Figure 1. A system model for HRT. 

2. Overview 

The generation of test cases even for the small software 

code is a very complex activity and generated test cases 

must be optimized for ensuring the highly reliable 

software system. It is observed from the recent research 

that the generation of test cases based on branch 

coverage forms a foundation of the presented approach. 

Let us first describe the test case in the next sub-section. 

2.1. Test Case 

It is well explained as inputs to be used to produce 

expected outcomes. This term was first coined in the 

literature in the year 1896 through Plessy v. Ferguson 

legal case. Later on, this terminology was first used in 

the software testing in the year 1957 by Charles Baker 

[11]. Later on, this concept is used by many researchers 

and scientists for the testing of the software code and for 

ensuring the quality of the software code. There are two 

categories of test cases, one is certainty of test cases and 

another is uncertainty of test cases and both categories 

are covered under automatic generation of test cases. 

Further prioritization of test cases is another important 

activity during software testing and which saves the 

time of testing. It is done especially for uncertainty of 

the test cases [37]. The process of prioritization of test 

cases contains initial analysis to identify the variables 

based on the software code. The systematic generation 

of a diverse set of test cases spanned a wide spectrum of 

scenario. Mahalakshmi et al. [24] introduced a method 

for test case generation using named entity recognition. 

The approach focused on automating the identification 

of key entities within use cases, which were then used 

to create a scenario matrix for generating test cases. The 

named entity recognition system, trained on features 

extracted from use cases, enhanced the efficiency of test 

case generation, reducing the need for manual tagging 

and minimizing errors. The method was domain-

independent and adaptable, offering a streamlined 

process for early-stage testing in software development. 

From time to time, different approaches of software 

testing were appeared in the literature, but for sake of 

completeness of the proposed approach, only related 

software testing approaches are described below in 

brief. 

2.1.1. Data-Flow Oriented Testing 

It is based upon the theory of control flow and used to 

detect illogical variables that interrupt flow of data for 

producing the correct output. Therefore, anomalies in 

the flow of data among the various modules of the 

software code may be detected. For example, if 

variables are used without correct declaration of the 

variables then errors among the modules associated with 

flow of data may be detected. Further paths within the 

software code may be checked for correct flow of data 

via execution of various paths over the test cases, hence 

also called as path-oriented testing. Ji et al. [19] 

proposed this methodology for generation of test cases 

which involved leveraging neural networks for 

enhancing the testing efficiency and coverage criteria 

within the data-flow oriented scenario. Bao et al. [3] 

generated path-oriented test cases based on adaptive 

genetic control and applied over the six industrial 

software codes and found that the novel approach 

enhances the quality of software products. Lin and Yeh 

[22] also generated automatic test cases through path 

testing using the concept of Genetic Algorithm (GA). A 

concept of Harmony distance used for generation of 

effective test cases which produces highly reliable 

software products. Su el al. [34] also emphasized 

search-based algorithm, addressing the search-based 

algorithm, addressing the crucial problem of Path 

Coverage (PC) in the Automatic Test Case Generation 

(ATCG) by introducing Hypercube-based Learning 

(HBL) and Tailored Hypercube Based Learning 

(THBL) which are employed hypercube through an 

opposition based learning strategy. Experimental 

research demonstrated the higher PC with fewer test 

cases and optimized running time. 
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2.1.2. Metamorphic Testing 

It is a property based testing strategy for generation of 

test cases with addressing test oracles which are written 

for determining the expected results over selected test 

cases to check whether the output based on test oracle is 

matching with the output generated through test case. 

On this ground, Chen et al. [6] presented a pioneer 

metamorphic testing approach with main aim to 

generate subsequent test cases through metamorphic 

relations. It is an inventive strategy for systematic 

derivation of new test cases, thereby making substantive 

combination to the progression of software testing 

techniques. Sun et al. [36] have explored this testing 

approach to construct follow-up test cases from existing 

source test cases which are generated associated path 

constraints symbolic execution. The path distance 

among test cases guided the prioritization of source test 

cases, hence enhancing the efficiency of the software 

products. 

2.1.3. Regression Testing 

It is a type of testing which works over the functional 

test cases and misbehaves over the nonfunctional test 

cases. In this testing, software code is slightly modified 

and checking over the generated test cases whether the 

code is giving the expected outcome or not. Solanki et 

al. [33] produces experimental analysis for Ant Colony 

Optimization (ACO) through regression testing 

approach. Test cases are prioritized against Meta 

heuristic techniques and improves sources of the quality 

and diversity of the food. 

2.1.4. State Based Testing 

It is type of testing which works on the transition of the 

states and one state is treated as a module of the software 

and tested over the test cases which flow from one state 

to another state. In this reference, Pradhan et al. [30] 

proposed an algorithm for state-based test case 

generation from diverse coverage criteria, by 

transforming state chart diagrams into a State Chart 

Intermediate Graph (SCIG). The study introduced 

efficient algorithms for Round Trip Path (RTP) and All 

Transition Pair (ATP) criteria, showcasing insights from 

case studies on Stack Operation and Vending Machine 

Automation (SOVMA) systems. Experimental findings 

revealed ATP challenges, resource consumption in All 

Transition (AT), and RTP’s efficiency in addressing 

transition explosion, contributing insights to semi-HBL 

in Model-Based Testing (MBT). 

2.1.5. Fuzzy Testing 

It is a dynamic testing approach and investigated by 

Barton Miller in the year 1980. It considers coverage 

criteria and behavior aspect of software code and it is 

much faster for uncovering the bugs for automatic 

generation of the test cases. Hasan et al. [15] reviewed 

research work on software testing, considered various 

approaches of testing and observed that the fuzzy logic 

enhanced software quality using operational profiles, 

while fault propagation path design predicted the 

defects during testing. ATCG reduced required tests for 

large software programs. The entire review offers 

valuable insights into diverse test cases generation 

methods and input on software performance, 

contributing to a nuanced uncertainty of effective 

strategies in the Software Development Life Cycle 

(SDLC). 

2.1.6. Hybrid Testing 

It is a combination of two or more than two testing 

approaches. Lakshminarayana and SureshKumar [20] 

introduced a hybrid approach based on fitness function 

for optimizing the software test cases. The computed 

results are compared with Particle Swarm Optimization 

(PSO), Cuckoo Search (CS), Bee Colony Algorithm 

(BCA), and Firefly Algorithm (FA) and achieving 65% 

of success rate. The application is performed over 

Automated Teller Machine (ATM) which outperforms 

over the above mentioned algorithms and completes 

ATM withdrawal operations in just 16.4 seconds, 

thereby suggesting the approach for applicability in the 

software testing, especially for banking industries. 

Sulaiman et al. [35] focused on the increasing 

implementation of optimization algorithms for test case 

generation in MBT for Software Product Line (SPL). 

The demand for optimal test case results with a balanced 

trade-off between cost and effectiveness motivated 

hyper-heuristic test case generation approach in MBT 

for SPL, termed Improvement Selection Rules-

Modified Choice Function (ISR-MCF) which 

incorporated three search operators like Non-

Dominated Sorting Genetic Algorithm 2 with Low-

Level Heuristic (NSGA-2-LLH), Strength Pareto 

Evolutionary with 2 Low-Level Heuristic (SPEA-2-

LLH), and Particle Swarm Optimization with Low-

Level Heuristic (PSO-LLH). The evaluation, conducted 

on a test model, demonstrated that ISR-MCF with 

NSGA-2-LLH outperformed existing rules in terms of 

minimization measures (test suite size and execution 

time) and maximization measures (coverage criteria). 

De Santiago Junior et al. [8] introduced the “many-

objective perspective” to enhance Graphical User 

Interface (GUI) test cases generation, combining 

search-based optimization with MBT. Meta and hyper-

heuristics were employed for both code-driven and use 

case-driven GUI testing, translating C++ source code 

into Event Flow Graphs (EFG) and creating EFG’s 

directly via use cases. The evaluation included 32 

problem instances, assessing three multi-objective 

evolutionary algorithms and six selection hyper-

heuristics. Authors measured performance through five 

indicators and a new Multi-Metric Indicator (MMI), 

highlighted the superior performance of meta-



Effective Test Cases Generation with Harmony Search and RBF Neural Network                                                                    789 

heuristics, especially Non-dominated Sorting Genetic 

Algorithm (NSGA)-2, with the choice function hyper-

heuristic proving the most effective. 

2.2. Tools and Models for Testing 

For testing the software, technologists also developed 

testing tools from time to time. One of such tools is the 

Detection and Refactoring Tool (DaRT) which is used 

to address redundant test cases generation in the SDLC 

by identifying and refactoring the code in small-lazy 

classes, small methods and duplicate classes [17]. The 

above tool has android based application whose main 

aim is to reduce test case generator redundancy through 

structure and modifications without affecting external 

functionality. The tool has a notable 28% reduction in 

the generated test cases and upto 5% improvement in 

branch coverage. Clark et al. [7] also examined the role 

of agent-based models in simulating complex 

phenomena and supporting decisions, despite potential 

consequences from software faults. Positing five 

research questions addressed the key aspects of test case 

generation in agent-based models. From an initial search 

yielding 464 results, the study identified 24 primary 

publications, utilizing taxonomy to summarize 

advanced techniques for test cases generation. Results 

indicated that, while many techniques effectively tested 

functional requirements at agent and integration levels, 

few addressed society-level behaviour, and most did not 

encompass non-functional requirements or “soft goals”.  

2.3. Grid Search 

Grid search is a systematic method used for exploring a 

specified input space by generating a grid of potential 

solutions and evaluating each one to find the optimal or 

near-optimal solutions. The process is particularly 

useful in scenarios where the input space is continuous 

and multidimensional, and it can be applied to various 

optimization problems, including hyper-parameters 

tuning in machine learning models. It consists of the 

following steps: 

Step 1. Define input ranges and grid resolution. 

a) There are ranges of values for each feature or 

dimension in the input space. For example, if we have 

two features, then ranges might be (0,1000) (0,1000) 

for both. 

b) The grid resolution is the number of evenly spaced 

values to generate within each input range. A higher 

resolution means more values and a finer grid. 

Step 2. Generate values for each dimension. 

Using a function like numpy. linspace, generate evenly 

spaced values within each defined input range. For 

example: 

 For a range of (0, 1000) (0, 1000) with a resolution 

of 20, the values might be [0, 52.63, 105.26, …, 

947.37, 1000][0, 52.63, 105.26, …, 947.37, 1000]. 

Step 3. Generate the Cartesian product. 

 The Cartesian product of the lists of values from each 

dimension is computed to create all possible 

combinations of the values across dimensions. This 

results in a comprehensive set of grid solutions that 

cover the entire input space. 

Step 4. Evaluate each solution. 

 Each point in the generated grid is evaluated using a 

target function (e.g., the Greatest Common Divisor 

(GCD) function in this case). The evaluation results 

are then adjusted for normalization and scoring using 

a specified criterion, such as a power function to 

compute a coverage score. 

Hence, grid search is a kind of process of the search for 

selection of the certainty of the test cases and generally 

the approach of search has vast application in the 

machine learning. On the basis of above, a grid search 

is shown below in the Figure 2. 

  

Figure 2. Grid search under HRT. 

In this reference, Pontes et al. [29] conducted a 

literature review and proposed an optimized Multi-

Layer Perceptron (MLP) network for predicting 

Average Surface Roughness (ASR) in machining 

processes. The tuning algorithm, incorporating Design 

Of Experiments (DOE) techniques, significantly 

reduced roughness prediction errors, providing an 

effective method for systematically designing Artificial 

Neural Network (ANN) models. The concept is applied 

to two machining processes, the method identified 

network topologies with substantial reductions in 

training and testing, resulting in an 82.3% and 71.5% 

reduction in prediction error compared to original ANN 
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models and a 9.7% and 46.3% reduction compared to 

ANNs optimized by a computational tool. The results 

demonstrated a significant reduction in the dispersion of 

prediction errors as compared to networks proposed by 

case studies and a computer package. Liashchynskyi 

and Liashchynskyi [21] compared three widely used 

algorithms for hyper-parameter i.e. optimization-grid 

search, random search, and GA-specifically focusing on 

application in Neural Architecture Search (NAS). The 

primary objective was to use the algorithms for 

constructing a convolutional neural network, and the 

experimental evaluation was carried out on the 

Canadian Institute For Advanced Research (CIFAR-10) 

dataset. The comparison was based on the execution 

time of the algorithms and the accuracy of the resulting 

models, providing insights into the performance 

differences among the approaches. The findings and 

analyses contributed to the understanding of the 

effectiveness of the hyper-parameter optimization 

algorithms in the context of NAS. 

2.4. Radial Basis Function (RBF) 

It is a mathematical function which takes real valued 

inputs and produces real valued outputs by considering 

the distance of real valued inputs from some fixed points 

as shown in the Figure 3 [9]. 

 

Figure 3. A concept of RBF_NN. 

On the basis of definition of RBF, networks are 

designed using RBF which are known as RBF-NN. 

Scientists and researchers used the concept of RBF in 

the field of neural networks. Let us describe some of the 

important references. Musavi et al. [28] employed the 

RBF technique for training RBF classifiers, addressing 

objectives related to efficient clustering and 

determining kernel function widths. The study outlined 

techniques and conducted empirical tests, confirming 

the effectiveness of the proposed approach in terms of 

processing speed and scalability for nonlinear patterns. 

The research provided valuable insights for enhancing 

RBF efficiency in interpolation and classification, 

offering solutions for improved performance in diverse 

applications. Further, Mulgrew [27] investigated the 

application of neural networks, specifically general and 

radial basis functions, with an emphasis on adaptive 

equalization and interference rejection problems. The 

article deliberated on the utilization of neural-network-

based algorithms, aiming to strike a balance between 

performance and complexity in the domain of adaptive 

equalization. The study encompassed a thorough 

examination of the application of radial basis functions 

to address challenges associated with adaptive 

equalization and interference rejection. The results 

underscored the effectiveness of neural-network-based 

algorithms, particularly in achieving a favourable trade-

off between performance and complexity within the 

realm of adaptive equalization. Buhmann [5] undertook 

an exhaustive examination of RBF methods, 

highlighting the modern applications for approximating 

multivariate functions, especially in situations where 

grid data is unavailable. Buhmann [5] focused on 

current survey of recent advancements, explicating the 

theoretical underpinnings of RBF techniques and 

introducing novel categories of RBF’s. Particular 

emphasis is placed on recent discoveries concerning 

convergence rates in RBF-based interpolation, progress 

in approximations on spheres, and the efficient 

numerical computation of inter-polants for large 

datasets. Schwenker et al. [32] investigated learning 

algorithms for RBF networks, categorizing RBF 

training into one, two, and three-phase schemes. Two 

phases RBF learning involves initially training the RBF 

layer, adjusting centers and scaling parameters, 

followed by adapting output layer weights. Numerical 

experiments demonstrated enhanced performance of 

RBF classifiers through a third back propagation-like 

training phase, termed three-phase learning, allowing 

the use of unlabeled training data. Support Vector (SV) 

learning in RBF networks, a distinct approach, 

represents a specialized form of one-phase learning. 

Numerical experiments comparing classifiers showed 

superior performance of RBF classifiers trained through 

SV and three-phase learning over two-phase learning. 

Liu et al. [23] used the concept of RBF for generation 

of test cases through GA. 

2.5. Harmony Search 

This kind of the search is used for finding the exact or 

approximate solution of the problem which is inspired 

by the music and called as meta-heuristic approach of 

searching the optimized solution. In the present work, 

this approach is used for efficient generation of 

automatic test cases which shall be used for enhancing 

the productivity and reliability of the software projects. 

A concept of HS is shown below in the Figure 4 [25]. 
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Figure 4. A concept of harmony search. 

The details of the Harmony Search Algorithm (HSA) 

shall be discussed in the subsequent section; however 

some of the important references are added for clarity of 

the algorithm. Geem et al. [12] explored various 

optimization algorithms to solve problems in different 

fields. Traditional techniques, such as Linear 

Programming (LP), Non-Linear Programming (NLP), 

and Dynamic Programming (DP), played significant 

roles, but the limitations led to the exploration of 

heuristic optimization approaches like simulated 

annealing, tabu search, and evolutionary algorithms. 

The study introduced harmony search, a novel heuristic 

algorithm inspired by the improvisation of music 

players. The algorithm’s performance was 

demonstrated through applications to a traveling 

salesman problem and a least-cost pipe network design 

problem, highlighting its effectiveness in addressing 

optimization challenges. The study contributed to the 

broader understanding of heuristic optimization 

algorithms and provided insights into the potential of 

new approaches like harmony search. Dubey et al. [10] 

systematically reviewed the HSA, a recently developed 

meta-heuristic known for its efficient optimization 

across diverse real-life problems. The paper provided a 

comprehensive overview of HSM, covering its natural 

inspiration, conceptual framework, control parameters, 

and mathematical foundations. It explored HSM’s 

improvement and hybridization with other meta-

heuristics, emphasizing its broad applicability in 

engineering, networking, scheduling, classification, 

bioinformatics, and more. The study also analyzed HSM 

variants, including binary, chaotic, multi-objective, and 

hybridized versions, highlighting the strengths and 

weaknesses. The findings are based on an analysis of 

over 100 papers, underscored HSM’s adaptability and 

robustness. The conclusion discussed the future 

research directions, focusing on HSM’s potential 

through parameter adjustments and hybridization with 

different algorithms.  

Further, Qin et al. [31] conducted a systematic 

review on the HSA and its variants, a novel meta-

heuristic inspired by musicians’ adjustments. The study 

covered the basic principle, impact of improvements, 

and characteristics of different HS variants, analysing 

the applications. Approximately 100 papers were 

reviewed, revealing a focus on parameter enhancement 

and integration with other meta-heuristic algorithms for 

HS improvements. The primary application domain was 

engineering optimization and authors emphasized the 

algorithm’s growing real-world applications. Ghiduk 

and Alharbi [14] also reviewed search-based algorithms 

in software engineering, focusing on comparing GAs 

and HSM for test data generation. The study assessed 

the efficiency in terms of time performance, 

significance of generated test data, and adequacy for 

testing criteria. Results showed that HSM’s significant 

speed advantage over GAs, supported by t-Test 

analysis. Jalila and Mala [18] conducted a literature 

review on early-stage software testing, emphasizing the 

need for techniques enabling automated test case 

generation in initial software development phases and 

proposed a framework using formal specifications in 

Object Constraint Language (OCL) for automated test 

data generation, featuring a novel fitness function, Exit-

Predicate-Wise Branch Coverage (EPWBC), and 

employing the HSA to optimize the test case generation 

process. Experimental results demonstrated the 

framework’s superiority over other OCL-based test case 

generation techniques, showcasing the effectiveness of 

OCL-based testing with the HS algorithm in achieving 

extensive test coverage and an optimal test suite for 

improved system quality. Muazu and Maiwada [26] 

conducted a literature review on pairwise testing, an 

approach that tests all possible combinations of 

parameter values to achieve comprehensive coverage. 

The optimization of generating efficient test suites with 

minimal size is treated as a search problem, and the 

HSA is applied to address it. The research introduced 

PWiseHA, a pair-wise software testing tool developed 

with an optimization focus using the HSA. Results from 

PWiseHA demonstrated competitive performance 

compared to existing pairwise testing tools. Alsewari et 

al. [1] conducted a literature review on combinatorial 

test case generation strategies, specifically focusing on 

t-way testing strategies. The paper introduced a novel 
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approach, the General T-way Harmony Search-based 

Strategy (GTHS), utilizing the HSA to generate test 

lists. The chosen algorithm aimed to balance 

intensification and diversification. Experimental results, 

benchmarking GTHS against existing optimization-

based strategies, demonstrated competitive 

performance, and particularly supporting high 

combination degrees (t≤12). Ghiduk and Alharbi [13] 

investigated the performance of GA’s and HS 

algorithms in test data generation, comparing the ability 

and speed. The study empirically compared HSA and 

GAs, assessing time performance, significance of 

generated test data, and adequacy to satisfy a given 

testing criterion. Results indicated that HSA was 

significantly faster than GA’s, supported by a p-value of 

0.026, while no significant difference was observed in 

generating adequate test data, with a p-value of 0.25. 

The findings contributed to understanding the 

comparative efficiency of HSA and GAs in the test data 

generation process. 

2.6. Research Gaps 

On the basis of exhaustive literature survey, it is 

observed that different combinations of existing testing 

approaches in hybrid form may produce better outcome 

in the optimized time frame and generation of the 

effective test cases via HSM with RBF-NN is still 

missing in the literature. The type of hybrid approach is 

used for automatic generation of test cases by 

combining the concepts of HS with RBF-NN, called as 

the HRT approach. The proposed work has the 

following key contributions: 

a) HSA integration: integration of the HSA introduces 

an adaptive and balanced approach to automated test 

case generation, effectively optimizing the input 

space. 

b) RBF-NNs for fitness evaluation: utilization of RBF-

NN for dynamic test case quality evaluation and 

guidance enhances the adaptability and efficacy of 

the HSA. 

c) Dynamic fitness landscape adaptation: the model 

dynamically adapts over multiple iterations, refining 

its strategy based on changing fitness landscapes. 

This dynamic adaptation accommodates evolving 

program complexities. 

d) Testing across diverse program types: demonstrating 

versatility, the model proves effective across various 

program types, ensuring adaptability in diverse 

testing scenarios. 

e) Enhanced test coverage and quality: the combined 

use of harmony search and RBF-NN’s aims to 

enhance test coverage, providing high-quality test 

cases through an iterative refinement process. 

f) Automated optimization of test case generation: the 

model automates test case generation, reducing 

manual effort. Harmony search explores the solution 

space, while RBF-NN’s provides automated 

evaluation, making the testing process more efficient 

and adaptive. 

g) Practical application demonstration: practical 

applications illustrate the model’s efficacy in 

generating test cases covering critical program 

functionality. These applications span mathematical 

algorithms, control flow-intensive functions, and 

complex arithmetic operations. 

3. Methodology 

In this section, the proposed methodology is described 

on the basis of framework given in the figure 1 for the 

automated generation of test cases by integrating HS 

and RBF-NN techniques. The primary objective is to 

methodically traverse the input space of a designated 

program, characterize its intricate behaviour through 

machine learning, and leverage a heuristic search 

algorithm to iteratively enhance the quality of generated 

test cases. 

3.1. Test Generator Initialization 

The followings are considered for initialization of the 

test cases generation: 

 Target Program: a software code, for which test cases 

will be generated, is defined as a target program. In 

the present work, seven Python target programs are 

selected which are frequently used by the researchers 

and scientists however the presented approach shall 

be applicable for other Python scripts.  

 Input Ranges: the ranges which are considered for the 

selected target programs are defined as input ranges. 

This range is varying from one target program to 

another based of the involvement of parameters. 

 Instantiate RBF-NN: an instance of RBF-NN 

provides code uses the MLPRegressor class from 

scikit-learn with specific configurations, such as one 

hidden layer with 10 neurons and logistic activation. 

3.2. Grid Solution and Evaluation 

A set of grid solutions is generated by covering the 

specified input ranges. The algorithm uses the 

numpylinspace function to create evenly spaced values 

within the defined input ranges, resulting in a grid of 

solutions, then evaluated each solution in the generated 

grid using the target program as GCD function. The 

results are adjusted for normalization and scoring, using 

a power function to compute a coverage score. 

In the proposed work, the steps for generating the 

grid solutions are given below: 

Grid_Solution() 

Input 

Feature Ranges: [(0,1000), (0,1000)] 

Grid Resolution: 20 

Output 

Grid Solutions: set of solutions covering the input space 

Begin 
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Initialize Grid Solutions as an empty list 

for each dimension in Feature Ranges do 

values = linspace(dimension[0], dimension[1], Grid Resolution) 

Append values to Grid Solutions alongwith the current 

dimension 

end for 

Generate Cartesian Product of Grid Solutions 

return Cartesian Product as Grid Solutions 

End 

The above Grid_Solution() function generates a set of 

solutions that span the input feature space. It begins by 

defining the input feature ranges from 0 to 1000 for each 

dimension. The grid resolution is set to 20, meaning 

each dimension will be divided into 20 evenly spaced 

points. The function initializes an empty list called Grid 

Solutions. It then iterates over each dimension in the 

feature ranges, using the linspace function to generate 

evenly spaced values between the minimum and 

maximum of each range. These values are appended to 

Grid Solutions for each dimension. Once the values for 

all dimensions are gathered, the function calculates the 

Cartesian product of these values, which results in all 

possible combinations of the grid points across the 

dimensions. The Cartesian product represents the set of 

grid solutions that cover the entire input space. Finally, 

the function returns this Cartesian product as the output. 

3.3. RBF Neural Network Training 

In this activity, the RBF-NN is trained using the 

generated solutions and the corresponding evaluations. 

This step involves for creating a training set with 

features (input solutions) and targets (normalized GCD 

scores) and using it to fit the neural network. The steps 

are summarized below: 

RBF_NN_Train() 

Input 

Program: target program for training 

Population: set of solutions for training 

Output 

RBF-NN: trained neural network 

Begin 

Features = Extract_Features_From_Population(Population) 

Targets = Evaluate_Solutions(Population) 

rbf_nn = Initialize_RBF_NeuralNetwork() 

rbf_nn.Train(Features, Targets) 

End 

The above RBF_NN_Train() function is designed to 

train a Radial Basis Function Neural Network (RBF-

NN) using a set of solutions from a target program. The 

process begins by taking the target program and a 

population of solutions as input. First, the function 

extracts features from the population using 

Extract_Features_From_Population(Population), which 

processes the population to generate relevant input 

features. Next, it evaluates these solutions using 

Evaluate_Solutions(Population) to produce the 

corresponding target values. An RBF Neural Network 

(rbf_nn) is then initialized with 

Initialize_RBF_NeuralNetwork(). The extracted 

features and their corresponding target values are used 

to train the RBF-NN via rbf_nn Train(Features, 

Targets). Once trained, the function outputs the trained 

RBF Neural Network, ready for further tasks. 

3.4. Harmony Search Algorithm 

When RBF-NN is trained then, HSA is applied to 

further refine the test cases. The algorithm initializes a 

memory of solutions, iteratively generates and evaluates 

new solutions, updates the memory based on fitness, and 

adjusts mutation and crossover probabilities. The reason 

for selection of said approach is that it produces faster 

results in comparison of other optimization algorithms 

[13]. 

The steps of HSA are given below: 

Harmony_Search() 

Input 

Program: target program to be tested 

Feature Ranges: [(0,1000), (0,1000)] 

Max Iterations: 100 

Initial_Mutation_Probability: 0.2 

Initial_Crossover_Probability: 0.7 

Output 

Best Solution: optimal solution found by harmony search 

Begin 

Harmony Memory Initialization() 

best_solution = None 

best_score=0 

mutation_prob = Initial_Mutation_Probability 

crossover_prob = Initial_Crossover_Probability 

iteration = 0 

while iteration < Max Iterations do 

new_solution = Generate_Random_Solution_From_Grid() 

Add new_solution to Harmony Memory 

Sort Harmony Memory based on Fitness_Function 

Select Top Solutions from Harmony Memory 

if Fitness Function(new_solution) >best_score then 

best_solution = new_solution 

best_score = Fitness_Function(new_solution) 

end if 

mutation_prob = max(0.01, mutation_prob * 0.95) 

crossover_prob = min(0.9, crossover_prob * 1.05) 

iteration = iteration + 1 

end while 

returnbest_solution 

End 

The above RBF_NN_Train() function is designed to 

train a (RBF-NN) using a set of solutions from a target 

program. The process begins by taking the target 

program and a population of solutions as input. First, the 

function extracts features from the population using 

Extract_Features_From_Population(Population), which 

processes the population to generate relevant input 

features. Next, it evaluates these solutions using 

Evaluate_Solutions(Population) to produce the 

corresponding target values. An RBF Neural Network 

(rbf_nn) is then initialized with 

Initialize_RBF_NeuralNetwork(). The extracted 

features and their corresponding target values are used 

to train the RBF-NN via rbf_nn Train(Features, 

Targets). Once trained, the function outputs the trained 
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RBF Neural Network, ready for further tasks. 

3.5. Harmony Radial Testing 

The concept of RBF-NN is integrated with the harmony 

search and expanded in the form of HRT which is given 

below: 

HRT() 

Input: 

• GCD_function: A function that calculates the Greatest 

Common Divisor (GCD) of two integers. 

Output: 

• A test case (pair of integers) that maximizescoverage score 

for the GCD_function. 

Parameters: 

• feature_ranges: A list of tuples defining the minimum and 

maximum values for each input feature (integer); 

• max_iterations: The maximum number of iterations for the 

HSA; 

• initial_mutation_prob: The initial probability of mutating a 

solution during an iteration; 

• initial_crossover_prob: The initial probability of performing 

crossover between solutions during an iteration; 

• num_iterations (for run_experiment): The number of 

independent experiments to run. 

Algorithm Steps: 

1. Initialization: 

• Define feature ranges for input integers; 

• Create an RBF Neural Network (NN) for fitness 

estimation; 

• Initialize a Harmony Memory (HM) with 5 randomly 

chosen test cases from the defined grid. 

• Set best_solution and best_score to None; 

• Set initial values for mutation_prob and crossover_prob. 

2. Harmony Search Loop (for each iteration): 

• Generate a new random test case; 

• Add the new solution to the HM; 

• Select the top 5 solutions (based on fitness) from the HM 

as the new HM; 

• Update best_solution and best_score if the new solution 

has a higher fitness score; 

• Adjust mutation_prob and crossover_prob using decay 

and amplification factors. 

3. Fitness Function: 

• Use the trained RBF NN to predict the coverage score for 

a given test case. 

4. Training RBF NN (within run_experiment): 

• Generate a set of initial test cases using 

generate_grid_solutions; 

• Train the RBF-NN using the generated test cases and their 

corresponding coverage scores (obtained using 

evaluate_solution). 

5. Run Experiment : 

• Perform multiple independent runs of the HSA; 

• Return a list containing information about the best 

solution found in each run. 

6. Selection and Output: 

• Find the best test case (highest coverage score) across all 

experiment runs. 

• Print details about the chosen test case and its coverage 

score. 

The HRT() function is an optimization algorithm 

designed to find a test case that maximizes the coverage 

score programs such as triangle, GCD, bessel, calday, 

numbers, remainderSth, and Complex, using harmony 

search. function using harmony search. It starts by 

defining the input parameters, including the feature 

ranges for the integer inputs, maximum iterations, initial 

mutation and crossover probabilities, and the number of 

independent experiments to run. The process begins 

with initialization: it defines the feature ranges, creates 

a RBF-NN for fitness estimation, and initializes HM 

with 5 randomly chosen test cases from a predefined 

grid. Both best_solution and best_score are set to none, 

and initial values for mutation and crossover 

probabilities are established. During each iteration of 

the harmony search loop, a new random test case is 

generated and added to the HM. The memory is then 

sorted based on the fitness scores, and the top 5 

solutions are retained. If the new test case has a higher 

fitness score than the current best, it updates the 

best_solution and best_score. Mutation and crossover 

probabilities are adjusted over time to balance 

exploration and exploitation. The fitness function used 

in this process is based on the trained RBF-NN, which 

predicts the coverage score for each test case. Before 

running the main optimization, the RBF-NN is trained 

with a set of initial test cases generated by 

generate_grid_solutions, with their coverage scores 

obtained from evaluating the GCD function. The 

function executes multiple independent runs of the HSA 

(based on num_iterations), recording the best solution 

found in each run. After all experiments, the test case 

with the highest coverage score across all runs is 

selected as the final result, and details of this test case, 

including its coverage score, are printed. This method 

effectively integrates machine learning with 

optimization techniques to ensure comprehensive 

testing of the GCD function. 

3.6. ExperimentalExecution 

In this, a series of experiments is conducted by 

executing the HRT algorithm for a specified number of 

iterations. New solutions are generated in each iteration, 

evaluated using the RBF-NN, and the memory is 

updated to keep the best solutions. 

3.7. Results Analysis 

The results of the experiments are analyzed to identify 

the best-generated test cases. The analysis includes 

computing and comparing coverage scores obtained 

from the HSA. The best test case and its coverage score 

are reported. 

3.8. Evaluation of the Solution 

Individual solutions are evaluated using the target 

program and compute coverage scores. This step is 

essential for both the initial grid solutions and the 
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solutions generated by the HRT algorithm. The 

methodology involves for initializing the test case 

generator with the target program and input ranges, 

generating an initial set of solutions using a grid, 

training an RBF-NN to approximate the program’s 

behavior, and refining the solutions using the HRT 

algorithm. The experiments are conducted to find the 

best test case based on coverage scores, and individual 

solutions are evaluated using the target program. 

4. Results and Discussion 

The HRT algorithm reveals the key parameters which 

are influencing its performance. The population size is 

considered as 50which determine candidate solutions 

per iteration, crucial for comprehensive exploration. A 

larger population enhances thorough search. The 

maximum iterations is considered as 100, influences 

overall runtime by specifying the number of iterations. 

Initial mutation probability is taken as 0.2, introduces 

randomness, aiding effective exploration, while initial 

crossover probability is 0.7, promote feature sharing. 

Collectively, above-mentioned parameters shape the 

behaviour of HSA and efficacy in search and 

optimization tasks. 

4.1. Test Case Generation and Verification of 

Branch Coverage 

In the context of generating branch coverage test cases, 

the experiment utilized seven Python programs to assess 

the viability and efficacy of the test cases generation 

method as proposed in this paper, which leverages the 

HSA and RBF-NN. The Python programs employed in 

this experiment include GCD, triangle, remainderSth, 

and numbers. To elucidate the advantages of the 

proposed test case generation algorithm defined HRT, 

we will compare it against three alternative methods for 

branch coverage test case generation: the adaptive GA 

as Primal-Dual Genetic Algorithm (PDGA), traditional 

GA as Simple Genetic Algorithm (SGA), and random 

test generation method as random. The assessment 

metrics for the experiment encompass the average 

branch coverage rate, Maximum branch Coverage 

(MaxC) rate, and average convergence algebra. It is 

crucial to scrutinize the results to ensure the accuracy 

and reliability of the information provided. The branch 

coverage rate is calculated as in the Equation (1) [23]: 

𝑡 =
𝑛

𝑚
× 100 

where, t symbolizes the branch coverage rate, n denotes 

the count of evaluation results, and m represents the 

aggregate of judgment results. The standardized 

parameters across the four branch coverage test case 

generation methods, dictate a fixed population size of 

50 and a maximum threshold of 100 evolutionary 

iterations. To mitigate the potential impact of stochastic 

variables on experimental outcomes, each method 

undergoes 50 iterations for every program subject to 

analysis. The evaluative metrics for this experiment 

encompass the average branch coverage rate, the MaxC 

rate, and the average convergence algebra. This 

methodological stringency ensures a thorough and 

quantitatively precise assessment of the performance 

attributes and reliability metrics inherent in the methods 

under examination. The average branch coverage rate 

Ac is calculated as in Equation (2) [23]:  

 𝐴𝑐 =
∑ 𝑡𝑛

1 (1,2, … . . , 𝑛)

𝑛
 

where, Ac represents the average branch coverage rate 

and t represents the branch coverage rate of the program 

under test after it is executed in the algorithm. 

MaxC rate is the highest branch coverage rate 

achieved by the program under test after multiple 

executions in an algorithm. The proposed HRT method 

is evaluated using existing techniques such as PDAG 

[3], SGA [22], and the random approach. 

The results from 50 runs of each of the four 

algorithms for the seven tested programs are tabulated 

in the Table 1, presenting both the Average Coverage 

(AC) rate and the MaxC rate. 

The branch coverage rates of the four algorithms are 

used on program p1 GCD are shown in the Table 1. 

Notably, all four algorithms have MaxC of 100%; 

however, the random method is unable to reach an 

average branch coverage rate higher than 80%. For 

program p2 (triangle), the random algorithm fails to 

meet the 80% requirement for branch coverage, whereas 

the HRT based test case generation techniques produce 

a MaxC rate of 100%. 

 
Table 1. Comparison of branch coverage under HRT with existing approaches. 

 Random SGA PDAG HRT 

Programs Ac% MaxC% Ac% MaxC% Ac% MaxC% Ac% MaxC% 

P1 (GCD) 77.50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

P2 (triangle) 55.60 75.36 93.80 100.00 100.00 100.00 100.00 100.00 

P3 (beseel) 52.81 76.19 95.86 100.00 100.00 100.00 100.00 100.00 

P4 (calday) 67.39 91.91 94.27 100.00 100.00 100.00 100.00 100.00 

P5 (remainderSth) 65.89 83.33 94.65 100.00 100.00 100.00 100.00 100.00 

P6 (numbers) 45.68 72.10 90.61 97.43 98.23 100.00 100.00 100.00 

P7 (complex) 48.21 63.27 92.86 92.33 100.00 100.00 100.00 100.00 

 

More specifically, the random method only reaches 

55.60%, whereas the SGA algorithm obtains an 

excellent average branch coverage rate of 93.80%. 

Programs p3, p4, and p5 demonstrate that the PDGA, 

(1) 

(2) 
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SGA, and HRT algorithms get 100% MaxC, while the 

random algorithm obtains 76.19%, 91.91%, and 83.33% 

for the comparable programs. The SGA and Random 

algorithms only achieve 100% branch coverage on the 

maximum levels, only the PDGA and HRT algorithms 

in program p7 achieve 100% branch coverage on both 

the average and maximum levels. The comparison 

demonstrates that the SGA algorithm consistently 

outperforms the Random approach in terms of average 

and MaxC rates. With program p6, the proposed HRT 

technique achieves a remarkable 98.23% average 

branch coverage for the PDGA algorithm, as well as 

100% maximum coverage and average branch 

coverage. When the number of branches reaches a 

certain point, the PDGA algorithm notably becomes 

unstable, while the proposed HRT technique shows 

relative stability. 

 

Figure 5. Comparison of average coverage rate. 

 

Figure 6. Comparison of maximum coverage rate. 

The highlights as shown in the Figures 5 and 6, 

represent the performance of HRT for test case 

generation. The HRT algorithm, which is new to this 

study, is more effective than the other three approaches. 

The software achieves a notable feat of 100% coverage 

in both average and maximum metrics, which are 

derived from the six previously described occurrences. 

This result validates both the technical viability and 

efficacy of the methods described in this research. 

4.2. Average Percentage Fault Detection Rate 

Average Percentage Fault Detection Rate (APFD) is a 

pivotal metric in software testing, quantifies the average 

effectiveness by considering both efficacy and 

efficiency for individual test cases. It evaluates a test 

case’s ability to detect faults and sequencing, optimizing 

testing effectiveness. This aids in prioritizing test cases 

and refining fault detection strategies, providing 

valuable insights for enhancing software testing 

protocols. The APFD is computed using in Equation (3):  

𝐴𝑃𝐹𝐷 = 1 −
𝑇𝑓1 + 𝑇𝑓2 + ⋯ + 𝑇𝑓𝑛

𝑛𝑚
 

where, Tf1, Tf2, …, Tfn denote the fault detection 

positions, representing the sequential order in which 

each fault is identified by the test cases within the test 

suite, n signifies the total number of faults present in the 

system, m represents the total number of test cases 

within the test suites. Table 2 presents an in-depth 

comparative analysis of four optimization algorithms- 

GA, ACO, Bee Colony Optimization (BCO), and HRT 

with a focus on their APFD [33]. 

Table 2. Comparison of APFD under HRT with exiting approaches. 

APFD 

Programs GA ACO BCO HRT 

Triangle 0.88 0.93 0.95 1.0 

GCD - - - 1.0 

Beseel - - - 1.0 

Calday - - - 1.0 

Numbers - - - 1.0 

remainderSth - - - 1.0 

Complex - - - 1.0 

The APFD scores serve as quantitative indicators of 

the algorithms’ efficacy in fault detection within the 

context of software testing. GA exhibited a 

commendable APFD score of 0.88, underscoring its 

robust performance in fault identification. ACO 

surpassed GA, demonstrating a higher APFD score of 

0.93, indicative of a more proficient fault detection 

capability. BCO outperformed both GA and ACO, 

achieving an APFD score of 0.95. However, the HRT 

showcased unparalleled effectiveness by achieving a 

perfect APFD score of 1.0. This exceptional 

performance suggests that HRT, leveraging the HSA in 

conjunction with RBF-NN, excelled in fault detection 

with unparalleled precision and completeness compared 

to its algorithmic counterparts. The incorporation of the 

HSA and the utilization of an RBF-NN in HRT 

contribute to its superior fault detection capabilities, 

making it a compelling choice for optimizing fault 

detection strategies in the realm of software testing. 

4.3. Strengths and Limitations of HRT 

The followings are the strengths of the presented 

approach: 

a) Enhanced Branch Coverage. 

• Focused Testing: the HRT approach is designed to 

address the challenges of branch coverage in 

software testing, ensuring that more branches of 

the software code are tested, leading to more 

(3) 
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thorough testing and detection of potential errors. 

b) Efficiency in Test Case Generation. 

• Automatic Generation: by automating the 

generation of test cases, the HRT approach 

significantly reduces the manual effort and time 

required, which is typically resource-intensive and 

subjective. 

• Optimization: harmony search optimizes the 

selection of test cases by exploring the input space 

more effectively compared to random or less 

sophisticated methods. 

c) Adaptive Learning. 

• RBF-NN: the integration of RBF-NNs allows for 

adaptive learning, which helps in simulating the 

fitness function dynamically. This improves the 

accuracy and relevance of the generated test cases 

based on the evolving software code. 

d) Comparative Performance. 

• Benchmarking: the document provides empirical 

results comparing the HRT approach with other 

methods like PDGA, SGA, and random methods. 

The HRT approach shows superior performance in 

these comparisons, as depicted in the form of 

tables and graphs. 

e) Improved Software Quality. 

• Systematic Coverage: the method ensures 

systematic coverage of the software, contributing 

to higher reliability and correctness of the 

software systems by uncovering defects that might 

be missed by less thorough testing methods. 

The followings are the limitations of the presented 

approach:  

a) Complexity in Implementation. 

• Integration Challenges: combining harmony 

search with RBF-NNs may be complex. 

Implementing this hybrid model requires 

advanced understanding and expertise in both 

heuristic optimization and neural networks. 

• Parameter Tuning: the success of the approach 

heavily relies on appropriate parameter tuning for 

both harmony search and the RBF-NN which can 

be time-consuming and require expert knowledge 

of datasets. 

b) Resource Intensive. 

• High Computational Demand: training the RBF-

NN and running the HSA on large and complex 

datasets can be computationally intensive. This 

might necessitate high-performance computing 

resources, which may not be available in all 

environments. 

• Memory and Processing Power: significant 

memory and processing power are required, which 

could be a limitation for smaller organizations or 

projects with limited computational resources. 

c) Scalability and Adaptability. 

• Scalability Issues: while the approach works well 

for the tested Python codes, its scalability to very 

large and complex software systems is not yet 

fully validated. 

• Adaptability to Different Domains: the approach 

may need customization and adaptation to work 

effectively across different domains and types of 

software, which could limit its general 

applicability. 

d) Empirical Validation. 

• Limited real-world testing: although the document 

presents comparative results, the HRT approach 

requires more extensive empirical validation 

across a wider range of real-world applications to 

establish its robustness and reliability fully. 

• Potential overfitting: there’s a risk that the RBF-

NN might over fit to the specific examples used in 

training, which could limit its effectiveness on 

unseen or significantly different software. 

5. Conclusions and Future Scope 

From the above work, it is concluded that HRT 

algorithm which is the integration of the HSA with 

RBF-NN is a very useful for automatic generation of 

test cases with outstanding performance over the 

software codes. In this work seven software codes, 

consistently achieved 100% for both the maximum 

branch coverage rate and average branch coverage rate. 

In contrast to previous algorithms such as Random, 

SGA, and PDGA, HRT achieved full branch coverage 

and could automatically produce complete test cases. 

Since it is a new approach of testing and outperforming 

over the Python software codes, therefore, it can also be 

applied for the various software codes developed during 

the phases of software development by the software 

industries. The HSA with RBF-NN optimization 

consistently yielded reliable results, demonstrating the 

usefulness of HRT as a tool for enhancing software 

testing processes. The presented technique improved the 

test coverage for the software codes as 100% which was 

not through other algorithms. Strengths and weaknesses 

are also described in the work. The HRT approach offers 

significant benefits, particularly in enhancing branch 

coverage and automating the test case generation 

process, thus improving software reliability and 

efficiency. However, in future, its complexity, resource 

intensity, need for extensive empirical validation, and 

potential issues with scalability and adaptability pose 

challenges that need to be addressed to fully realize its 

potential across diverse software development 

scenarios. 
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