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Abstract: In the current decade, presence of air pollution leads towards serious health conditions, including respiratory 

ailments, cardiovascular disorders, and lung cancer, which impacts both the lifespan and overall well-being of individuals. 

Moreover, the air pollution has the potential to have detrimental effects on the environment, resulting in destruction to 

ecosystems, decreased agricultural output and so on. Emission control systems, better fuels, stronger laws, energy efficiency 

improvements, and renewable energy promotion are helping industries reduce air pollution. To monitor the quality of air 

methods such as Particulate Matter (PM2.5), PM10, Ozone (O3), and other meteorological indicators exists. These measures 

pose real-time air quality however it fails to predict air quality. Predicting air quality helps reduce air pollution by enabling 

timely interventions and preventive measures to mitigate pollution peaks. Thus, in this research a hybrid version of optimization 

algorithm namely Hybrid Air Quality Prediction system (HYAQP) which is a combination of k-means clustering algorithm and 

meta-heuristic algorithm Sine Cosine Algorithm (SCA) is proposed. The HYAQP holds SCA integrated with k-means algorithm 

to find optimal cluster centroid for grouping the air data into three clusters good, poor, and moderate quality. Then the cluster 

which is nearer to the test instance is found and the instances present in those clusters are passed to K-Nearest Neighbor 

Regressor (K-NNR). Comparing HYAQP on mean absolute error it outperforms 62.9% than Multiple Linear Regression (MLR), 

58.5% than Support Vector Regression (SVR), 45.5% than Vanilla-Long Short-Term Memory (Vanilla-LSTM), 44.4% than 

Sparrow Search Algorithm based-LSTM (SSA-LSTM) and 53.8% than K-Nearest Neighbor (KNN). 
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1. Introduction 

The increase in the development of metropolitan cities 

with the aid of improving economy leads to increase 

pollution in the air, water, and noise. Air pollution is a 

serious threat that causes various diseases and even 

causes death for living beings. With the growth of 

modern industries, smokes emitted from vehicles, and 

the cutting down of trees are the major sources of air 

pollution. Human life has a direct impact on air 

pollution because of the suspended particles and 

pollutants present in the air, and thus air pollution draws 

severe attention nowadays. Various acts had been 

enacted from time to time to prevent air pollution among 

which the Clean Air Act (CAA) states that all-major 

sources of air pollution including the usage of mobile 

devices and cell towers must adhere to air quality 

standards. Mobile devices include all the moving 

vehicles like cars, buses, motorcycles, etc., [40]. 

Though various programs had been enacted to prevent 

air pollution, the death rate crosses nearly 120,000 in 

countries like India due to Air pollution. Also, air 

pollution affects the economic rate of the country by 

nearly 2 lakh crores [19]. As per the report, the major air  

 
pollutant called PM2.5 causes an approximate death rate 

of 160,000 across major cities in India. The various 

control measures taken by the government include the 

use of Compressed Natural Gas (CNG), pollution under 

control certification for all vehicles driven by petrol and 

diesel, and spreading the use of Electric vehicles. 

Despite the measures, air pollution seriously affects the 

lives of humans. 

Thus, in this paper, the importance of predicting air 

pollution in advance is identified and various machine 

learning algorithms had been studied [13, 33]. Intending 

to predict the quality of air, the forecasting of air 

pollution is the only potential solution. Such forecasting 

can be done through machine learning algorithms. 

Hybrid Air Quality Prediction system (HYAQP) 

forecast the air quality using a novel algorithm designed 

by the combination of sine cosine optimization, k-means 

algorithm and K-Nearest Neighbor Regressor (K-

NNR). With historical meteorological parameters such 

as temperature, pressure, wind speed, wind direction, 

humidity, etc., a model has been built to predict the air 

pollution to plan for effective measures to control it. The 

proposed HYAQP initially segregates the given data 

into three clusters viz. good quality, moderate quality 
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and polluted air using k-means algorithm. This process 

will help the proposed prediction model to classify the 

new data to which category it falls into. Then K-NN 

regression had been applied over the centroids of three 

clusters and K-neighbors from the instances in the 

nearby clusters are found and the average value is taken 

for measuring the quality of air. In this process, the 

random centroids in the initial phase, faces a valid 

reason since the initial centroids holds the chance of 

deviation from accuracy in prediction that then turns 

into wrong classification of clustered groups. Hence, to 

fix appropriate centroids in the initial levels of k-means 

algorithm, Sine Cosine Algorithm (SCA) is imposed. 

Metaheuristic algorithm intends to find the best optimal 

solution among the possible feasible solution [14, 35]. 

Some of the predominant metaheuristic algorithms are 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), Whale Optimization Algorithm (WOA), Ant 

Colony Optimization (ACO), SCA etc., in this article, 

for finding the optimal cluster centroid, SCA algorithm 

is used due to the nature of sine and cosine function. 

Also, from the literature the SCA algorithm has been 

used for various purposes and to the best of author’s 

knowledge, there are no other methodology exists on 

integrating SCA with the k-means algorithm to identify 

and select the most relevant centroids from the dataset, 

which are then clustered using k-means to group similar 

data points based on these features. After clustering, 

each cluster’s centroids serve as representative data 

points that are subsequently utilized by a K-NN 

regressor. The K-NN regressor predicts air quality by 

finding the closest clusters’ centroids and averaging 

their corresponding air quality values to make accurate 

predictions for new, unseen data points. 

The key contributions of this research work includes: 

• Integration of SCA algorithm on k-means to 

determine the optimal clusters enhancing the 

accuracy of the clustering process and ensuring that 

the k-means algorithm operates on the most 

informative data points. 

• The hybridization of K-NN regressor with the above 

technique after clustering allows the model to make 

predictions based on the most similar groups of data 

points, improving the precision of Air Quality 

Predictions (AQP) by leveraging localized patterns 

within the data. 

• The combination of SCA and k-means reduces initial 

deviations from random centroids and complexity of 

the dataset, making the subsequent K-NN regression 

more computationally efficient and scalable for large 

datasets. 

This article is organized as follows: Section 2 depicts 

the various related works present in measuring the 

quality of air. Section 3 depicts the design of AQP 

system using improved k-means based on SCA and K-

NNR. Section 4 depicts the experimental results stating 

the influence of the proposed algorithm. Finally, section 

5 concludes with future work. 

2. Related Work 

This section comprises of state-of-the-art methods that 

are existing to predict the quality of air and the impact of 

meta heuristic algorithms on various domains. 

2.1. Air Quality Measurement and Factors 

Air quality measurements are critical for understanding 

the state of the environment and the potential health 

impacts on the population. The key points about air 

quality measurements and the factors influencing them 

are listed in this section. 

2.1.1. Air Quality Measurements 

PM2.5 and PM10: PM2.5 refers to Particulate Matter 

(PM) with a diameter of 2.5 micrometers or smaller. 

These particles can penetrate deeply into the lungs and 

even enter the bloodstream, causing various health 

issues. PM10 refers to PM with a diameter of 10 

micrometers or smaller, which can cause respiratory 

problems and other health issues [44]. Ozone (O3): 

Ground-level O3 is a harmful air pollutant formed when 

pollutants emitted by cars, power plants, and other 

sources react chemically in the presence of sunlight 

[16]. Carbon Monoxide (CO): CO is a colorless, 

odorless gas resulting from the incomplete combustion 

of fossil fuels. It can prevent oxygen from entering the 

body’s tissues and is especially harmful to people with 

cardiovascular disease [7]. 

2.1.2. Air Quality Monitoring and Regulation 

Air Quality Index (AQI): the AQI is a standardized 

index used by governments to communicate the level of 

air pollution to the public. It typically includes 

measurements of PM, O3, and CO [15]. Regulatory 

standards: Various countries have regulatory bodies that 

set and enforce air quality standards, such as the 

Environmental Protection Agency (EPA) in the United 

States and the European Environment Agency (EEA) in 

Europe [17]. 

2.2. State of the Art Methods on Air Quality 

Prediction 

Precise forecasting of air quality is an essential element 

of meteorological services, and the ongoing monitoring 

of air quality is critical for evaluating the paths of 

pollutant emissions and variations in air quality. 

Improving the precision of air quality forecasting has the 

capacity to expedite the attainment of goals related to 

clean air and carbon neutrality. Hence, it is essential to 

effectively use the auxiliary function of machine 

learning models in air quality forecasting. 

DeepAirNet was designed using deep learning for 

forecasting air pollution. Recurrent Neural Network 



HYAQP: A Hybrid Meta-Heuristic Optimization Model for Air Quality Prediction Using ...                                                    955 

(RNN) when subjected to AirNet data predicted the 

particulate Matter 10 which was considered as major 

pollutant and the designed model forecasted air pollution 

for every hour across Chinese cities [4]. With the intend 

to predict the Respirable Suspended Particulate Matter 

(RSPM), Sulfur dioxide (SO2) and Nitrogen dioxide 

(NO2) for the city Lucknow in India, three neural 

networks model were designed. The neural network 

architecture used were multi-layer perceptron network, 

Radial Basis Function Neural Network (RBFNN) and 

Generalized RNN (GRNN). Meteorological data 

including air temperature, relative humidity, wind speed 

and air quality data including concentration of 

Suspended Particulate Matter (SPM), NO2, SO2 

collected during the period 2005 to 2009 [37]. multi task 

learning was formulated using the meteorological data 

gathered for the past day for 24 hours. Parameter 

reducing normalization was designed to overcome the 

drawbacks of conventional regression algorithms [47]. 

Recurrent Network Model (RNM), change point 

detection model with RNM, Sequential Network 

Construction Model and Self-Organizing Feature Maps 

(SOFM) were designed for forecasting air quality. As the 

air quality data collected through various sensors have 

high level of noise, SOFM obtained high level of 

prediction than other forecasting models [5]. LightGBM 

model was designed by integrating gradient boosted 

decision trees and XGboost algorithm. As the air quality 

data collected over real time have noise, LightGBM with 

its ability to learn parallel and its capability of learning 

the data at good rate of accuracy, it improved the 

accuracy of forecasting the quality. Also, the memory 

requirement of LightGBM is very less, as ii used 

histogram-based segmentation [46]. 

The major pollutants for deteriorating air quality is O3 

and PM10. Statistical approach such as feed-forward 

neural network was designed. Pruned Neural Network 

(PNN) based on parameter-parsimonious technique was 

used to remove the repeated information from fully 

connected neural network. Apart from PNN, a Local 

Linear (LL) algorithm were used to predict the 

concentration of O3 and PM10 [11]. Deep Spatial-

Temporal Ensemble (STE) model was designed which 

includes Ensemble technique, discovering spatial 

correlation and temporal predictor. Temporal Predictor 

was built using Long Short-Term Memory (LSTM) 

networks. The designed STE model was evaluated on 

real data collected from 35 monitoring stations situated 

in Beijing, China [42]. LSTM network was used to 

predict the air quality from the data collected using 

various IoT devices across smart cities [25]. A study was 

made on predicting air quality using various techniques 

available in machine learning including artificial neural 

network, GA, decision tree, deep belief network, least 

square support vector machine. The identified research 

issues in this study were how quality the data is when 

collected using IoT devices and monitoring the quality 

of air dynamically according to meteorological data [22]. 

Hybrid forecasting model was developed for 

predicting concentration of pollutants. Back propagation 

neural network together with fuzzy set theory and 

analytic hierarchy process were used to predict the 

quality of air. The designed forecasting model classifies 

the air quality as good, moderate, lightly polluted, 

heavily polluted and severely polluted for the data 

gathered in Chengdu and Hangzhou from China [43]. 

Neuro fuzzy technique was developed to predict the 

quality of air. Fuzzy clustering had been done with the 

membership functions such as mean and variance. Fuzzy 

rules were extracted from fuzzy clusters. Genetic PSO 

based neural network was constructed to train the 

network for optimal prediction of air quality [11, 28]. 

Transfer learning integrated with Bi-Directional Long 

Short Term Memory Model (BLSTM) was proposed for 

predicting the pollutants that affect the air quality. The 

designed BLSTM was evaluated for the data collected 

from Guanddong, China [30].  

Liao et al. [27] proposed AQP model using the hybrid 

mechanism which is unsupervised learning and pattern 

learning. The unsupervised pre-training method is 

helpful for long-term temporal pattern learning in this 

proposed model. Sui and Han [39] a graph based 

convolutional network for predicting the quality of air. 

The multi angle view and the multiple task oriented 

spatiotemporal information from the graph based 

network are the prime factors for predicting the air 

quality. Chen et al. [10] proposed a transmit neural 

network for predicting the quality of air at regional level. 

The proposed model used spatiotemporal and 

hierarchical information of the region to predict the 

quality of air using deep learning model. In the year 

2024, Simsek et al. [36] proposed an event detection 

system along with AQP system using the decentralized, 

fog-assisted system. In the year 2024, authors Chen et al. 

[9] proposed a spatio-temporal assisted neural network 

for predicting the quality of air. The proposed model 

used multistage graph and special information to predict 

the quality of air using deep learning model. 

2.3. Impact of Sine Cosine Algorithm 

SCA was a population-based optimization algorithm 

modelled using sine and cosine functions for solving 

unimodal, multi-modal and composite function [31]. 

SCA based K-NN was used to predict the phishing 

attacks. The designed SCAK-NN was compared with 

decision tree, naïve bayes algorithm in terms of 

parameters such as accuracy, f-measure, true positive 

rate, false positive rate and mean absolute error. SCA 

integrated with K-NN was used for optimal detection of 

intrusion in wireless sensor network. Polymorphic 

mutation and compact mechanism were integrated with 

conventional SCA with the goal to minimize loss, time 

and space [34]. SCA k-means was used for clustering 

cloud resources with the aid for optimal resource 

discovery was designed. The fitness function of designed 
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SCA k-means relies on Intra-cluster similarity and Inter-

cluster similarity. The designed SCA k-means was 

optimal enough than conventional k-means [23].  

Modified Sine Cosine Algorithm (m-SCA) was 

designed to get rid of problems such as stagnation in 

local optima by integrating self-adaptiveness to find 

global optimal solution [20]. Automatic clustering was 

done through atom search optimization and SCA. The 

fitness considered was to minimize compact-separated 

index to find optimal quality of clusters. SCA was used 

as intensification operator to improve Dunn and silhoutte 

index [1]. Initial centroids play a prominent role in 

clustering. SCA-Fuzzy Possibilistic C-Ordered Means 

(SCA-FPCOM) was designed that integrates fuzzy C-

Means with SCA. The outliers caused by initial random 

centroids are solved using SCA-FPCOM [26]. To 

improve the convergence rate of SCA, adaptive and 

modified SCA for clustering has been designed which 

promotes both diversification and intensification [6]. 

Zhang et al. [45] proposed a method for evaluating 

the emission in enterprises that induces power using the 

machine learning method named as support vector 

machine that are improved with least square. 

From the literature survey, it is observed that there 

needs an optimal mechanism for predicting the air 

quality. Also, it is inferred that hybridization of SCA 

algorithm with traditional machine learning algorithms 

can be better strategy for effective prediction of air 

quality. 

3. Proposed Air Quality Predictor System 

(AQPS) 

Figure 1 shows the schematic architecture of the 

proposed AQP system. The proposed improved k-means 

based on SCA HYAQP has been used for finding 

optimal cluster centroid for k-means, thereby the clusters 

formed using k-means are optimal enough to create the 

groups in the air quality dataset. The K-Nearest 

Neighbor (K-NN) based regressor is then activated, 

which intends to find the optimal set of instances from 

the clusters by computing the distance between the 

cluster centroid with the new test instance. Then, the 

instances present in the nearest cluster is subjected to 

find the nearest neighbors and the average value is taken. 

The proposed AQPS includes data collector which 

intends to collect the data across various sensors. The 

raw data collected using sensors has to be preprocessed 

before subjecting for analyzing. The preprocessing 

carried out using min-max normalization where for each 

attribute the minimum value and maximum value has 

been chosen. All the other values are normalized 

according to minimum and maximum value between 0 

to 1. The preprocessed data is fed to the HYAQP which 

finds the optimal cluster centroid and optimal clusters. 

The optimal clusters are returned to the K-NNR which 

finds the K-NNs of the new test instance. 

 

 

Figure 1. Proposed AQPS. 

3.1. HYQAP 

Algorithm (1) demonstrates that the proposed improved 

k-means algorithm using SCA aims to identify the 

optimal cluster centroids, thereby facilitating the 

computation of optimal clusters. 

Algorithm 1: k-Means Algorithm (A, D). 

Input: Initial Cluster Head points (D), Data Points (A)  

while (termination condition satisfied) do 

     k←size(A) 

     for each i∈N do 

          Zi←argmink ||Ai-Di || 

     end for 

     for each i∈k do 

          Ai←MEAN({Di∶ Zi=k})  

     end for  

end while 

Output: Cluster Head points (Z) 
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SCA is accelerated based on mathematical functions 

such as sine and cosine trigonometric functions. The 

SCA algorithm is populated with agents where the 

function intends to move the agents toward the best or 

outwards from it. The SCA algorithm is a population-

based metaheuristic algorithm where initially, the agents 

are initialized with random values. Each agent in the 

population will have three dimensions viz. The first 

dimension represents the good quality of air, the second 

dimension represents the medium quality air and the 

third dimension represents the poor-quality air. At each 

iteration, the algorithm intends to find the globally 

optimal solution. When the algorithm is made to run for 

a single iteration, the algorithm may produce local 

optimal solution. Thus, at each iteration, the HYAQP 

does exploration which favors to provide global search 

i.e., diversification. Also, the algorithm undergoes 

exploitation, which promotes local search (i.e., 

intensification). Global search takes place by introducing 

high level of randomness with the agent’s position, so 

that the agent randomly moves in abrupt direction. The 

term local search intends to promote randomness very 

slowly as opposed to diversification. Also, the use of sine 

and cosine function favors to switch between 

exploitation and exploration to a great extent. At each 

iteration, the best agent’s position is present in the 

variable ABest. All the other agents tend to update their 

position according to the best agent. Also, at each 

iteration the agents are evaluated with the fitness. The 

fitness of the agent is the linear combination of the 

objective of the agent and the weight associated with it. 

The representation of fitness is given in Equation (1). 

𝑓(𝐴) = −𝑤1 ∗ ∇ + 𝑤2 ∗ Φ + 𝑤3 ∗ 𝜓 

The w1, w2, and w3 represents the weight associated with 

the objectives Entropy, Purity and Dunn index. The 

fitness function considered is a maximum function. The 

negative sign for the entropy indicates that it has to be 

minimized. Entropy ∇(Ωi) is a measure of the amount of 

disorderliness [38] in a cluster represented in Equation 

(2). 

𝛻(𝛺𝑖) = ∑𝑝

|𝐶𝐿|

𝑗=1

∗ 𝑙 

where p represents the probability that the instance 𝑋𝑖
⃗⃗  ⃗ in 

cluster Ωi have class label CLi shown in Equation (3). 

And l represents the logarithm of the probability 

represented in Equation (4). Entropy for all clusters 

∇(Ωi) is computed as the sum of the product of entropy 

of individual cluster ∇(Ωi) and ratio of the number of 

instances in each cluster |Ωi| to the size of dataset |X| 

represented in Equation (5).  

p = P(Xi
⃗⃗  ⃗ ∈ Ωi)CLi

 

l = log2 (P(Xi
⃗⃗  ⃗ ∈ Ωi)CLi

) 

∇(Ω) = ∑ ∇(Ω𝑖) ∗
|Ω𝑖|

|𝑋
→

𝑖|
Ω𝑖∈Ω

  

Purity of clusters Φ(Ωi) is a measure of the extent of how 

much the instances in a particular class CLi belongs to 

cluster Ωi [12] represented in Equation (6).  

Φ(Ω𝑖) =
1

|𝑋|
∗ ∑𝑀𝑎𝑥

𝑗
(Ω𝑖 ∩ 𝐶𝐿𝑗)

|Ω|

𝑖=1

 

where 𝑀𝑎𝑥
𝑗

(Ω𝑖 ∩ 𝐶𝐿𝑗) represents the maximum number 

of instances in the cluster Ωi have class label CLi. 

Dunn index, which is a metric used to evaluate the 

cluster based on the partitioned data [38]. Let Ωi and Ωj 

be two clusters for the dataset X. The diameter of the 

cluster Ωi is given as the maximum distance between 

any two instances 𝑋𝑖
⃗⃗  ⃗, 𝑋𝑗

⃗⃗  ⃗ represented in Equation (7). 

The diameter of the cluster is otherwise known as intra-

cluster distance as shown in Equation (8). 

∂(Ω𝑖) = 𝑀𝑎𝑥
𝑋
→

𝑖,𝑋
→

𝑗∈Ω𝑖

(𝑑 (𝑋
→

𝑖 , 𝑋
→

𝑗)) 

𝜕(Ω𝑖) = Δ(Ω𝑖) 

𝑑(𝑋𝑖
⃗⃗  ⃗, 𝑋𝑗

⃗⃗  ⃗), represents the distance between two instances 

𝑋𝑖
⃗⃗  ⃗ and 𝑋𝑗

⃗⃗  ⃗. Dunn index ψ is represented in Equation (9). 

𝜓 =
𝑀𝑖𝑛

1≤𝑗≤|Ω|
𝛿(Ω𝑖, Ω𝑗)

𝑀𝑎𝑥
1≤𝑘≤|Ω|

(∂(Ω𝑖))
 

Once the fitness is evaluated, the agent’s position will be 

updated. The position of the agent is updated using the 

sine function, cos function and best agent also. The 

computation of position of the agent is represented in 

Equations (10) and (11).  

𝐴𝑖
𝑡 ← 𝐴𝑖

𝑡−1 + 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) + |𝑟3 ∗ 𝐴𝐵𝑒𝑠𝑡
𝑡 − 𝐴𝑖

𝑡−1|   𝑖𝑓 𝑟4 < 0.5 

𝐴𝑖
𝑡 ← 𝐴𝑖

𝑡−1 + 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) + |𝑟3 ∗ 𝐴𝐵𝑒𝑠𝑡
𝑡 − 𝐴𝑖

𝑡−1|   𝑖𝑓 𝑟4 ≥ 0.5 

The variable r1 is used to control between exploration 

and exploitation and it is computed using Equation (12). 

𝑟1 ← 𝑎 − t ∗
𝑎

𝑀𝑎𝑥_𝐼𝑡𝑒𝑟
 

The variable t represents the current iteration. Max_Iter 

represents the maximum iteration taken for 

convergence. The variable a is initialized to 2. And 

gradually decreased from 2 to 0. The random variable r2 

decides whether the agent is moving towards the best 

agent or outwards from it. The random variable r3 

assigns weight to the best agent. If the value of r3 is 

greater than 1, then the highest weight is assigned to the 

best agent else the weight is assigned to the agent’s 

previous position. r4 is used to switch between 

exploitation and exploration for better convergence. The 

process of computing the fitness and updating the 

agent’s position is done for maximum number of 

iterations till convergence. Once the algorithm 

converged, it gives the optimal cluster centroid which is 

then used by K-NNR. The working of HYAQP is shown 

(5) 

(3) 

(4) 

(2) 

(6) 

(7) 

(9) 

(8) 

(1) 

(10) 

(11) 

(12) 
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in Algorithm (2(. The diagrammatic representation of 

AQP using HYAQP is shown in Figure 2. 

 

Figure 2. HYAQP workflow. 

Algorithm 2: Hybrid Air Quality Prediction. 

Input: D←{I1,I2,.....,In } ; 

N-Number of Agents; Maximum Iteration (Max_Iter), Objective 

function (f), initial iteration (t=1) 

1. Begin 

2. // Population initialization 

3.      for each Agent Ai do 

4.           for each Agent Ai do 

5.                Ai,j←rand(0,1)  

6.          end for  

7.      end for 

8. // Fitness Computation 

9.      for each Agent A_i do 

10.           F(Ai)←f(Ai) 

11.      end for 

12.      while (t≤Max_Iter) do 

13.           for each Agent Ai do 

14.                 F(Ai )←f(Ai) 

15.                if (𝑣𝑎𝑙𝑢𝑒𝐴𝐵𝑒𝑠𝑡
)< F(Ai)) then 

16.                     ABest←Ai 

17.                end if 

18.           end for 

19.           for each Agent Ai do 

20.                Compute r1 using Equation (12) 

21.                Generate r2, r3, r4 

 

22.                if (r4<0.5) then 

23.                     Compute Position using Equation (10) 

24.                else 

25.                     Compute Position using Equation (11) 

26.                end if 

27.           end for 

28.      end while 

29.      Return ABest 

30 End 

Output: ABest 

3.2. Clustering based on Centroid Distance 

The K-NNR rather than acting of all the instances to find 

K-NNs works on optimal cluster centroid given by 

HYAQP. The distance between the optimal cluster 

centroid and the new instance is computed. The centroid 

with minimum distance is considered and, in that K-

NNs are found and the average value of the K- 

neighbors are computed and is the predicted air quality 

for the new instance. The working of K-NNR is shown 

in Algorithm (2). If the K-NNR is fed with all the 

instances present in the dataset, then the time for 

computation is high. Also, when finding the nearest 

neighbors of the new instance, the problem of finding 

the neighbors is critical, when the K-NN is subjected to 

too large dataset for estimating the optimal value of air 

quality. To avoid this, originally the instances where 

clustered into three groups based on the purity of air and 

contamination. Having clustered the instances using 

HYAQP, the new instance is tested with three cluster 

centroids. The cluster centroid which is having 

minimum distance is chosen and the instances present 

in that particular cluster centroid is given as input to K-

NNR. By passing only a group of instances, the 

computational complexity is significantly reduced. 

Also, since the instances are found using HYAQP, the 

chosen K- Neighbors are optimal enough for the 

estimation of particulate matter. The nearest instances 

are found by using Euclidean distance represented in 

Equation (13).  

𝐷𝑖𝑠𝑡(𝐼𝑛𝑒𝑤 , 𝑐𝑙𝑢𝑠𝑖) ← √ ∑ (𝐼𝑛𝑒𝑤 − 𝑐𝑙𝑢𝑠𝑖)
2

𝑛𝑢𝑚_𝑑

𝑗=1

 

4. Experimental Analysis 

The proposed algorithm has been evaluated on 6 

different datasets [2, 3, 8, 21, 41] and listed in Table 1. 

The features include data, time, average 

concentration of CO, PT08.S1(tin oxide), concentration 

(13) 
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of nonmetallic hydrocarbons, benzene concentration, 

PTO8.S2 (titania), concentration of NOx, 

PTO8.S2(tungsten oxide), NO2 concentration, 

PTO8.S4 (tungsten oxide), PT08.S5 (indium oxide), 

temperature, relative humidity and AH Absolute 

humidity. The proposed work has been implemented 

using python, with system configuration of Intel ® 

core™ i7, 1.80 GHZ and 16 GB RAM. Algorithms 

taken into comparison of the proposed work includes 

Multiple Linear Regression (MLR), Support Vector 

Regression (SVR), K-NN, Vanilla LSTM [18] and 

Sparrow Search Algorithm based LSTM (SSA-LSTM) 

[29]. The metrics taken into account for comparison are 

mean absolute error, root mean square error, purity, 

Dunn index, coefficient of determination, Mean Bias 

Error (MBE) and complexity. The parameters used for 

HYAQP are as follows: Number of Agents (N): 100; 

Maximum Iteration (Max_Iter): 100; Runs: 10. 

Table 1. Datasets used for evaluation. 

Si. No. Dataset #Instances #Attributes Ref. 

1 Italian city 9357 14 [21] 

2 UK-AIR (cambridge city) 6199 7 [3] 

3 UK-AIR (wicken fen) 6844 13 [3] 

4 Cities in India  6236 15 [8] 

5 London 3169 16 [2] 

6 US-pollution data 7301 28 [41] 

4.1. Comparison of Mean Absolute Error 

Mean absolute error is defined as the ration of sum of the 

difference between the observed value and actual value 

to the total number of instances which is represented in 

Equation (14). Figure 3 represents the comparison of 

mean absolute error. The mean absolute error of 

HYAQP is 62.9% reduced than MLR, 58.5% reduced 

than SVR, 45.5% reduced than Vanilla LSTM, 44.4% 

reduced than SSA-LSTM and 53.8% reduced than KNN. 

The reason behind is that proposed mechanism used two 

level of processing data. In the first level, clustering is 

done through optimal cluster centroid given by SCA and 

in the second level, the nearest group of instances is 

given to K-NNR (K=3) which optimally finds the 3 

nearest neighbors and estimate the amount of benzene in 

the air to determine air quality. 

𝑀𝐴𝐸 ←
∑ (|𝑦𝑖 − �̂�𝑖|)

𝑁
𝑖=1

𝑁
 

 

Figure 3. Comparison of mean absolute error. 

4.2. Comparison of Root Mean Square Error 

Root mean square error is defined as the root of the ratio 

of sum of squared difference between actual values and 

predicted to total number of instances which is 

represented in Equation (15). Figure 4 represents the 

comparison of root mean square error by various 

algorithms. It is evident from the Figure 4 that RMSE of 

HYAQP is minimum than other existing algorithms. The 

mean absolute error of HYAQP is 51% reduced than 

MLR, 43.1% reduced than SVR, 29.7% reduced than 

Vanilla LSTM, 22.2% reduced than SSA-LSTM and 

31.8% reduced than KNN. This shows that HYAQP 

good in forecasting the pollution, in particular the 

estimation of Benzene. As MLR is biased with slope and 

intercept, SVR is biased with the hyperplane, HYAQP 

optimally finds the 3 neighbors of the new instance and 

takes the average of the values to find the estimation of 

benzene. 

𝑅𝑀𝑆𝐸 ← √
∑ (𝑦𝑖 − �̂�𝑖)

2𝑁
𝑖=1

𝑁
 

 

Figure 4. Comparison of root mean square error. 

4.3. Comparison of Purity 

Next level of comparison is done on measuring the 

purity of the cluster created using PSO [24], GA [32], 

SSA and Grey Wolf Optimizer (GWO). Table 2 shows 

the purity obtained by various algorithms taken for 

consideration. It is observed that the proposed HYAQP 

achieves a higher level of purity than other existing 

algorithms. The purity of clusters created using HYAQP 

is 16.6% higher than clusters created using Inverse 

Kinematics-Particle Swarm Optimization (IKPSO). The 

proposed HYAQP has a balanced exploration and 

exploitation which is the prime factor for high rate of 

purity. The purity of Inverse Kinematics-Genetic 

Algorithm (IKGA) is very minimum i.e., 18.4% reduced 

purity when comparing to HYAQP. The reason behind 

minimum purity in IKGA is that the cross over and 

mutation probability played a critical role in doing 

exploration and exploitation. As a result, the solution 

obtained by IKGA is not optimal enough to create 

optimal clusters. Similarly, on comparing Inverse 

Kinematics Sparrow Search Algorithm (IKSSA) and 

Inverse Kinematics-Grey Wolf Optimizer (IKGWO), 

HYAQP improved its performance with 10.3% and 

3.77% respectively. 

(14) 

(15) 
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Table 2. Comparison of purity. 

 D1  D2 D3 D4 D5 D6 

IKGA 0.76  0.76 0.77 0.73 0.74 0.77 

IKPSO 0.77  0.77 0.77 0.77 0.77 0.75 

IKSSA 0.81  0.82 0.83 0.82 0.87 0.83 

IKGWO 0.91  0.89 0.87 0.90 0.90 0.86 

HYAQP 0.91  0.95 0.92 0.91 0.93 0.93 

4.4. Comparison of Dunn Index 

Dunn index is another important metric taken into 

account for evaluating the clustering. Dunn index 

should be high for good clustering algorithm. Table 3 

represents the Dunn index obtained for various 

clustering algorithms. As expected, HYAQP ranks 

highest in maximizing the Dunn index compared to the 

other algorithms considered. The HYAQP improves 

Dunn index by 16% than IKPSO and 21% than IKGA. 

The reason behind the improvement of Dunn index in 

proposed HYAQP is that the clusters created are optimal 

enough. Also, SCA algorithm tends to switch between 

exploration and exploitation with random probability. 

Also, the algorithm uses mathematical functions such as 

sine and cosine functions for doing intensification and 

diversification, the centroids returned by HYAQP is 

optimal enough for clustering the instances into three 

groups of viz. good quality, moderate quality and poor 

quality of air. Similarly on comparing IKSSA and 

IKGWO, HYAQP improved its performance with 

10.3% and 5.1% respectively. 

Table 3. Comparison of Dunn index. 

 D1 D2 D3 D4 D5 D6 

IKGA 0.761 0.759 0.720 0.731 0.729 0.726 

IKPSO 0.765 0.786 0.756 0.774 0.786 0.795 

IKSSA 0.863 0.827 0.868 0.818 0.818 0.809 

IKGWO 0.904 0.870 0.889 0.863 0.874 0.875 

HYAQP 0.949 0.941 0.921 0.945 0.901 0.950 

4.5. Comparison of Coefficient of 

Determination 

The coefficient of determination of the proposed 

HYAQP had been compared with other algorithms like 

MLR and SVR which is represented in Figure 5. The 

coefficient of determination represented using 𝑅2 is 

calculated using Equation (16). The proposed HYAQP 

achieves 4.20% greater coefficient of determination 

than MLR. Also, SVR achieves 12.567% less 

coefficient of correlation than the proposed HYAQP. 

 

Figure 5. Comparison of coefficient of determination. 

Where N represents number of instances, σx represents 

the standard deviation for the input instances, σy 

represents the standard deviation of the predictor 

variable, �̅� and �̅� represents the mean of the input 

instances and predictor variable.  

𝑅2 =
1

𝑁

∑ (𝑦𝑗 − �̅�)(𝑥𝑗 − �̅�)
2𝑁

𝑗=1

𝜎𝑦𝜎𝑥
 

4.6. Comparison of Mean Bias Error 

The MBE determines the average prediction error. For a 

good predictor model, the MBE must be low. Equation 

(17) represents the calculation of MBE. From the Figure 

6 it is evident that, the proposed HYAQP achieves 

40.38% and 54.389% reduction of MBE than MLR and 

SVR respectively. 

𝑀𝐵𝐸 =
∑ (𝑦𝑗 − 𝑥𝑗)

𝑁
𝑗=1

𝑁
 

 

Figure 6. Comparison of MBE. 

4.7. Comparison of Computational Time 

Next level of comparison is done to measure the time 

complexity of proposed HYAQP with conventional K-

NNR. The conventional K-NNR, which is a lazy 

learning algorithm, intends to find the K neighbors by 

computing the distance with all the instances present in 

the dataset. Thus, the time complexity is directly 

proportional to the number of instances present in the 

dataset. In the case of HYAQP, where the clusters are 

formed using optimized k-means and the nearest cluster 

is passed to the K-NNR. Thus, time taken to process the 

test instance is minimum in HYAQP. 

4.8. Diversity Analysis 

Figure 7 shows the overall convergence analysis with 

respect to purity on different datasets. From the figures 

it is evident that the proposed model is having a 

significant convergence towards the better purity value 

in all the runs. In particular, the convergence analysis 

w.r.t. purity for D1 dataset Figure 7-a) shows that the 

proposed model is balanced between the worst and the 

best results whereas the IKPSO is biased in worst case 

results in many runs. The convergence analysis w.r.t. 

purity for D2 dataset Figure 7-b) shows that the 

proposed model is more towards the best results in most 

(16) 

(17) 
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of the runs whereas the IKKSA is biased in worst case 

results in many runs. The convergence analysis w.r.t. 

purity for D3 dataset Figure 7-c) shows that the 

proposed model is more towards the best results in most 

of the runs and similarly the existing methods are also 

in line with the proposed model. The convergence 

analysis w.r.t. purity for D4, D5, D6 dataset Figure 7-d), 

(e) and (f) shows that the IKGWO is more towards the 

best results in most of the runs. However, the proposed 

model is more towards worst solutions in many runs. 

 

  

a) D1. b) D2. 

  

c) D3. d) D4. 

  

e) D5. f) D6. 

Figure 7. Convergence analysis w.r.t. purity on different datasets. 

4.9. Statistical Analysis 

The results of purity are interpreted with Two-Way 

ANOVA test and Post Hoc tests results are discussed in 

this section. 

Univariate ANOVA is used to establish the 

association between control factors, and a solitary 

numerical dependent variable. In this system, the control 

factors are datasets and the algorithms and the dependent 

variable is Purity. Table 4 shows the analysis of 

algorithms on different dataset its mean and standard 

deviation (Std. Dev.). 
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Table 4. Analysis of algorithms on different dataset its mean and standard deviation. 

Algorithms 
Dataset (D1) Dataset (D2) Dataset (D3) Dataset (D4) Dataset (5) Dataset (D6) Total 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

IKGA .6520 .06563 .6770 .05794 .6800 .07379 .6770 .05056 .6820 .06746 .6560 .08235 .6707 .06530 

IKGWO .7590 .09632 .7740 .10058 .7530 .08970 .7420 .10644 .7460 .10793 .7680 .08456 .7570 .09441 

IKPSO .6690 .06540 .6850 .06346 .6950 .06671 .6750 .05968 .7110 .03900 .7000 .04922 .6892 .05747 

HYAQP .8150 .08017 .8310 .08478 .8060 .07321 .7960 .08222 .8400 .08206 .8490 .06262 .8228 .07687 

IKSSA .6890 .08020 .7150 .07075 .7230 .08551 .6790 .07651 .6870 .10350 .6940 .09009 .6978 .08294 

Total .7168 .09724 .7364 .09445 .7314 .08762 .7138 .08884 .7332 .09946 .7334 .09977 .7275 .09430 

 
Table 5. Levene’s test of equality of error variances. 

Levene’s test of equality of error variances 

 Levene statistic df1 df2 Sig. 

Purity 

Based on Mean 1.440 29 270 .073 

Based on Median 1.229 29 270 .201 

Based on Median and 
with adjusted df 

1.229 29 217.825 .205 

Based on trimmed mean 1.426 29 270 .078 

Levene’s test, introduced by Levene in 1960, is used 

to determine whether k samples exhibit equal variances. 

Homogeneity of variance refers to equal variances across 

samples. It tests the null hypothesis that the error 

variance of the dependent variable is equal across 

groups. In this model, Purity is indulged for the 

comparison of homogeneity and then results are 

tabulated in Table 5 The design model of conducting the 

Levene’s test includes the design as the sum of intercept, 

dataset, algorithms, dataset with algorithms. 

Table 6. White test for heteroskedasticity. 

White test for heteroskedasticity 

Chi-square df Sig. 

47.421 29 .017 

Table 6 shows the white test for heteroskedasticity 

where it lists the chi-quare test values, degree of freedom 

and sigma factor. The dependent variable chosen for 

comparison is purity. This model test the null hypothesis 

that the variance of the errors does not depend on the 

values of the independent variables. 

Table 7. Tests of between-subjects effects. 

Dependent variable: Purity 

Source 
Type 3 sum of 

squares 
df 

Mean 

square 
F Sig. 

Partial eta 

squared 

Corrected 

model 
.997a 29 .034 5.587 .000 .375 

Intercept 158.777 1 158.777 25797.026 .000 .990 

Dataset .023 5 .005 .754 .584 .014 

Algorithms .932 4 .233 37.868 .000 .359 

Dataset * 
algorithms 

.042 20 .002 .339 .997 .024 

Error 1.662 270 .006    

Total 161.436 300     

Corrected total 2.659 299     

R Squared= 375 (Adjusted R Squared= 308) 

All model terms in the between-subjects effects tests 

are statistically significant with significance values 

below 0.05. in this respective concern the sigma values 

of Algorithms corrected model and intercept are less 

than 0.05 which indicates that the concerns are 

statistically significant to each other with respect to 

purity. Table 7 holds the comparison between subject 

effects. 

 
Table 8. Pairwise comparison of algorithms. 

(I) Algorithms (J) Algorithms Mean difference (I-J) Sig. 
95% Confidence interval for difference 

Lower bound Upper bound 

IKGA 

IKGWO -.086* .000 -.127 -.046 

IKPSO -.018 1.000 -.059 .022 

HYAQP -.152* .000 -.193 -.112 

IKSSA -.027 .589 -.068 .013 

IKGWO 

IKGA .086* .000 .046 .127 

IKPSO .068* .000 .027 .108 

HYAQP -.066* .000 -.106 -.025 

IKSSA .059* .000 .019 .100 

IKPSO 

IKGA .018 1.000 -.022 .059 

IKGWO -.068* .000 -.108 -.027 

HYAQP -.134* .000 -.174 -.093 

IKSSA -.009 1.000 -.049 .032 

HYAQP 

IKGA .152* .000 .112 .193 

IKGWO .066* .000 .025 .106 

IKPSO .134* .000 .093 .174 

IKSSA .125* .000 .084 .166 

IKSSA 

IKGA .027 .589 -.013 .068 

IKGWO -.059* .000 -.100 -.019 

IKPSO .009 1.000 -.032 .049 

HYAQP -.125* .000 -.166 -.084 

 

Table 8 shows the pairwise comparison of algorithms 

of each model with every other model in all aspects such 

as mean difference standard error, significance and 

confidence interval. Adjustment on multiple 

comparisons are taken care by Bonferroni. On 

comparing the results the mean difference is significant 

at level 0.05. 

In Table 9. the F score tests the effect of Algorithms. 
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This test is based on the linearly independent pairwise 

comparisons among the estimated marginal means. 

Table 10 shows the comparison of algorithms for 

every datasets on 95% confidence intervals. 

Table 9. Univariate tests. 

Dependent variable: Purity 

 
Sum of 

squares 
df 

Mean 

square 
F Sig. 

Partial eta 

squared 

Contrast .932 4 .233 37.868 .000 .359 

Error 1.662 270 .006    

Table 10. Comparison of algorithms for every datasets on 95% 
confidence intervals. 

Dataset Algorithms Mean 
95% Confidence interval 

Lower bound Upper bound 

D1 

IKGA .652 .603 .701 

IKGWO .759 .710 .808 

IKPSO .669 .620 .718 

HYAQP .815 .766 .864 

IKSSA .689 .640 .738 

D2 

IKGA .677 .628 .726 

IKGWO .774 .725 .823 

IKPSO .685 .636 .734 

HYAQP .831 .782 .880 

IKSSA .715 .666 .764 

D3 

IKGA .680 .631 .729 

IKGWO .753 .704 .802 

IKPSO .695 .646 .744 

HYAQP .806 .757 .855 

IKSSA .723 .674 .772 

D4 

IKGA .677 .628 .726 

IKGWO .742 .693 .791 

IKPSO .675 .626 .724 

HYAQP .796 .747 .845 

IKSSA .679 .630 .728 

D5 

IKGA .682 .633 .731 

IKGWO .746 .697 .795 

IKPSO .711 .662 .760 

HYAQP .840 .791 .889 

IKSSA .687 .638 .736 

D6 

IKGA .656 .607 .705 

IKGWO .768 .719 .817 

IKPSO .700 .651 .749 

HYAQP .849 .800 .898 

Table 11 shows the post Hoc test R-E-G-W range on 

purity that shows the order of algorithms as per the 

subset. Means for groups in homogeneous subsets are 

displayed. Based on observed means the error term is 

mean square error is 0.006. Critical values are not 

monotonic for these data. Substitutions have been made 

to ensure monotonicity. Type I error is therefore smaller. 

Table 11. Post hoc test (Ryan-Einot-Gabriel-Welsch) range on purity. 

Algorithms N 
Subset 

1 2 3 

HYAQP 60 .8228   

IKGWO 60  .7570  

IKSSA 60   .6978 

IKPSO 60   .6892 

IKGA 60   .6707 

Sig.  1.000 1.000 .225 

4.10. Time Complexity of HYAQP 

The computational time of the entire HYAQP is carried 

out in two different algorithms optimized k-means 

followed by K-NNR. To compute the entire time 

complexity of HYAQP, these two method’s time 

complexities will be computed and added together and 

in the latter case the asymptotic notations will be used to 

denote the time complexity of the proposed model. (a) 

On examining the time complexity of HYAQP 

algorithm’s, it is found that it mostly relies on two 

factors: 

1. The randomness of the initialization  

2. The use of the Sine approach to update each 

individual node’s location. 

Big O notation may describe both as O(M×N), where M 

is the population and N is the number of dimensions of 

the problem. (b) The time complexity of the K-Means 

algorithms is highly dependent on three factors  

1. The number of attributes in the dataset (Q). 

2. Based on the total number of partitions (P). 

3. Total number of iterations (T) and the total time 

complexity can be computed as O (Q×P×T). 

Since both the algorithms are working in a sequential 

manner (i.e., optimization of the centroid points and then 

fine tuning of the points using k-means) the overall time 

complexity can be represented as O(M×N)+O(Q×P×T) 

and the asymptotic representation is O(Q×P×T). 

The template is designed for, but not limited to, six 

authors. A minimum of one author is required for all 

journal articles. Author names should be listed starting 

from left to right and then moving down to the next line. 

This is the author sequence that will be used in future 

citations and by indexing services. Names should not be 

listed in columns nor group by affiliation. Please keep 

your affiliations as succinct as possible (for example, do 

not differentiate among departments of the same 

organization). 

5. Conclusions 

This research work is aimed to measure the air quality 

by estimating the pollutant level through a novel AQP 

system. AQP system plugs the advantage of 

metaheuristic algorithm called SCA integrated with k-

means. The cluster centroid obtained from proposed 

improved k-means based on SCA is given to K-NNR for 

optimal estimation of pollutant. The novelty of this 

contribution is the utilization of the meta heuristic 

algorithm to optimize the prediction accuracy of the 

pollutant. Experimental analysis has been carried on air 

quality dataset taken from University of California, 

Irvine (UCI) repository. The proposed HYAQP is 

compared with conventional regression algorithms such 

as MLR, SVR and K-NNR. In all the levels of 

comparison, HYAQP achieves best because of the 

integration of SCA which intends to balance between 

diversification and intensification paving the way for 

optimal global search and local search thereby resulting 

in optimal cluster centroid. K-NNR is exposed with the 

optimal cluster centroid and test instances which not 

only reduces the complexity but also reduce the mean 
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absolute error and root mean squared error. Also, the 

purity of the cluster created using HYAQP has 8.3% and 

22.97% greater level of purity than IKPSO and IKGA 

respectively. By proposed model can be adopted to any 

country or city just by replacing the dataset. The 

pollution level prediction claimed by the HYAQP is 

highly accurate and hence, this model can potentially be 

used in places where there is a high risk in air pollution 

level with high uncertainty. The proposal removes the 

barrier of false prediction by tuning the centroid position. 

Future work of this contribution is planned to collect data 

from real world using IoT sensors and also by using 

Unmanned Aerial Vehicle to locate the source that cause 

pollution. 
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