
The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005 1

Enhancing Cognitive Aspects of Software

Visualization Using DocLike Modularized Graph
Shahida Sulaiman1, Norbik Bashah Idris2, and Shamsul Sahibuddin3
1Faculty of Computer Science, University Sains Malaysia, Malaysia

2Center for Advanced Software Engineering, University Technology Malaysia, Malaysia
3Faculty of Computer Science and Information System, University Technology Malaysia, Malaysia

Abstract: Understanding an existing software system to trace possible changes involved in a maintenance task can be time
consuming especially if its design document is absence or out-dated. In this case, visualizing the software artefacts graphically
may improve the cognition of the subject system by software maintainers. A number of tools have emerged and they generally
consist of a reverse engineering environment and a viewer to visualize software artefacts such as in the form of graphs. The
tools also grant structural re-documentation of existing software systems but they do not explicitly employ document-like
software visualization in their methods. This paper proposes DocLike Modularized Graph method that represents the software
artefacts of a reverse engineered subject system graphically, module-by-module in a document-like re-documentation
environment. The method is utilized in a prototype tool named DocLike viewer that generates graphical views of a C language
software system parsed by a selected C language parser. Two experiments were conducted to validate how much the proposed
method could improve cognition of a subject system by software maintainers without documentation, in terms of productivity
and quality. Both results deduce that the method has the potential to improve cognitive aspects of software visualization to
support software maintainers in finding solutions of assigned maintenance tasks.

Keywords: Software maintenance, software visualization, program comprehension.

Received July 21, 2003; accepted March 8, 2004

1. Introduction
Visualization for software, or Software Visualization
(SV), is a method in program comprehension, which
is vital in the costly software maintenance. SV is the
use of interactive computer graphics, typography,
graphic design, animation and cinematography to
enhance interface between the software engineers or
the computer science student and their programs [7].
The objective is to use graphics to enhance the
understanding of a program that has already been
written.

Computer-Aided Software Engineering (CASE)
workbench in the class of maintenance and reverse
engineering such as CIA [3], Rigi [8, 17], PBS [6]
and SNiFF+ [16] are normally incorporated with
editor window in which the extracted software
artifacts will be visualized graphically besides their
textual information. These tools aid and optimize
software engineers’ program comprehension or
cognitive strategies, particularly when there is an
absence of design level documentation that is still a
major problem in software engineers’ practice [14].
Existing methods of the tools focus on visualizing the
software artifacts whilst structural re-documentation
as another aspect provided. Nevertheless, they do not
explicitly grant the environment to re-document
software systems via their viewers.

Another type of CASE tool of class analysis and
design such as Rational Rose is also incorporated with
reverse engineering utility. However it should be
highlighted that this tool focuses more on forward
engineering, while reverse engineering as part of its
utilities. Thus reverse engineering an existing software
system using this tool without proper forward
engineering will only produce the relationships of
classes that might not be so meaningful to software
maintainers who are confronted with out-dated or
absence of documentation. Hence such tool is not within
the scope of our work.

This paper proposes DocLike Modularized Graph
(DMG) method employed in DocLike viewer prototype
tool that represents the existing software architectures
graphically in a modularized and standardized
document-like manner. The discussion and evaluation of
our DMG method in DocLike viewer was based on
Storey’s work [10] that provides the cognitive
framework to describe and evaluate software exploration
tools, or in our context we refer them as SV tools. The
method was also empirically evaluated based on
productivity and quality of program comprehension.

The remainder of the paper is organized as follows.
Sections 2 and 3 briefly discuss DocLike Modularized
Graph method and DocLike viewer prototype tool,
respectively. The tradeoff issues of the method and the
aspects of visualizing, understanding and re-

2 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

documenting software systems can be found in our
previous work [15]. Section 4 includes the evaluation
conducted, in addition to illustrating the analysis and
inferring the findings. Section 5 discusses some
related work. Finally, section 6 draws the conclusion
and future work.

2. DocLike Modularized Graph Method

DMG method employs graph to visualize software
abstraction. A graph G = (V, E) consists of a set of
vertices V and a set of edges E, such that each edge
in E is a connection between a pair of vertices in V
[9]. DMG uses a directed graph described as directed
edge en = (vi, vj). A vertex in G can be of different
types. Currently DMG only considers the types as in
structured programming, which are symbolized as
module (M), program (P), procedure or function (F)
and data (D).

We provide five types of DMG representations,
defined as the follows:

1. Module decomposition: DMG1 = (Vi, Ei) where the
set Vi ⊆ M represents all modules in set M and Ei
represents relationship (calls, m1, m2).

2. Module mi description: DMG2 = (Vi, Ei) where the
set Vi ⊆ P represents all programs of set P
associated to module mi and Ei represents
relationship (calls, p1, p2) in module mi only.

3. Module mi interface: DMG3 = (Vi, Ei) where the
set Vi ⊆ F represents all procedures or functions
of set F associated to module mi and Ei represents
relationship (calls, f1, f2) in module mi only.

4. Module mi dependencies: DMG4 = (Vi, Ei) where the
set Vi ⊆ F represents all procedures or functions of
set F associated to module mi and Ei represents
relationship (calls, f1, f2) in module other than mi
including the compiler standard library.

5. Module mi data dependencies: DMG5 = (Vi, Ei)
where the set Vi ⊆ F and Vi ⊆ D represent all
procedures or functions Fi of set F in program Pi of
module mi and all associated global data of set D
defined in program Pi or header file .h, while Ei
represents the use of data (either read or write or both
read and write) by Fi.

3. DocLike Viewer Prototype Tool
DocLike viewer is initially based on the C language
parser provided by Rigi tool [8]. We filter the software
artifacts extracted by selecting only the required artifacts
that are going to be visualized via DocLike viewer.
DocLike viewer consists of three main panels: Content
Panel, Graph Panel and Description Panel (see Figure 1).

Based on the cognitive framework of Storey [10], the
two major elements to describe and evaluate SV tools
such as DocLike viewer are:
1. Improve program comprehension (enhance bottom-up

comprehension: E1 to E3, enhance top-down
comprehension: E4 and E5, integrate bottom-up and
top-down approaches: E6 and E7)

2. Reduce the maintainer’s cognitive overhead (facilitate
navigation: E8 and E9, provide orientation cues: E10
to E12, reduce disorientation: E13 and E14).

Figure 1. DocLike viewer consists of content panel, graph panel and description panel.

Description
Panel

Graph Panel

Graph Panel

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 3

Refer [10] for the details of the activity code E1 to
E14 mentioned above. From Table 1, it is observed
that DocLike viewer does not support any feature for
E4, E11 and E13 activity code. The rest of the
activities are supported at least by one feature in
DocLike viewer.

Table 1. Formulation of criteria to be evaluated based on Storey’s
cognitive framework.

Criteria (C1 to C12) Activity Code
(refer [10])

Does DocLike
Viewer

Support?
(Yes/No)

 C1: Easy to identify affected components E1, E6, E10 Yes
 C2: Easy to identify dependencies in a

 module E3, E5 Yes

 C3: Easy to identify dependencies among
 modules E3, E5 Yes

 C4: Easy to navigate among windows E7, E12 Yes
 C5: Easy to navigate the components link E8 Yes
 C6: Easy to trace back previous navigation E11 No
 C7: Easy to trace link between graphical

 representation and source code E2 Yes

 C8: Good tool to assist re-documenting
 system

- Yes

 C9: Information provided is well organized E14 Yes
 C10: Graphical information provided is

 sufficient - Yes

 C11: Textual information provided is
 sufficient - Yes

 C12: Search utility provided is efficient E9 Yes

4. The Evaluation
Two controlled experiments were conducted to study
the significance of improvement in software
understanding or program comprehension. The
selected subjects who mostly had programming
experience studied the subject system using DocLike
Viewer (DV) and they were compared to those using
Rigi (RG) and Microsoft Visual C++ (MV).

4.1. Hypothesis and Goal/ Question/ Metric
As described in section 1, SV has the objective to use
graphics in order to enhance the understanding of a
program that has already been written [7]. A number of
studies applied experiments to measure this factor such
as in [2, 4, 11], which measure program
comprehension by providing a list of maintenance
tasks to be solved by the selected subjects. Our
experiment used the same variables as in [2, 4]. The
null hypothesis can be described as:

H0: The DMG method will not significantly improve
program comprehension or software understanding.
Based on the Goal/ Question/ Metric (GQM) paradigm
[1, 5], we indicate the goals, questions and metrics for
the study as the followings:

1. The goal: the main goal was to statistically analyze
how much the proposed DMG method could
improve program comprehension in order to solve
maintenance tasks. From the main goal, two sub-

goals derived involving productivity and quality as
shown in Table 2.

2. The questions: the questionnaire had three sections:

• Section A: Expertise-related questions that can
determine the expertise of the subjects.

• Section B: Program comprehension
improvement-related questions comprised 6
maintenance task questions that were formulated
in such a way to simulate a change (corrective or
adaptive) or a new requirement (perfective),
which may need different levels of information
abstraction [13] including system hierarchy view,
call graphs and data flow graphs.

• Section C: Usefulness-related questions that were
usefulness of the tool used in overall and also by
criteria as formulated within the cognitive
framework (see Table 1). Refer Table 3 for the
list of questions.

3. The metrics: The metrics used in our study are
shown in Table 4.

Table 2. The goal of study.

Table 3. The questions formulated.

Section A: Expertise-Related Q uestions.
A1: Last job before joining Master program e.g. programmer.
A2: Software development or maintenance experience in previous
 companies (if any) e.g. less 1 year.

A3: Grade in C language module e.g. grade A.

Section B: Program Comprehension Improvement-Related Questions.
1. System hierarchy view (high level of abstraction).

B1: Which module might have no change if the MMIMS module in GI
 system needs to be maintained?

B2: Which program has the highest number of procedures or functions?

2. Call graph (low level of abstraction).
B3: List the procedures or functions in other module that are called by
 index_Record not including those from standard library (if any).
B4: What procedure or function calls processWordToIndex?

3. Data flow graph (low level of abstraction).

B5: Which procedure accumulates the value of data from
 AtMarker_Tmarker?

B6: Identify the function that checks whether a word exists in dictionary
 or not.

Section C: Usefulness-Related Q uestions.
C1: Specify the usefulness of the tool provided to understand GI system.

C2: Specify your opinion on the criteria of the tool. The 12 criteria given
 shown in Table 1. The evaluation based on Likert scale 1. Strongly
 Disagree, 2. Disagree, 3. Normal, 4. Agree, 5. Strongly Agree.

Goal of
Study

Purpose: Analyze
for the Purpose of

Perspective: with
Respect to

Perspective: from
the Point of View

 Goal
 Improvement of
 program
 comprehension

 Programmers’
 cognition Programmers

 Sub-goal 1:
 Productivity

 Productivity of
 program
 comprehension

 Programmers’
 speed to solve
 maintenance tasks

Software manager

 Sub-goal 2:
 Quality

 Quality of program
 comprehension

 The correctness of
 solution given Software manager

 Sub-goal 3:
 Usefulness

 Usefulness of the
 tool and its criteria

 Programmers’
 needs Programmers

4 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

 The three tools are the independent variables or
factors whilst the dependent variables are time taken
(T) and number of correct answers (S). The attribute
variables are related to expertise of programmers and
usefulness of tools (see Table 4).

Table 4: The metrics used.

Related to Expertise of Programmers .
M1.1: Last job before doing Master program.
M1.2: Year of experience in software development or maintenance.
M1.3: Grade of C language.
Related to Productivity – Based on Time (T) .
M2.1: Time taken to answer each question regardless of correctness
 (T 1).
M2.2: Time taken to answer each question correctly (T 2).
Related to Q uality.
M3.1: Score or sum of correct answers (S) for question (B1 to B6 – see
 Table 3).
Related to Usefulness of Tool Used.
M4.1: Mean of the usefulness of the tool used in overall (M1).
M4.2: Mean of the usefulness of the tool used for each criteria (C1 to
 C12 – see Table 1) provided (M2).

4.2. Experiment
We chose Rigi, the latest version available [8] and
Microsoft Visual C++ 6.0 programming editor as the
controls of our experiment. Rigi was chosen because it
is quite a representative tool within the scope of our
study and has the most criteria needed to compare with
our tool. We believed in some ways using program
editors with the search text utility could be sufficient
enough to understand a subject system but in some
ways these tools might not be able to challenge SV
tools. Thus we chose the most unanimous
programming editor Microsoft Visual C++ as another
control of our experiment. Although Visual C# is the
latest technology of Visual.net, the tool is still new and
not widely used compared to its predecessor.

4.2.1. Subjects and Subject System

The subjects of the first and second experiment
involved 33 and 27 of Master students in Software
Engineering, respectively. Both experiments were
conducted after a Maintenance Module taught. In
consequence, subjects were exposed with the issues in
software maintenance including the tools that can
assist static analysis during program comprehension
and the concepts of maintenance tasks and ripple
effects.

The subject system used in the experiment was
Generate Index (GI) system written in C language
consisted of approximately 900 lines of codes (not
including comments). The GI was a word processing
system that could generate the index of the text file
created and edited by a user. The system was
introduced to the subjects to perform their minor
project assignment and they also had taken C language
module in the previous semester. Consequently, the
subjects had some ideas of what the system all about
and the C language itself. Their previous experience

could eliminate our effort to brief on subject system
because they already had some domain and application
knowledge. This enabled us to focus on training the
subjects to use the tools.

4.2.2. Procedures

The subjects were divided into 3 groups consisted of
11 individuals in the first experiment and 9 individuals
in the second experiment. The grouping was
supervised in such a way that all the groups had a
fairly equal level of expertise, which were based on
their previous job (if any), experience in software line
and also grade in C language module. Each group was
required to use different tool that was DocLike viewer,
Microsoft Visual C++ or Rigi and each group was
identified as DV, MV and RG respectively. All
subjects were briefed for 5 to 10 minutes on the use of
the dedicated tool to find solutions for the maintenance
tasks given (see section B in Table 3) without changing
the source codes. For the second experiment, the
subjects were given a brief user manual handout of the
dedicated tool and a better training. They were
provided with stopwatch to indicate the time taken for
each question. They were allowed to answer all
questions without any time limit. Then they were
required to evaluate the tool used by answering section
C (see Table 3).

4.2.3. Possible Threats

There were a few factors that could be possible threats
to our study. The level of expertise might be a threat;
hence we studied subjects’ experience and expertise
via section A of the questionnaire (see Table 3). When
grouping the subjects we considered all the three
attributes: last job position, years of experience in
previous job and grade in C language module. During
the analysis of the two experiments, we tested the
correlation of subjects’ expertise with time and score.
We found no significant correlation between the
expertise factor and the two dependent variables. Thus
this factor was not a threat.

Another factor could be the leak of questions on
maintenance tasks among the subjects. Due to lack of
computers, the subjects took turns to perform the
experiment. Besides, they were not quarantined and sat
next to each other in the lab. Therefore some subjects
might have some hints from their friends and when
their turn came for the experiment they most probably
had prepared with some answers and cues, which
indirectly could affect the time taken to answer and
correctness of the answers given. We attempted to
eliminate the threat by reminding the tested subjects
not to leak the questions because they were going to be
evaluated individually for 5% assessment of
Maintenance Module taught earlier without informing
them that DocLike viewer was a tool of the researcher
to avoid any Hawthorne effect.

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 5

There could be a bias on the actual capabilities of
Rigi and Microsoft Visual C++ tools that might have
been hindered during the two experiments. For
example for Rigi, we did not manage to link the node
clicked with Notepad source codes editor as what Rigi
claimed. Due to time constraint we could not verify the
problem with Rigi developers hence we just trained
RG group to open existing Notepad tool to view the
source codes we attempted to eradicate the threat by
opening Notepad application by the side of Rigi tool
and opening a program from GI system from the
physical folder. We projected this alternative could
minimize the threat particularly on time factor. But for
the second experiment we managed to overcome the
problem and this matter was not a threat anymore.
Better training was also provided in the second
experiment.

4.3. Analysis

The analysis of the experiment was based on the
metrics and variables described in Table 4. Using the
first metric of M2.1 that was related to productivity
(see Table 4), we found that the DV group took the
shortest time T1 to answer question 1 (128 seconds) but
the longest in 50% of the questions (see Figure 2),
which the results were not so conclusive. Nevertheless
after the speed of DocLike viewer was improved, the
DV group was the fastest in answering all the six
questions in the second experiment (see Figure 3).

We performed Oneway Anova to test the
significance on the time consumed T1 by all the groups
based on α/2 (two-tailed) that is 0.025. In the first
experiment, the probability for the phenomena to occur
was only significant for the time taken to answer
question 3 with the difference 0.016. We used Post-
Hoc Anova Tukey and LSD to test the significance of
difference among the three groups. Only the pair of the
DV versus RG group had significant time mean
difference to answer question 3 with the value 0.013
(Tukey) and 0.005 (LSD) at the 0.05 level.

263

337

160

268 266

191
215

*
341

162162
128

178

331

*
132 135

260

162
137

0
50

100
150
200
250
300
350
400

1 2 3 4 5 6

Question number

M
ea

n
of

 ti
m

e
ta

ke
n

(s
ec

)

DV

MV

RG

Figure 2. Mean of time taken (regardless of correctness) T1 in the
first experiment. The asterisk (*) shows the significant mean
difference.

For the second experiment, by using Oneway Anova
test, we found half of the questions had significant

difference of T1 value. Based on Post-Hoc Anova
Tukey and LSD test, the time taken by the DV group
was significant in question 1, 2 and 5 compared to the
other two groups. For question 1, both pair of DV
versus MV group and pair of DV versus RG group had
significant mean difference of time T1 with the values
0.023 (Tukey) and 0.009 (LSD); 0.024 (Tukey) and
0.009 (LSD) respectively. For question 2, only the pair
of DV versus RG group had the significant mean
difference of time with the value 0.000 for both tests.
Finally, for question 5, the significant mean difference
was only for the pair of DV and MV group with the
value 0.021 (Tukey) and 0.008 (LSD).

183

109
*

108
*

101 101
153*

**
49

149

*
209

254278
*

283

*
432

253

178221
258**

209

0

100

200

300

400

500

1 2 3 4 5 6

Question number

DV

MV

RG

Figure 3. Mean of time taken (regardless of correctness) T1 in the
second experiment. The asterisk (*) shows the significant mean
difference.

The metric M3.1 that was related to quality (see

Table 4) indicated the sum of score S for each
question. In the first experiment Figure 4 illustrates
that the value of S is the highest by the DV group in
question 1, 4 and 5 (half of the questions). The DV
group scored the least for question 2 and 3. Using the
same test of Oneway Anova, we identified that only
the score for question 2 and 4 were significant i.e.
0.019 and 0.001 respectively (< 0.025). While
comparing the difference of scores among pairs of
groups at 0.05 level, we discovered that the difference
was significant in question 2 for the DV versus MV
group by 0.016 (Tukey) and 0.006 (LSD). For question
4 we found all the pairs had significant score
difference DV versus RG by 0.002 (Tukey) and MV
versus RG by 0.008 (Tukey) while 0.001 and 0.003
respectively in LSD test. Comparing Figure 2 and
Figure 4, we discovered that for question 2 and 3, the
RG group took the longest time but the least score.

On the other hand, the results were more
encouraging in the second experiment. Although the
DV group scored the highest in question 4 only, the
rest of the questions were scored well (see Figure 5).
Based on Oneway Anova and Post-Hoc Anova Tukey
and LSD test, we indicated the significant score
difference was in question 4 only for the pair DV
versus RG (0.000 for both tests) and MV versus RG
(0.001 for Tukey and 0.000 for LSD). Regarding the
total of S for the whole six questions, in the first

M
ea

n
of

 ti
m

e
ta

ke
n

(s
ec

)

6 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

experiment it was scored the highest by the MV group
(48 out of 66 i. e. 73%) followed by the DV group
(65%) and the RG group (61%). However, for the
second experiment, the total of S was scored the
highest by the DV group (47 out of 54 i. e. 87%)
followed by the MV group (81%) and the RG group
(80%).

7

10
*

10

77
*
4 5 5

*
10 **

9
8

9
8

**
*
3

4

7
8

10

0
2
4
6
8

10
12

1 2 3 4 5 6
Question number

Su
m

 o
f c

or
re

ct
 a

ns
w

er
s

DV

MV

RG

Figure 4. Score S in the first experiment. The asterisk (*) indicates
the significant score difference.

8
7 7

8

*
9

8
**
8

7
8

6

8
7

8
9 99

*
**
2

6

0

2

4

6

8

10

1 2 3 4 5 6

Question number

Su
m

 o
f

co
rr

ec
t a

ns
w

er
s

DV

MV

RG

Figure 5. Score S in the second experiment. The asterisk (*) shows
the significant score difference.

By measuring using the metric M2.2 related to
productivity, the mean of time T2 consumed by DV
group to answer correctly in the first experiment was
the shortest for question 1, 4 and 6 (135, 171 and 80
seconds respectively) compared to the control groups
(see Figure 6). By comparing to the values in Figure 2,
we observed that for the first four questions the values
of T2 were more than T1 but for the last two questions
the values of T2 were less than T1. Using Univariate
Analysis of Variance test, we indicated that only the
time taken to answer question 3 correctly had
significant difference for the pair of DV and RG
group with the value 0.015 (Tukey) and 0.005 (LSD).

For the second experiment, Figure 7 deduces that
the DV group took slightly longer time to answer
correctly compared to the MV group in question 4.
Thus the DV group did not take the shortest time in all
questions in order to answer correctly compared to
Figure 3 in which the group took the shortest time for
all questions. However, in overall the values of T1 and
T2 for the DV group in the second experiment had very
little difference.

330

*
346

135

171

80

304

388

141

279

161

103

323

159
203 219

87

205
*

123

0
50

100
150
200
250
300
350
400
450

1 2 3 4 5 6

Question number

DV

MV

RG

Figure 6. Mean of time taken to answer correctly T2 in the first
experiment. The asterisk (*) indicates the significant mean
difference.

108
*

109
*

101 102

153*
**
48

140 117

*
214

222
271

*
265

*
453

253

178221

325
**

236

0

100

200

300

400

500

1 2 3 4 5 6
Question number

DV

MV

RG
M

ea
n

of
 ti

m
e

ta
ke

n
(s

ec
)

Figure 7. Mean of time taken to answer correctly T2 in the second
experiment. The asterisk (*) indicates the significant mean
difference.

For the value of variable M1 of metric M4.1,

usefulness of the tools in overall, Figure 8 depicts that
the DV group gave the most positive opinion towards
the tool in the first and second experiment (4.27 and
4.44 respectively) followed by RG group (4.00) and
MV group (3.45) in the first experiment. However, in
the second experiment, the MV group had more
positive opinion (3.33) compared to the RG group
(3.22). The mean values given were based on Likert
scale :

1. Strongly disagree.
2. Disagree.
3. Normal.
4. Agree.
5. Strongly agree.

Based on the metric M4.2 (see Table 4), Figure 9
portrays that DocLike viewer derived the most positive
opinion or mean value M2 towards each criterion (C1
to C12) provided by the tool compared to the other two
groups in both experiments. But the MV group gave
more positive opinion towards the criteria in the
second experiment compared to that of the first
experiment. Whereas, the RG group gave more
positive opinion in the first experiment but not that of
second experiment.

M
ea

n
of

 ti
m

e
ta

ke
n

(s
ec

)

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 7

4.44

3.22

3.33

4

4.27

3.45

0 1 2 3 4 5

DV

MV

RG

T
oo

l u
se

d

Mean
Usefulness of tool (first experiment)
Usefulness of tool (second experiment)

Figure 8. Usefulness of tool from the perspective of programmers
in the first and second experiment.

2

2.5

3

3.5

4

4.5

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12
Criteria of tool

DV1 MV1 RG1
DV2 MV2 RG2

Figure 9. Subjects’ opinion towards criteria of the tool used in the
first and second experiment (indicated as 1 and 2 respectively in
the legend), mean-- values based on Likert scale (see Table 5), see
Table 1 for description of criteria code.

Table 5. The mean values for Figure 10 based on Likert scale (1.
Strongly disagree, 2. Disagree, 3. Normal, 4. Agree, 5. Strongly
agree), see Table 1 for description of criteria code.

4.4. Findings

From the analysis we observed that in the first
experiment the DV group took longer time to answer
half of the questions regardless of correctness (T1) and
one-third of the questions with regard to correctness
(T2). However after DocLike viewer was improved, the
speed was much better in the second experiment in
which the DV group took the least time to answer all
the questions regardless of correctness (T1) and five of
the six questions with regard to correctness (T2). Better
training also contributed to the speed of the groups.
Referring back to the goal of the study (see Table 2)

the improved DocLike viewer managed to achieve the
first sub-goal that was related to productivity of
program comprehension based on the speed or time
taken to solve maintenance tasks. Thus productivity is
important from the point of view of software managers
towards their programmers’ performance. If
productivity can be improved, a maintenance project
most probably needs a shorter time therefore it incurs
lower cost.

In term of quality of program comprehension
indicated as the second sub-goal of this study (see
Table 2), if more correct answers or solutions (S)
given, thus fewer errors occur. Consequently, this will
directly lessen the debugging activities after source
codes have been changed. Although in the first
experiment the DV group scored the highest in half of
the questions, the overall score was the highest from
the MV group. Thus by providing better training that
was insufficient in the first experiment, the DV group
managed to have the highest overall score in the
second experiment. Surprisingly, we observed that the
RG group scored significantly less in question 4 (What
procedure or function calls processWordToIndex?) in
both experiments. After checking the view provided by
Rigi for this question, we suspected that the incoming
and outgoing arcs for the concerned node confused the
RG group. Hence with better training delivered in the
second experiment, the quality was improved not only
on the DV group but also the other groups as long as
the tools did not mislead the programmers with wrong
solution such as in the case of question 4 answered by
the RG group.

Concerning the null hypothesis described in section
4.1. as the statistical benchmark of this study, DV
group did not manage to totally reject the null
hypothesis because not all the values of variables
measured in terms of productivity and quality of
program comprehension had significant difference
compared to the other two groups. However, the group
gave the most positive opinion towards the usefulness
of DocLike viewer in overall and each criterion
provided. This fact portrays that our tool has the
potential to enhance understanding or cognition of
software systems via its DMG method.

5. Related Work

There is a number of related work but we just discuss
some examples only. An example is Rigi [8, 17] that
provides SV in reverse engineering environment that
applies two approaches to present software structures
in its graph editor. The approaches are: 1. multiple,
individual windows 2. fisheye views of nested graphs
called SHriMP (Simple Hierarchical Multi-
Perspective) [10]. While PBS [6] uses the approach of
software landscape and represents the software
abstractions in web pages. An example of commercial
tool is SNiFF+ [16] that provides column-by-column

Criteria/
Tool C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

DV1 4.18 4.27 4.27 3.55 3.73 3.00 4.00 3.82 3.45 3.36 3.55 3.55

MV1 2.73 2.64 2.64 3.45 2.73 2.36 2.45 2.45 3.00 2.36 3.27 3.27

RG1 3.73 3.09 3.09 3.45 3.09 2.73 3.36 3.18 3.36 2.91 3.36 2.73

DV2 3.67 4.22 4.11 3.67 3.78 3.22 4.22 4.22 3.33 3.44 3.44 3.67

MV2 3.67 3.22 3.11 3.67 3.11 3.00 3.11 3.44 3.33 3.33 3.44 3.44

RG2 3.00 3.33 3.22 2.67 3.00 3.00 3.22 3.44 3.22 2.44 2.78 2.56

M
ea

n
of

 o
pi

ni
on

 to
w

ar
ds

 e
ac

h
cr

ite
ria

8 The International Arab Journal of Information Technology, Vol. 2, No. 1, January 2005

view of software artifacts. Some studies evaluated how
SV method used could enhance software understanding
of an existing software system in some aspects such as
programmers’ cognition strategies [11, 18] or program
comprehension [2, 4]. Our previous work had
identified the drawbacks and strengths of the graph
methods used by SV tools (Rigi, PBS, SNiFF+ and
Logiscope) [12] and also a comparative study on the
features and analysis aspects of the four tools [13].
Based on the study we found that most SV methods
used by the tools need user intervention to collapse the
nodes into subsystems after software abstraction
visualized except for PBS that optionally allow users to
collapse components prior to generating of views.
Even if source codes parsed are not very large in size,
the graph presented will be quite complicated, with
crossing of arcs except for SNiFF+ (because graph
drawn column-by column). Besides, none of the tools
employ an explicit document-like re-documentation
environment in their SV methods.

Our work differs from existing methods by
improving program comprehension and reducing
cognitive overhead using DMG method that proposes a
standardized, modularized and document-like SV.

6. Conclusion and Future Work
SV can improve cognition of an existing software
system particularly when software engineers are
confronted with out-dated or absence of design
documents. However, current approaches in graph
drawing of SV methods tend to produce overcrowded
or confined graph even if source codes parsed are not
very large and they do not provide better environment
to structural re-documentation of the subject system.
Hence we propose a document-like SV method called
DocLike Modularized Graph that provides graph
representation module-by-module in a document-like
re-documentation environment. We realized the
method in DocLike viewer tool and conducted two
experiments to evaluate how much our DMG method
can improve program comprehension in solving
different types of maintenance tasks. Although in some
maintenance tasks DocLike viewer could not
significantly improve productivity and quality,
generally programmers who used DocLike viewer
could find solutions of maintenance tasks much faster
thus enhancing the productivity and they could obtain
more correct solutions or fewer errors thus enhancing
the quality. On the other hand, the most positive
opinions given by the users towards the usefulness of
DocLike viewer in overall and each criterion provided
by the tool reflect that DMG method has enhanced
cognitive aspects of existing SV methods.

Future work should include the finding of
weaknesses in the criteria with less positive opinions
and then improve the criteria towards the maximum. In
addition the future work should also consider the

testing of DMG method of DocLike viewer on a larger
software system.

Acknowledgement

We would like to thank the reviewers, participants of
the experiment, Rigi researchers and also other
individuals who indirectly contributed to this research.

References
[1] Basili V. R., “Software Modeling and

Measurement: The Goal/ Question/ Metric
Paradigm,” University of Maryland Technical
Report, UMIACS-TR-92-96, 1992.

[2] Binkley D., “An Empirical Study of the Effect of
Semantic Differences on Programmer
Comprehension,” in Proceedings of the 10th
International Workshop on Program
Comprehension, IEEE Computer Society Press,
USA, pp. 97-106, 2002.

[3] Chen Y. F., Nishimoto M. Y., and Ramamoorthy
C. V., “The C Information Abstraction System,”
IEEE Transactions on Software Engineering, vol.
16, no. 3, pp. 325-334, 1990.

[4] Hendrix T. D., Cross J. H. II, and Maghsoodloo
S., “The Effectiveness of Control Structure
Diagrams in Code Comprehension Activities,”
IEEE Transactions on Software Engineering, vol.
28, no. 5, pp. 463-477, 2002.

[5] Mashiko Y. and Basili V. R., “Using the GQM
Paradigm to Investigate Influential Factors for
Software Process Improvement,” Journal of
Systems and Software, vol. 36, pp. 17-32, 1997.

[6] Parry T. III, Lee H. S., and Tran J. B., “PBS Tool
Demonstration Report on Xfig ,” in Proceedings
of the 7th Working Conference on Reverse
Engineering, IEEE Computer Society Press,
USA, pp. 200-202, 2000.

[7] Price B. A., Baecker R. M., and Small I. S., “A
Principled Taxonomy of Software Visualization,”
Journal of Visual Languages and Computing,
vol. 4, pp. 211-266, 1993.

[8] Rigi, “Rigi Group Home Page,” http://www.rigi.
csc.uvic.ca, 2004.

[9] Shaffer C. A., A Practical Introduction to Data
Structures and Algorithm Analysis, Prentice-Hall,
New Jersey, pp. 12-21, 1997.

[10] Storey M. A. D., Fracchia F. D., and Muller H.
A., “Cognitive Design Elements to Support the
Construction of a Mental Model During Software
Exploration,” Journal of Systems and Software,
vol. 44, pp. 171-185, 1999.

[11] Storey M. A. D., Wong K., and Muller H. A.,
“How Do Program Understanding Tools Affect
How Programmers Understand Programs?,” in
Proceedings of the 4th Working Conference on

Enhancing Cognitive Aspects of Software Visualization Using DocLike Modularized Graph 9

Reverse Engineering, IEEE Computer Society
Press, USA, 1997.

[12] Sulaiman S. and Idris N. B., “An Enhanced
Approach of Software Visualization in Reverse
Engineering Environment,” in Proceedings of the
National Conference on Computer Graphic and
Multimedia (CoGRAMM‘02), UTM Press,
Malaysia , pp.459-464, 2002.

[13] Sulaiman S., Idris N. B., and Sahibuddin S., “A
Comparative Study of Reverse Engineering
Tools for Software Maintenance,” in Proceedings
of the 2nd World Engineering Congress
Information and Communications Technology
(ICT), UPM Press, Malaysia , pp. 478-483, 2002.

[14] Sulaiman S., Idris N. B., and Sahibuddin S.,
“Production and Maintenance of System
Documentation: What, Why, When and How
Tools Should Support the Practice,” in
Proceedings of the 9th Asia Pacific Software
Engineering Conference (APSEC'2002), IEEE
Computer Society Press, USA, pp. 558-567,
2002.

[15] Sulaiman S., Idris N. B., Sahibuddin S., and
Sulaiman S., “Re-Documenting, Visualizing and
Understanding Software Systems Using DocLike
Viewer,” in Proceedings of the 10th Asia Pacific
Software Engineering Conference (APSEC
2003), IEEE Computer Society Press, USA, pp.
154-163, 2003.

[16] Wind River, “Wind River: IDE: SNiFF+,”
http://www.windriver.com/products/html/sniff.ht
ml, 2004.

[17] Wong K., Tilley S. R., Muller H. A., and Storey
M. A. D., “Structural Redocumentation: A Case
Study,” IEEE Software, vol. 12, no. 1, pp. 46-54,
1995.

[18] Zayour I. and Lethbridge T. C., “Adoption of
Reverse Engineering Tools: a Cognitive
Perspective and Methodology,” in Proceedings of
the 9th International Workshop on Program
Comprehension, IEEE Computer Society Press,
USA, pp. 245-255, 2001.

Shahida Sulaiman BSc in computer
science, MSc in real-time software
engineering, and PhD in computer
science. She is a lecturer in the
Faculty of Computer Science,
University Sains Malaysia. Her field
of interest is software visualization

for software maintenance.

Norbik Bashah Idris is a professor
and director of the Center for
Advanced Software Engineering at
University Technology Malaysia
(KL Campus). He received his BSc
in computer science from the
University of New South Wales in

Sydney, MSc from University of Queensland, Brisbane
and PhD in ICT Security from the University of Wales,
UK. He is a certified system security professional by
The International Association for Computer System
Security, USA and received a certificate in industrial
software engineering from Universite Thales, France.
He is a member of SIGSAC ACM, IEEE, New York
Academy of Science and IFIP.

Shamsul Sahibuddin is an
associate professor and the deputy
dean (development) in the Faculty
of Computer Science and
Information Technology of

University Technology Malaysia.
He received his BSc in computer

science from Western Michigan University, USA, MSc
in computer science from Central Michigan University,
USA, and PhD in computer science from Aston
University, Birmingham, UK. He is member of the
program committee for Asia -Pacific Conference in
Software Engineering since 2003. His fields of
specialization are computer supported cooperative
work, computer network, and software quality. He is a
member of ACM.

