The International Arab Journal of Information Technology, Vol.2, No. 1, January 2005 1

Enhancing Cognitive Aspects of Software
Visualization Using DocL ike M odularized Graph

Shahida Sulaimart, Norbik Bashah Idris?, and Shamsul Sahibuddin®
'Faculty of Computer Science, University Sains Malaysia, Malaysia
2Center for Advanced Software Engineering, University Technology Malaysia, Maaysia
3Faculty of Computer Science and Information System, University Technology Malaysia, Malaysia

Abstract: Understanding an existing software system to trace possible changes involved in a maintenance task can be time
consuming especially if its design document is absence or out-dated. In this case, visualizing the software artefacts graphically
may improve the cognition of the subject system by software maintainers. A number of tools have emerged and they generally
consist of a reverse engineering environment and a viewer to visualize software artefacts such as in the form of graphs. The
tools also grant structural re-documentation of existing software systems but they do not explicitly employ document-like
softwar e visualization in their methods. This paper proposes DocLike Modularized Graph method that represents the software
artefacts of a reverse engineered subject system graphically, module-by-module in a document-like re-documentation
environment. The method is utilized in a prototype tool named DocLike viewer that generates graphical views of a C language
software system par sed by a selected C language par ser. Two experiments wer e conducted to validate how much the proposed
method could improve cognition of a subject system by software maintainers without documentation, in terms of productivity
and quality. Both results deduce that the method has the potential to improve cognitive aspects of software visualization to

support software maintainersin finding sol utions of assigned maintenance tasks.

K eywor ds. Software maintenance, software visualization, program comprehension.

Received July 21, 2003; accepted March 8, 2004

1. Introduction

Visudization for software, or Software Visudization
(SV), isamethod in program comprehension, which
is vital in the costly software maintenance. SV is the
use of interactive computer graphics, typography,
graphic design, animation and cinematography to
enhance interface between the software engineers or
the computer science student and their programs [7].
The objective is to use graphics to enhance the
understanding of a program that has aready been
written.

Computer-Aided Software Engineering (CASE)
workbench in the class of maintenance and reverse
engineering such as CIA [3], Rigi [8, 17], PBS [€]
and SNiFF+ [16] are normaly incorporated with
editor window in which the extracted software
artifacts will be visualized graphicaly besides their
textuad information. These tools aid and optimize
software engineers program comprehenson or
cognitive dtrategies, particularly when there is an
absence of design level documentation that is sill a
major problem in software engineers practice [14].
Existing methods of the tools focus on visudizing the
software artifacts whilst structural re-documentation
as another aspect provided. Nevertheless, they do not
explicitly grant the environment to re-document
software systems via their viewers.

Another type of CASE tool of class andysis and
design such as Rational Rose is aso incorporated with
reverse engineering utility. However it should be
highlighted that this tool focuses more on forward
engineering, while reverse engineering as part of its
utilities. Thus reverse engineering an existing software
system usng this tool without proper forward
engineering will only produce the reationships of
classes that might not be so meaningful to software
maintainer's who are confronted with out-dated or
absence of documentation. Hence such tool is not within
the scope of our work.

This paper proposes DocLike Modularized Graph
(DMG) method employed in DocLike viewer prototype
tool that represents the existing software architectures
grephically in a modularized and sandardized
document-like manner. The discussion and evaluation of
our DMG method in DocLike viewer was based on
Storey’s work [10] tha provides the cognitive
framework to describe and evaluate software exploration
tools, or in our context we refer them as SV tools. The
method was aso empiricaly evauated based on
productivity and quality of program comprehension.

The remainder of the paper is organized as follows.
Sections 2 and 3 briefly discuss DocLike Modularized
Graph method and DoclLike viewer prototype tool,
respectively. The tradeoff issues of the method and the
aspects of visudizing, understanding and re

documenting software systems can be found in our
previous work [15]. Section 4 includes the evauation
conducted, in addition to illustrating the anadlysis and
inferring the findings. Section 5 discusses some
related work. Findly, section 6 draws the conclusion
and future work.

2.DocLikeModularized Graph Method

DMG method employs graph to visudize software
abstraction. A graph G= (V, E) consists of a set of
vertices V and a set of edges E, such that each edge
in E is a connection between a pair of verticesin V
[9]. DMG uses adirected graph described as directed
edge & = (v, V). A vertex in G can be of different
types. Currently DMG only considers the types asin
structured programming, which are symbolized as
module (M), program (P), procedure or function (F)
and data (D).

We provide five types of DMG representations,
defined as the follows:

1. Module decomposition: DMG;, = (V;, E) where the
set V; I M represents al modulesin set M and E;
represents relationship (cals, my,).

Module m description: DMG, = (V;, E) where the
set Vi | P represents al programs of set P
associated to module m and E represents
relationship (cals, pi,) in module m only.
Module mi interface: DMG; = (Vi, Ei) where the
set Vi | F represents al procedures or functions
of set F associated to module mi and Ei represents
relationship (cals, 1, 2) in module mi only.

File Edit Search Help

The International Arab Journal of Information Technology, Vol.2, No.1, January 2005

4. Module mi dependencies. DMG, = (Vi, Ei) where the

set Vi | F represents al procedures or functions of

set F associated to module mi and Ei represents

relaionship (cdls, f1, f2) in module other than mi

including the compiler standard library.

. Module mi data dependencies DMGs = (Vi, Ei)
where the set Vi | F and Vi I D represent all
procedures or functions Fi of set F in program Pi of
module mi and al associated globa data of set D
defined in program P or header file .h, while Ei
represents the use of data (either read or write or both
read and write) by Fi.

3. DocLike Viewer Prototype Tool

DocLike viewer is initidly based on the C language
parser provided by Rigi tool [8]. We filter the software
artifacts extracted by selecting only the required artifacts
that are going to be visudized via DocLike viewer.

DocLike viewer consists of three main panels. Content

Panel, Graph Panel and Description Panel (see Figure 1).

Based on the cognitive framework of Storey [10], the
two mgor elements to describe and evaluate SV tools
such as DocL ike viewer are:

1. Improve program comprehension (enhance bottom-up
comprenenson: E1 to E3, enhance top-down
comprehension;: E4 and E5, integrate bottom-up and
top-down approaches: E6 and E7)

. Reduce the maintainer’ s cognitive overhead (facilitate
navigation: E8 and B9, provide orientation cues. E10
to E12, reduce disorientation: E13 and E14).

=18

Dl=W s [0

I=3 SOFTWARE DESIGN DESCRIPTION
€ 9 1. INTRODUCTION

3 Enter description of this section here.

Description

[} 2. REFERENCES

Panel

Aindex

@ 3 3 DECOMPOSITION DESCRIPTIO|#] AiDachame Intiaize e

@ [3.1 Module decomposition 4 ENEWEIDE
[2.1.1 Module DMSC decorm| 3

[212 odule Libdt decom| |

[2.1.3 Module MMIME decon| |

D 3.1.4 Module SystDoc decol

D 3.2 Concurrent process decom|

[} 2 3 Data decormposition
ﬂ 4. DEPENDENCY DESCRIPTION |
© [4.1 Intermodule dependencies | 3
[4.1.1 odule DMSC depend &

[4.1.2 Module LibAdt depend |

[4.1.3 Module MMIMS depen(4

[4.1.4 Module SystDoc depey 3

D 4 7 Interprocess dependenciss|

€ [4.3 Data dependencies

[4.3.1 Module DMSC data de &

[} 4.3.2 Module LibAdt data def :

[4.3.3 Module MMIME data df |

[4.3.4 Module SystDoc data |

© [5. INTERFACE DESCRIPTION
@ [T 5.1 Module interface 1
[5.1.1 Module DMSC interfac] &

[5.1.2 Module LibAdt interfac| f:

[} 5.1.2 Module MMIMS interfa ;;

[5.1.4 Module SystDoc interr} 3

D 5.2 Process interface B

©- [6. DETAILED DESIGN

Atincexed

farel,
exad\Nur

|Initislize
dce

AtMarker_|nitialize
Aifdarker o=

Graph Panel

eciWiord_Add AtindexedWord_ConvertToChChar Atindexechvord_Corresp —
xechiord o= dindexedidiord = Atirdexedword .o

aord_ConvertToChChar
o=

Atvord_ConvertFromChChar
= ford

urE c

Graph Panel

[D E KN

Sectioh 5.1.2 Module LibAdt interface selected.

Figure 1. DocLike viewer consists of content panel, graph panel and description panel.

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 3

Refer [10] for the details of the activity code E1 to
E14 mentioned above. From Table 1, it is observed
that DocLike viewer does not support any feature for
E4, E11 and E13 activity code. The rest of the
activities are supported a least by one feature in
DocLike viewer.

Table 1. Formulation of criteria to be evaluated based on Storey’s
cognitive framework.

gods derived involving productivity and quality as
shownin Table 2.
2. The questions: the questionnaire had three sections:

- Section A Expertise-related questions that can
determine the expertise of the subjects.

- Section B: Program comprehension
improvement-related questions comprised 6
maintenance task questions that were formulated

N Does DocL ike in such away to simulate a change (corrective or
Criteria (C1toC12) A(‘fé‘r’gy[fo‘;g‘e S\U/ll)?(\)lre{? adaptive) or a new requirement (perfective),
(Y es/NO) which may need different levels of information
C1: Easy to identify affected components | E1, E6, E10 Yes abstraction [13] including system hierarchy view,
C2: Easy to identify dependenciesin a E3.E5 Yes cal graphs and data flow graphs.
= EmOd‘:(')el P —— . Section C: Usefulness-related questions that were
s Y R 9| B3B5 Yes usefulness of the tool used in overal and aso by
C4: Easy to navigate among windows E7,E12 Yes criteria as formulated within the cognitive
C5: Easy to navigate the componentslink| E8 Yes framework (see Table 1). Refer Table 3 for the
C6: Easy to trace back previous navigation E11 No list of questi ons.
cr. Eﬁg&ggg';ﬁdﬁ?&fhm E2 Yes 3. The metrics: The metrics used in our study are
C8: Good tool to assist re-documenting) Yes shownin Table 4.
sysem
C9: Information provided is well organized E14 Yes Table 2. The godl of study.
C10: Graphical information provided is v Goal of Purpose: Analyze | Perspective: with |Perspective: from
sufficient B e Study for the Purpose of Respect to [the Point of View
C11: Textual information provided is Improvement of Programmers
ufficient - Yes Goal progragrﬁ1 _ cognition Programmers
- — ———— comprehension
C12: Search utility provided is efficient E9 Yes Sbgod L Productivity of Frogrammers
Productivit;/ program speedtosolve [Software manager
. comprehension maintenancetasks
4. TheEvaluation Sib-goa 2: | Quality of program | T he correctness of
T trolled : t ducted to s Quality comprehension solution given Softwaremanager
WO C(?n I’O expenmep S were con u, 0 Udy Sib-god 3: | Usefulness of the Programmers’ Pr.
the dgnificance of improvement in software Usefulness | tool and its criteria | needs ogrammers

understanding or program comprehenson. The
selected subjects who mostly had programming
experience studied the subject system using DocLike
Viewer (DV) and they were compared to those using
Rigi (RG) and Microsoft Visua C++ (MV).

4.1. Hypothesisand Goal/ Question/ Metric

As described in section 1, SV has the objective to use
graphics in order to enhance the understanding of a
program that has already been written [7]. A number of
studies applied experiments to measure this factor such
a in [2, 4, 11], which measure program
comprehension by providing a lists of maintenance
tasks to be solved by the selected subjects. Our
experiment used the same variables asin [2, 4]. The
null hypothesis can be described as.

Ho: The DMG method will not significantly improve
program comprehension or softwar e under standing.
Based on the Goa/ Question/ Metric (GQM) paradigm
[1, 5], we indicate the godls, questions and metrics for
the study as the followings:

1. The god: the main goa was to datisticaly analyze
how much the proposed DMG method could
improve program comprehension in order to solve
maintenance tasks. From the main god, two sub-

Table 3. The questions formul ated.

Section A: Expertise-Related Questions.

A1l: Last job before joining Master program e.g. programmer.

A2: Software development or maintenance experience in previous
companies(if any) eg. less1year.

A3: Grade in C language module e.g. grade A.

Section B: Program Comprehension Improvement-Related Questions,

1. System hierarchy view (high level of abstraction).

B1: Which module might have no change if the MMIMS module in GI
system needs to be maintained?

B2: Which program has the highest number of procedures or functions?
2. Cadll graph (low level of abstraction).

B3: List the procedures or functionsin other module that are called by
index_Record not including those from standard library (if any).

B4: What procedure or function calls processWordTolndex?
3. Data flow graph (low level of abstraction).

B5: Which procedure accumul ates the value of data from
AtMarker_Tmarker?

B6: Identify the function that checks whether aword existsin dictionary
or not.

Section C: Usefulness-Related Questions.
C1: Specify the usefulness of the tool provided to understand Gl system.

C2: Specify your opinion on the criteria of the tool. The 12 critaiagiven
shown in Table 1. The evaluation based on Likert scale 1. Srongly|

Disagree, 2. Disagree, 3. Normal, 4. Agree, 5. Strongly Agree.

4 The International Arab Journal of Information Technology, Vol.2, No.1, January 2005

The three tools are the independent variables or
factors whilst the dependent variables are time taken
(T) and number of correct answers (S). The attribute
variables are related to expertise of programmers and
usefulness of tools (see Table 4).

Table 4: The metrics used.

Related to Expertise of Programmers.

M1.1: Last job before doing Master program.

M1.2: Year of experience in software development or maintenance.

M1.3: Grade of C language.

Related to Productivity — Based on Time (T).

M2.1: Time taken to answer each question regardless of correctness
(T1).

M2.2: Time taken to answer each question correctly (T>).

Related to Quality.

M3.1: Score or sum of correct answers (S for question (B1toB6—se
Table 3).

Related to Usefulness of Tool Used.

M4.1: Mean of the usefulness of the tool used in overall (My).

M4.2: Mean of the usefulness of the tool used for each criteria (CLto
C12 — see Table 1) provided (M2).

4.2. Experiment

We chose Rigi, the latest verson available [8] and
Microsoft Visual Ct+ 6.0 programming editor as the
controls of our experiment. Rigi was chosen because it
iS quite a representative tool within the scope of our
study and has the most criteria needed to compare with
our tool. We believed in some ways using program
editors with the search text utility could be sufficient
enough to understand a subject system but in some
ways these tools might not be able to challenge SV
tools. Thus we chose the most unanimous
programming editor Microsoft Visua C++ as another
control of our experiment. Although Visual C# is the
latest technology of Visud.net, the tool is still new and
not widely used compared to its predecessor.

4.2.1. Subjectsand Subject System

The subjects of the first and second experiment
involved 33 and 27 of Master students in Software
Engineering, respectively. Both experiments were
conducted after a Maintenance Module taught. In
conseguence, subjects were exposed with the issuesin
software maintenance including the tools that can
asss datic andlysis during program comprehension
and the concepts of maintenance tasks and ripple
effects.

The subject system used in the experiment was
Generate Index (Gl) system written in C language
consgted of approximately 900 lines of codes (not
including comments). The Gl was a word processing
system that could generate the index of the text file
created and edited by a user. The system was
introduced to the subjects to perform their minor
project assgnment and they also had taken C language
module in the previous semester. Consequently, the
subjects had some ideas of what the system all about
and the C language itsdf. Their previous experience

could diminate our effort to brief on subject system
because they already had some domain and application
knowledge. This enabled us to focus on training the
subjects to use the tools.

4.2.2. Procedures

The subjects were divided into 3 groups consisted of
11 individuds in the first experiment and 9 individuas
in the second experiment. The grouping was
supervised in such a way that al the groups had a
fairly equal level of expertise, which were based on
their previous job (if any), experience in software line
and aso grade in C language module. Each group was
required to use different tool that was DocLike viewer,
Microsoft Visua C++ or Rigi and each group was
identified as DV, MV and RG respectively. All
subjects were briefed for 5to 10 minutes on the use of
the dedicated tool to find solutions for the maintenance
tasks given (see section B in Table 3) without changing
the source codes. For the second experiment, the
subjects were given a brief user manual handout of the
dedicated tool and a better training. They were
provided with stopwatch to indicate the time taken for
each question. They were alowed to answer al
guestions without any time limit. Then they were
required to evauate the tool used by answering section
C (see Table 3).

4.2.3. Possible Threats

There were a few factors that could be possible threats
to our study. The level of expertise might be a threst;
hence we studied subjects experience and expertise
via section A of the questionnaire (see Table 3). When
grouping the subjects we considered all the three
dtributes. last job postion, years of experience in
previous job and grade in C language module. During
the analysis of the two experiments, we tested the
correlation of subjects expertise with time and score.
We found no significant correlation between the
expertise factor and the two dependent variables. Thus
this factor was not a threat.

Another factor could be the leak of questions on
maintenance tasks among the subjects. Due to lack of
computers, the subjects took turns to perform the
experiment. Besides, they were not quarantined and sat
next to each other in the lab. Therefore some subjects
might have some hints from their friends and when
their turn came for the experiment they most probably
had prepared with some answers and cues, which
indirectly could affect the time taken to answer and
correctness of the answers given. We attempted to
eliminate the threat by reminding the tested subjects
not to leak the questions because they were going to be
evauated individudly for 5% assessment of
Maintenance Module taught earlier without informing
them that DocLike viewer was atool of the researcher
to avoid any Hawthorne effect.

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph

There could be a bias on the actua capabilities of
Rigi and Microsoft Visud C++ tools that might have
been hindered during the two experiments. For
example for Rigi, we did rot manage to link the node
clicked with Notepad source codes editor as what Rigi
claimed. Due to time constraint we could not verify the
problem with Rigi developers hence we just trained
RG group to open existing Notepad tool to view the
source codes we attempted to eradicate the threat by
opening Notepad application by the sde of Rigi tool
and opening a program from Gl sysem from the
physica folder. We projected this aternative could
minimize the threat particularly on time factor. But for
the second experiment we managed to overcome the
problem and this matter was not a threat anymore.
Better training was aso provided in the second
experiment.

4.3. Analysis

The analysis of the experiment was based on the
metrics and variables described in Table 4. Using the
first metric of M2.1 that was related to productivity
(see Table 4), we found that the DV group took the
shortest time T, to answer question 1 (128 seconds) but
the longest in 50% of the questions (see Figure 2),
which the results were not so conclusive. Nevertheless
after the speed of DocLike viewer was improved, the
DV group was the fastest in answering al the six
questions in the second experiment (see Figure 3).

We performed Oneway Anova to test the
significance on the time consumed T, by dl the groups
based on a/2 (two-taled) that is 0.025. In the first
experiment, the probability for the phenomena to occur
was only significant for the time taken to answer
guestion 3 with the difference 0.016. We used Post-
Hoc Anova Tukey and LSD to test the significance of
difference among the three groups. Only the pair of the
DV versus RG group had significant time mean
difference to answer question 3 with the value 0.013
(Tukey) and 0.005 (LSD) at the 0.05 level.

7 400 341 337
g 350 331

& 300 68 266

60 =DV

263
§ 250 1 215 101
Q 4 * =MV
g£2007 160 |47 ap 160062 162 .
= 150 {L2gg 137 13‘1 ORG
% 100 1
$ 50
0 T T
1 2

3 4 5 6
Question number

Figure 2. M ean of time taken (regardless of correctness) T in the
first experiment. The asterisk (*) shows the significant mean
difference.

For the second experiment, by using Oneway Anova
test, we found haf of the questions had significant

difference of T, vaue Based on Post-Hoc Anova
Tukey and LSD test, the time taken by the DV group
was dgnificant in question 1, 2 and 5 compared to the
other two groups. For question 1, both pair of DV
versus MV group and pair of DV versus RG group had
significant mean difference of time T, with the vaues
0.023 (Tukey) and 0.009 (LSD); 0.024 (Tukey) and
0.009 (LSD) respectively. For question 2, only the pair
of DV versus RG group had the significant mean
difference of time with the value 0.000 for both tests.
Findly, for question 5, the significant mean difference
was only for the pair of DV and MV group with the
value 0.021 (Tukey) and 0.008 (LSD).

()]
o
o

432

=
o
o

g 400

= abpv
% 300 s 27 254 253 283

I

£ 200 ORG
B

=

*
221 =MV

1 258
209 209 18 178
I * 153 * 149
. 108 109 10 101
49
3 4 6
Figure 3. Mean of time taken (regardless of correctness) T; in the

Question number
second experiment. The asterisk (*) shows the significant mean
difference.

o

1
5

The metric M3.1 that was related to quality (see
Table 4) indicated the sum of score S for each
quedtion. In the first experiment Figure 4 illustrates
that the value of S is the highest by the DV group in
question 1, 4 and 5 (half of the questions). The DV
group scored the least for question 2 and 3. Using the
same test of Oneway Anova, we identified that only
the score for question 2 and 4 were significant ie.
0019 and 0.001 respectively (< 0.025). While
comparing the difference of scores among pairs of
groups at 0.05 level, we discovered that the difference
was dgnificant in question 2 for the DV versus MV
group by 0.016 (Tukey) and 0.006 (LSD). For question
4 we found al the pairs had Sgnificant score
difference DV versus RG by 0.002 (Tukey) and MV
versus RG by 0.008 (Tukey) while 0.001 and 0.003
respectively in LSD test. Comparing Figure 2 and
Figure 4, we discovered that for question 2 and 3, the
RG group took the longest time but the least score.

On the other hand, the results were more
encouraging in the second experiment. Although the
DV group scored the highest in question 4 only, the
rest of the questions were scored well (see Figure 5).
Based on Oneway Anova and Post-Hoc Anova Tukey
and LSD test, we indicated the significant score
difference was in question 4 only for the pair DV
versus RG (0.000 for both tests) and MV versus RG
(0.001 for Tukey and 0.000 for LSD). Regarding the
total of S for the whole six quegtions, in the first

6 The International Arab Journal of Information Technology, Vol.2, No.1, January 2005

experiment it was scored the highest by the MV group
(48 out of 66 i. e. 73%) followed by the DV group
(65%) and the RG group (61%). However, for the
second experiment, the total of S was scored the
highest by the DV group (47 out of 54 i. e. 87%)
followed by the MV goup (81%) and the RG group
(80%).

p 12 o o -
2 19- 10 1 10 1 : 0
S gdlles 8 7 , S| ey
,éé 6 - . 5 *: 54 B MV
8 41 3 ORG
© 24
E A T T T T T
A 0

1 2 3 4 5 6

Quegtion number

Figure 4. Score S in the first experiment. The asterisk (*) indicates
the significant score difference.

450 -
400 1 8
8 350 - S
N 3
& 300 T 279 3 =DV
% 250 7 205 9 MV
£ 200 1 161 o * 17
S 150 s 123 103 || BRC
% 100 A 80
P il

0 :

3

4

Question number

Figure 6. Mean of time taken to answer correctly T, in the first
experiment. The asterisk (*) indicates the significant mean
difference.

500 453

400 1

3007 «

*

265

@DV

R YAY,

=
o

[ee)
1

(<)
1

N
1

*k

Sum of correct answers
N
1

4 5 6
Question number

9
8 8 88 8
7 77

6 6 @DV
[CRVAY,

*
*k DRG

2

O' T T —
1 2 3

Figure 5. Score S in the second experiment. The asterisk (*) shows
the significant score difference.

By measuring using the metric M2.2 related to
productivity, the mean of time T, consumed by DV
group to answer correctly in the first experiment was
the shortest for question 1, 4 and 6 (135, 171 and 80
seconds respectively) compared to the control groups
(see Figure 6). By comparing to the vaues in Figure 2,
we observed that for the first four questions the values
of T, were more than T, but for the last two questions
the values of T, were less than T,. Using Univariate
Analysis of Variance test, we indicated that only the
time taken to answer question 3 correctly had
ggnificant difference for the par of DV and RG
group with the value 0.015 (Tukey) and 0.005 (LSD).

For the second experiment, Figure 7 deduces that
the DV group took dightly longer time to answer
correctly compared to the MV group in question 4.
Thus the DV group did not take the shortest time in all
guestions in order to answer correctly compared to
Figure 3 in which the group took the shortest time for
al questions. However, in overdl the vaues of T, and
T, for the DV group in the second experiment had very
little difference.

Mean of time taken (sec)

o
|

325
236 222 253
221

21. 178
200, . 153,)| « e ORG

- 109 108 101 1
100 1 44

3 4 5 6

Question number

Figure 7. Mean of time taken to answer correctly T, in the second
experiment. The asterisk (*) indicates the significant mean
difference.

For the value of variable M; of metric M4.1,
usefulness of the tools in overdl, Figure 8 depicts that
the DV group gave the most positive opinion towards
the tool in the first and second experiment (4.27 and
4.44 respectively) followed by RG group (4.00) and
MV group (3.45) in the first experiment. However, in
the second experiment, the MV group had more
postive opinion (3.33) compared to the RG group
(3.22). The mean values given were based on Likert
scae:

1. Strongly disagree.

2. Disagree.

3. Normal.

4. Agree.

5. Strongly agree.

Based on the metric M4.2 (see Table 4), Figure 9
portrays that DocLike viewer derived the most positive
opinion or mean vaue M, towards each criterion (C1
to C12) provided by the tool compared to the other two
groups in both experiments. But the MV group gave
more postive opinion towards the criteria in the
second experiment compared to that of the first
experiment. Whereas, the RG group gave more
positive opinion in the first experiment but not that of
second experiment.

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph

4
RG
3.33
4.44

1 2 3 5
Mean

Usefulness of tool (first experiment)
E Usefulness of tool (second experiment)

=

Tool used

o

Figure 8. Usefulness of tool from the perspective of programmers
45

in the first and second experiment.
4 *(/
35
\ /%

25

Mean of opinion towards each criteria

Cl C2 C3 C4 C5 C6 C7 C8 C9 Cl10 Cl1 C12
Criteria of tool

——DV1 —E—MV1 —A&—RG1
—»<—DV2 —K—MV2 RG2

Figure 9. Subjects’ opinion towards criteria of the tool used in the
first and second experiment (indicated as 1 and 2 respectively in
the legend), mean-- values based on Likert scae (see Table 5), see
Table 1 for description of criteria code.

Table 5. The mean values for Figure 10 based on Likert scale (1.
Strongly disagree, 2. Disagree, 3. Normal, 4. Agree, 5. Strongly
agree), see Table 1 for description of criteria code.

CrT"oegl'a’ ci|cz|c3|ca|cs|ce|c7|cs|co |ciofcii|ci2

DV1 [4.18]4.27|4.27|3.55|3.73|3.00|4.00|3.82|3.45|3.36|3.55|3.55
MV1 |2.73]|2.64|2.64|3.45|2.73)|2.36|2.45|2.45|3.00|2.36|3.27|3.27
RGL (3.73(3.09(3.09(3.45(3.09(2.73(3.36(3.18(3.36(2.91(3.36(2.73
DV2 [3.67]4.22|14.11|3.67|3.78|3.22|4.22|4.22|3.33|3.44|3.44|3.67
MV2 [3.67]3.22|3.11|3.67|3.11|3.00|3.11|3.44|3.33|3.33|3.44|3.44|
RG2 13.00(3.33(3.22|2.67(3.00|3.00(3.22|3.44(3.22|2.44(2.78]2.56

4.4. Findings

From the anadysis we observed that in the first
experiment the DV group took longer time to answer
half of the questions regardiess of correctness (T;) and
one-third of the questions with regard to correctness
(T2). However after DocL ike viewer wasimproved, the
speed was much better in the second experiment in
which the DV group took the least time to answer al
the gquestions regardless of correctness (T,) and five of
the six questions with regard to correctness (T,). Better
training aso contributed to the speed of the groups.
Referring back to the goal of the study (see Table 2)

the improved DocLike viewer managed to achieve the
first sub-god that was related to productivity of
program comprehension based on the speed or time
taken to solve maintenance tasks. Thus productivity is
important from the point of view of software managers
towards their programmers peformance. If
productivity can be improved, a maintenance project
most probably needs a shorter time therefore it incurs
lower cost.

In term of quality of program comprehension
indicated as the second sub-goa of this study (see
Table 2), if more correct answers or solutions (S)
given, thus fewer errors occur. Consequently, this will
directly lessen the debugging activities after source
codes have been changed. Although in the firg
experiment the DV group scored the highest in haf of
the questions, the overal score was the highest from
the MV group. Thus by providing better training that
was insufficient in the first experiment, the DV group
managed to have the highest overall score in the
second experiment. Surprisingly, we observed that the
RG group scored significantly less in question 4 (What
procedure or function calls processWordTolndex?) in
both experiments. After checking the view provided by
Rigi for this question, we suspected that the incoming
and outgoing arcs for the concerned node confused the
RG group. Hence with better training delivered in the
second experiment, the quality was improved not only
on the DV group but also the other groups as long as
the tools did not midead the programmers with wrong
solution such as in the case of question 4 answered by
the RG group.

Concerning the null hypothesis described in section
4.1 as the datistical benchmark of this study, DV
group did not manage to totdly rgect the null
hypothesis because not al the values of variables
measured in terms of productivity and quaity of
program comprehenson had dSgnificant difference
compared to the other two groups. However, the group
gave the most positive opinion towards the usefulness
of DocLike viewer in overdl and each criterion
provided. This fact portrays that our tool has the
potentia to enhance understanding or cognition of
software systems viaits DMG method.

5. Related Wor k

There is a number of related wark but we just discuss
some examples only. An example is Rigi [8, 17] that
provides SV in reverse engineering environment that
applies two approaches to present software structures
in its graph editor. The approaches are: 1. multiple,
individud windows 2. fisheye views of nested graphs
cdled SHriMP (Smple Hierarchicd Multi-
Perspective) [10]. While PBS [6] uses the approach of
software landscape and represents the software
abdtractions in web pages. An example of commercial
tool is SNiFF [16] that provides column-by-column

8 The International Arab Journal of Information Technology, Vol.2, No.1, January 2005

view of software artifacts. Some studies evaluated how
SV method used could enhance software understanding
of an existing software system in some aspects such as
programmers cognition strategies [11, 18] or program
comprenenson [2, 4]. Our previous work had
identified the drawbacks and strengths of the graph
methods used by SV tools (Rigi, PBS, SNiFF+ and
Logiscope) [12] and aso a comparative study on the
features and analysis aspects of the four tools [13].
Based on the study we found that most SV methods
used by the tools need user intervention to collapse the
nodes into subsystems after software abstraction
visuaized except for PBS that optionaly alow users to
collapse components prior to generating of views.
Even if source codes parsed are not very large in size,
the graph presented will be quite complicated, with
crossing of arcs except for SNiFF+ (because graph
drawn column-by column). Besides, none of the tools
employ an explicit document-like re-documentation
environment in their SV methods.

Our work differs from existing methods by
improving program comprehenson and reducing
cognitive overhead using DMG method that proposes a
standardized, modularized and document-like SV.

6. Conclusion and Future Wor k

SV can improve cognition of an existing software
system particularly when software engineers are
confronted with out-dated or absence of design
documents. However, current approaches in graph
drawing of SV methods tend to produce overcrowded
or confined graph even if source codes parsed are not
very large and they do not provide better environment
to structural re-documentation of the subject system.
Hence we propose a document-like SV method called
DocLike Modularized Graph that provides graph
representation module-by-module in a document-like
re-documentation environment. We redlized the
method in DocLike viewer tool and conducted two
experiments to evaluate how much our DMG method
can improve program comprehenson in solving
different types of maintenance tasks. Although in some
maintenance tasks DocLike viewer could not
ggnificantly improve productivity and quality,
generdly programmers who used Doclike viewer
could find solutions of maintenance tasks much faster
thus enhancing the productivity and they could obtain
more correct solutions or fewer errors thus enhancing
the qudity. On the other hand, the most postive
opinions given by the users towards the usefulness of
DocLike viewer in overal and each criterion provided
by the tool reflect that DMG method has enhanced
cognitive aspects of existing SV methods.

Future work should include the finding of
weaknesses in the criteria with less positive opinions
and then improve the criteria towards the maximum. In
addition the future work should aso consider the

testing of DMG method of DocLike viewer on alarger
software system.

Acknowledgement

We would like to thank the reviewers, participants of
the experiment, Rigi researchers and aso other
individuals who indirectly contributed to this research.

References

[1] Basli V. R, “Software Modding and
Measurement: The God/ Question/ Metric
Paradigm,” University of Maryland Technical
Report, UMIACS-TR-92-96, 1992.

[2] Binkley D., “An Empirica Study of the Effect of
Semantic Differences on Programmer
Comprehension,” in Proceedings of the 10"
I nter national Workshop on Program
Comprehension, |IEEE Computer Society Press,
USA, pp. 97-106, 2002.

[3] ChenY.F., Nishimoto M. Y., and Ramamoorthy
C. V., “The C Information Abstraction System,”
|EEE Transactions on Software Engineering, val.
16, no. 3, pp. 325-334, 1990.

[4] Hendrix T. D., Cross J. H. Il, and Maghsoodloo
S., “The Effectiveness of Control Structure
Diagrams in Code Comprehension Activities,”
|EEE Transactions on Software Engineering, vol.
28, no. 5, pp. 463-477, 2002.

[5] Mashiko Y. and Basli V. R., “Using the GQM
Paradigm to Investigate Influential Factors for
Software Process Improvement,” Journal of
Systems and Software, val. 36, pp. 17-32, 1997.

[6] ParyT.lll,LeeH. S, and TranJ. B., “PBS Tool
Demongtration Report on Xfig,” in Proceedings
of the 7" Working Conference on Reverse
Engineering, |IEEE Computer Society Press,
USA, pp. 200-202, 2000.

[7] Price B. A, Baecker R. M., and Smdll I. S, “A
Principled Taxonomy of Software Visualization,”
Journal of Visual Languages and Computing,
vol. 4, pp. 211-266, 1993.

[8] Rigi, “Rigi Group Home Page,” http://www.rigi.
csc.wic.ca, 2004.

[9] Shaffer C. A., A Practical Introduction to Data
Structures and Algorithm Analysis, Prentice-Hall,
New Jersey, pp. 12-21, 1997.

[10] Storey M. A. D., Fracchia F. D., and Muller H.
A., “Cognitive Design Elements to Support the
Construction of a Mental Model During Software
Exploration,” Journal of Systems and Software,
vol. 44, pp. 171-185, 1999.

[11] Storey M. A. D., Wong K., and Muller H. A.,
“How Do Program Understanding Tools Affect
How Programmers Understand Programs?” in
Proceedings of the 4™ Working Conference on

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph

Reverse Engineering, |IEEE Computer Society
Press, USA, 1997.

[12] Sulaiman S. and Idris N. B., “An Enhanced
Approach of Software Visudization in Reverse
Engineering Enviranment,” in Proceedings of the
National Conference on Computer Graphic and
Multimedia (CoGRAMM'02), UTM Press,
Maaysa, pp.459-464, 2002.

[13] Sulaiman S, Idris N. B., and Sahibuddin S., “A
Comparative Study of Reverse Engineering
Tools for Software Maintenance,” in Proceedings
of the 2" World Engineering Congress
Information and Communications Technology
(ICT), UPM Press, Mdaysia, pp. 478-483, 2002.

[14] Sulaman S, Idris N. B., and Sahibuddin S,
“Production and Maintenance of System
Documentation: What, Why, When and How
Tools Should Support the Practice” in
Proceedings of the 9" Asia Pacific Software
Engineering Conference (APSEC?2002), |EEE
Computer Society Press, USA, pp. 558-567,
2002.

[15] Sulaman S, Idris N. B., Sahibuddin S., and
Sulaman S., “Re-Documenting, Visuaizing and
Understanding Software Systems Using DocL ike
Viewer,” in Proceedings of the 10" Asia Pacific
Software Engineering Conference (APSEC
2003), |IEEE Computer Society Press, USA, pp.
154-163, 2003.

[16] Wind River, “Wind River: IDE: SNiFF+’
http://mww.windriver.com/products/html/sniff.ht
ml, 2004.

[17] Wong K., Tilley S. R., Muller H. A., and Storey
M. A. D., “Structural Redocumentation: A Case
Study,” |EEE Software, vol. 12, no. 1, pp. 46-54,
1995.

[18] Zayour I. and Lethbridge T. C., “Adoption of
Reverse Engineering Tools. a Cognitive
Perspective and Methodology,” in Proceedings of
the 9™ International Workshop on Program
Comprehension, |IEEE Computer Society Press,
USA, pp. 245-255, 2001.

Shahida Sulaiman BSc in computer
science, MSc in rea-time software
engineering, and PhD in computer
: science. She is a lecturer in the

b, Faculty of Computer Science,
A A | Universty Sains Mdaysia. Her field
\ f J of interest is software visualization
for software maintenance.

Norbik Bashah Idris isa professor
and director of the Center for
Advanced Software Engineering at
Universty Technology Maaysia
(KL Campus). He received his BSc
in computer science from the

' University of New South Wales in
Sydney, MSc from University of Queendand, Brisbane
and PhD in ICT Security from the University of Wales,
UK. He is a certified system security professiona by
The International Association for Computer System
Security, USA and received a certificate in industria
software engineering from Universite Thales, France.
He is a member of SIGSAC ACM, IEEE, New York
Academy of Science and IFIP.

Shamsul Sahibuddin is an
associate professor and the deputy
dean (development) in the Faculty
of Computer Science and
Information Technology of
University Technology Maaysia
He received his BSc in computer
science from Western Michigan University, USA, MSc
in computer science from Central Michigan University,
USA, and PhD in computer science from Aston
University, Birmingham, UK. He is member of the
program committee for Asa-Pacific Conference in
Software Engineering since 2003. His fidds of
specidization are computer supported cooperative
work, computer network, and software quaity. Heisa
member of ACM.

