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Abstract: The Artificial Algae Algorithm (AAA) is a newly proposed metaheuristic algorithm that is inspired by microalgae 

behaviors. This algorithm has been proposed for solving continuous optimization problems and achieved good results for the 

continuous problems. In addition, binary versions of AAA are proposed in the literature. This paper presents a discrete version 

of AAA, which is named Discrete Artificial Algae Algorithm (DAAA). For discretization of AAA, Crossover operators (one-point 

and uniform) are used in the processes (helical movement, evolutionary process, and adaptation). In this study, in addition to 

crossover operators, transformation operators such as swapping, insertion, symmetry, and reversion are also used. DAAA’s 

performance was analyzed on a well-known discrete optimization problem called the Traveling Salesman Problem (TSP). DAAA 

was tested on thirty-two Benchmark instances of the TSP. These instances were small-sized, medium-sized, and large-sized. 

Firstly, the AAA processes (evolutionary process, adaptation, and helical movement) with the combination of nearest neighbor 

and transformation operators were tested for selected benchmark instances and this testing was called Process Analysis. After 

this process Analysis the best processes with which to continue were selected, and after this decision comparisons with other 

algorithms were started. The main comparison is between discrete Social Spider Algorithm (DSSA) and DAAA, and DAAA 

outperformed DSSA on most of the problems. Further, DAAA’s performance on some of the benchmark instances was compared 

with some of the well-known algorithms for TSP. In this comparison, DAAA has achieved better results than many other 

algorithms. Experimental results show that DAAA has the capability of solving discrete optimization problems and 

outperforming other algorithms. 
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optimization. 
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1. Introduction 

The focus of much scientific research in optimization is 

on Routing problems. Their popularity and importance 

stem from their complexity and these problems are 

difficult to solve. Therefore, they attract more interest 

and study than many other problems. To solve this 

problem, classical mathematic and heuristic methods 

have been used. The solutions to these problems are not 

only of interest in business and logistics, but also are 

valuable for tourism and entertainment sector Osaba et 

al. [42]. 

The most popular routing problem is the Traveling 

Salesman Problem (TSP). In 1930, the TSP was 

introduced as a mathematical problem, and its 

popularity increased after 1950 [6]. 

TSP is well known in the scientific community for 

discrete optimization problems. Regarding this 

problem, the goal is to find the shortest tour path. Other 

than for business, logistics, and tourism routing 

problems also have been used in a lot of engineering 

applications as designing hardware devices, radio-

electronic systems, and computer networks [21]. 

TSP is based on visiting every city and returning to  

 
the starting city but with the condition of visiting each 

city just one time. TSP is NP-hard problem, and the 

complexity of the TSP is the main reason it is a 

commonly used problem in the scientific world. 

With an increasing number of cities, it is more 

difficult to find the optimum solution for TSP with 

classical mathematical methods. Researchers have 

started to use heuristic methods or discrete optimization 

algorithms for achieving better results and improving 

the optimal solution in computational and time 

complexity [21]. 

TSP has been used for comparison in many 

optimization methods; for example, Nearest 

Neighborhood Search (NNS), Simulated Annealing 

(SA), Tabu Search (TS), Neural Networks (NNs), Ant 

Colony System (ACS) and Genetic Algorithm (GA). 

Bas and Ulker [5] proposed a new Discrete Social 

Spider Algorithm (DSSA) for TSP. Mahi et al. [38] 

proposed a new hybrid method based on Particle Swarm 

Optimization (PSO), Ant Colony Optimization (ACO) 

and 3-Opt algorithms for TSP. The proposed algorithm 

uses beneficial sides of these three algorithms. Rokbani 

et al. [47] are using bi-heurtic method for combining 
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different methods and mechanisms. They have proposed 

bi-heuristic ACO-based approaches for TSP. Cinar et al. 

[10] proposed a new discrete tree-seed algorithm for 

solving symmetric TSP. This proposed algorithm uses 

some techniques of tree-seed algorithm to solve discrete 

problem. Pedro et al. [44] proposed a TS approach for 

the prize collecting TSP. This method is one of the very 

useful methods for solving TSP. Dorigo and 

Gambardella [15] proposed that ACO has the capacity 

to achieve good solutions in both symmetric and 

asymmetric instances of the TSP. Mavrovouniotis and 

Yang [39] proposed an ACO framework for dynamic 

environments. Karaboga and Gorkemli [31] proposed a 

new Artificial Bee Colony (ABC) algorithm called 

Combinatorial ABC for the TSP. Additionally, Hijazi et 

al. [25] proposed ABC algorithm for the purpose of 

feature selection. 

Artificial Algae Algorithm (AAA) is proposed for 

continuous optimization problems. AAA has three 

processes. In the Evolutionary Process, an algal colony 

which receives enough light grows and reproduces itself 

to generate two new algal cells in time, similar to the 

real mitotic division. 

The second process is the Adaptation process, in 

which an insufficiently grown algal colony tries to 

resemble itself to the biggest algal colony in the 

environment. And the last process is the helical 

movement process in which the movements of algal 

cells differ. As the friction surface of a growing algal 

cell gets larger, the frequency of helical movements 

increases by increasing their local search. For Discrete 

Artificial Algae Algorithm (DAAA), the process of 

crossover operators has been successfully implemented. 

The results for TSP became better after applying the 

crossover operator in the method mentioned above. 

Adding 2-opt, roulette wheel methods, and transform 

operators also improved the results. With the 

combination of crossover operators and these methods 

DAAA achieved better results. 

1.1. Literature Review 

TSP is a well-known problem in the scientific world, the 

complexity is NP-Hard but there are a lot of proposed 

algorithms which nowadays provide an optimal 

solution. Gunduz and Aslan proposed [22] A newly 

discrete Jaya algorithm achieves good results for TSP. 

This algorithm was used in random permutations and 

neighborhood to solve TSP, and after using these 

methods 2-opt also was implemented for achieving 

better results. Pandiri and Singh [43] implemented a k-

interconnected method on ABC that achieved better 

results than standard ABC for the multi-depot multi-

TSP. Osaba et al. [42] proposed a discrete water cycle 

algorithm that was tested on 33 problem datasets 

covering both symmetric and asymmetric TSP 

problems. Eskandari et al. [18] proposed a new hybrid 

algorithm which is a modified and enhanced ACO for 

TSP. This algorithm is the hybridization of ACO and 

Bean Optimization Algorithm (BOA); results of this 

algorithm were better than ACO and GA. For avoiding 

local minima 3-opt was used in the newly proposed by 

Gulcu et al. [21] parallel cooperative hybrid method 

based on ACO and the 3-Opt algorithm for solving TSP; 

this algorithm gets optimum solutions for Eil51, 

Berlin52, Eil76, KroA100, Lin105, and Eil101. Ulder et 

al. [52] implemented genetic local search, GA and 

Multi-Search GA with Lin-Kerhinghan and 2-opt. 

Choong et al. [9] proposed An ABC algorithm with a 

modified choice function for the TSP, and it was tested 

on 64 problem datasets using Lin-Kerhinghan. The 

proposed method solves approximately within 2.7 

minutes which is better than other algorithms.  

Archetti et al. [2] proposed an iterated local search 

for the TSP with release dates and completion time 

minimization. The proposed model used destroy and 

repair method, which means one method is simple and 

fast, the other method is using mathematical 

programming formulation. Dodig and Smith [13] 

proposed a new apple carving algorithm to approximate 

traveling salesman problem from compact triangulation 

of planar point sets and was tested with some of TSP 

benchmark datasets. In applying metaheuristic for time-

dependent traveling salesman problem in postdisaster 

for time-dependent TSP (TDTSP). Ban [4] proposed a 

model for combining GA and LS to solve TDTSP, and 

this model gets for many problems better results than 

others. For handling ACO’s disadvantages proposed 

Adopting dynamic evaporation strategy to enhance 

ACO algorithm for the TSP [16]. Dynamic evaporation 

strategy is implemented on ACO and tested on 10 TSP 

benchmark datasets. A novel metaheuristic algorithm, 

the domino algorithm, proposed by Ismail [27] for the 

solution of the TSP, was tested on Eil51, Berlin52, St70, 

Eil76, Pr76, and Rat99 and results were compared with 

nearest neighbour approach. Domino algorithm’s 

results were better than nearest neighbour approach. 

Daoqing and Mingyan [11] proposed for solving the 

TSP a new parallel Discrete Lion Swarm Optimization 

(DLSO) algorithm. Firstly, crossover operators on 

DLSO were used, after that complete 2-opt was used for 

improving local search abilities. The modification of the 

hybrid method of ACO, PSO, and 3-OPT algorithm in 

TSP Hertono et al. [24] proposed model utilized the 

good sides of 3 different algorithms. ACO is used for 

finding the best solution, PSO for implementing the best 

value of parameters, and 3-opt for getting better results 

on local minima. Zhong et al. [58] proposed a discrete 

comprehensive learning PSO algorithm with Metropolis 

acceptance criterion for TSP that used SA on PSO and 

used Metropolis acceptance criterion on particles. This 

model was tested on 6 TSP benchmark methods, and the 

results were better than the compared algorithms. Shang 

et al. proposed [49] ACO for solving the TSP. Saraei et 

al. [48] proposed solving of TSP using firefly algorithm 

with greedy approach, on this model is used greedy 
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approach for solving the TSP. Snyder and Daskin [50] 

proposed a random-key GA for solving the TSP, on this 

model GA was combined with local tour improvements. 

This was tested from 42 to 442 nodes benchmark tests 

and was published quality and computation time. A 

hybridization model was proposed by Gunduz et al. [23] 

to solve the TSP, this model has used a hierarchic 

approach based on swarm intelligence. For achieving 

good solutions was used ACO, for improving the path 

was used ABC; this hybridization achieves better results 

than ACO and ABC individually. Global Local Search 

(GLS), C2opt, and Smallest Square (SS) were used 

together to solve the TSP on the proposed model in [19] 

and Yang et al. [56] proposed ACO to solve the 

generalized TSP, this model for escaping from local 

minima was used, a mutation technique, and this 

technique implemented on ACO very well. Gharib et al. 

[20] have a comparison between PSO and GA to the 

solving the TSP, results were acceptable for both 

algorithms. Improving variable neighborhood search to 

solve the TSP [26] is used for the symmetric and 

asymmetric problem, and the results were acceptable for 

the symmetric and asymmetric problem. For achieving 

better results on TSP, proposed analysis of discrete 

ABC was used in neighborhood operator [33] with 

combined 2-opt and 3-opt. African Buffalo 

Optimization (ABO) algorithm was proposed by Odili 

et al. [40] for solving the TSP, African Buffalo’s 

organization abilities was used on this proposed model. 

The results were better than other algorithms. 

Odili et al. [41] have a comparative study between 

ABO and Randomized Insertion Algorithm (RIA). In 

the proposed model ABO used Karp-Steele approach, 

while RIA used random insertion method, and the RIA 

achieved better results were achieved than ABO. Liu 

and Zeng [36] proposed GA with reinforcement 

learning to solve the TSP, which uses heterogonous 

pairing selection, and the proposed model was tested on 

small and medium TSP benchmark methods. Wang et 

al. [55] proposed multi-offspring GA was to solve the 

TSP; this proposed model implements biological 

evolutionary and mathematical ecological theory 

methods. This proposed method was faster than other 

methods. Rokbani et al. [46] proposed the model 

combined Particle Swarm Optimization-Ant Colony 

Optimization-Local Search (PSO-ACO-LS) with 

gravitational search to solve the TSP, and results were 

acceptable for some of the TSP benchmark datasets. 

Taillard and Helsgaun [51] proposed Partial 

Optimization Metaheuristic Under Special 

Intensification Conditions (POPMUSIC) for solving the 

TSP, this proposed model was used in large size 

problems, and results were acceptable. Beam search and 

ACO [37] were combined to solve the TSP with a time 

window, and the proposed algorithm was implemented 

very well on the TSP with time window. Akhand et al. 

[1] proposed a newly algorithm Discrete Spider Monkey 

Optimization (DSMO) was proposed to solve the TSP, 

which implements Swap Sequence (SS) and Swap 

Operator (SO), and the results were better than other 

compared algorithms. Khan and Maiti [32] 

implemented K-opt with SS and SO on ABC and tested 

this method on asymmetric and symmetric TSP 

benchmark instances. 

Uymaz et al. [53] proposed a novel bio-inspired 

AAA for nonlinear global optimization for continuous 

problems, and the proposed algorithm was tested with 

CEC 05’ instances and the results were compared with 

other algorithms, achieving acceptable results. With 

modified multi-light source movement AAA was 

implemented to the multi-light source for numerical 

optimization and applications [54] and tested in real-

world optimization problems IEEE-Congress on 

Evolutionary Computation (IEEE-CEC) 11’. 

Multidimensional Knapsack Problem was solved with 

Binary AAA (BAAA), the proposed [57] algorithm was 

tested on 94 benchmark instances and results were better 

than other algorithms. AAA was implemented to solve 

multi-objective continuous problems. Babalik et al. 

proposed [3] the newly multi-objective algorithm was 

tested on 36 different multi-objective problems, and the 

results were better than compared algorithms. AAA and 

Simplex Search Method (SSM) were hybridized for 

economic load dispatch problems, on the proposed [34] 

algorithm AAA was for global searching and SSM for 

local searching. The proposed method was tested on 

CEC 05’ for small, medium, and large size problems. 

Results were better than other algorithms. Every day 

renewable energy sources become more popular and 

more important in our world. For getting this energy 

some tools are needed, and one of the most important 

tools is Wind Turbine; BAAA was proposed by Beskirli 

et al. [7] for solving this wind turbine problem. The 

proposed algorithm achieved the best results for this 

problem.  

TSP algorithms can be applied in the field to optimize 

multiple gas turbine engines. Given that this is a large-

scale problem, traditional algorithms often fall into local 

optima when solving such expansive TSP challenges. 

The newly proposed algorithm, ITO [14] addresses this 

issue and achieves a better solution quality than the 

compared state-of-the-art algorithms. Hybrid 

algorithms achieve better solutions for large-scale TSP 

problems. Kanna et al. [30] proposed an EW-DHOA 

developed by integrating two well-performing meta-

heuristic algorithms: the Deer Hunting Optimization 

Algorithm (DHOA) and the Earthworm Optimization 

Algorithm (EWA). Experimental results show that the 

convergence of the proposed hybrid optimization is 

superior when solving TSP, with reduced computational 

complexity, and it offers significant improvement in 

attaining optimal results. 

Problems involving Multiple Drones (MD) can be 

formulated as TSP problems Cavani et al. [8] proposed 

exact methods to address this issue, using Mixed-Integer 

Linear Programming (MILP) and a branch-and-cut 
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algorithm. These approaches effectively solved the 

TSP-MD problem and achieved excellent results. The 

exact method Flying Assistant Traveling Salesman 

Problem (FSTSP) Dell’Amico et al. proposed [12] to 

address the drone problem, and the results obtained 

were competitive with other algorithms. 

1.2. Contribution 

This paper covers a novel discrete algorithm of AAA for 

solving symmetric TSP, and this study presents the first 

version of the AAA which was coded and implemented 

to the most popular discrete problem TSP. The 

parameters of AAA (evaluation process, adaptation, and 

helical motion) were applied for discrete optimization 

problems with crossover operators (one-point and 

uniform). The main goal of the research work presented 

in this manuscript is to prove efficiency of the DAAA 

in solving the TSP. Achieving results for TSP of DAAA 

are compared with DSSA. Experiments have been 

adapted to TSP datasets exporting from publicly 

available benchmark instances. As the obtained results 

clearly show, the proposed DAAA achieves better 

results compared to DSSA. 

There are some differences between our study and 

the studies that are available in the literature. The 

differences are listed below. 

DAAA is a novel and alternative discrete 

optimization method for discrete optimization 

problems. The new method works in a crossover based 

discrete space, and includes the application of 

transformation operators, and the nearest neighbor 

method. Also process analysis has been performed for 

the proposed method, and this process analysis is a 

combination between AAA processes (evolutionary 

process, adaptation, and helical movement) and Nearest 

Neighbor and Transformation operators. This 

combination is tested on selected Benchmark instances. 

Experimental results show that DAAA achieves 

acceptable and competitive results for TSP. 

The remaining of this work is organized as listed 

below.  

 Section 2 contains a description of AAA. 

 Section 3 contains a description of the proposed 

discrete version of AAA. 

 Section 4 contains the experimental Results. 

 Section 5 contains a comparison of the DAAA results 

with DSSA results, and with other algorithms’ 

results. 

 Section 6 contains the conclusion of the paper. 

2. Artificial Algea Algorithm (AAA) 

Uymaz et al. [53] proposed AAA for solving continuous 

optimization problems. This algorithm was developed 

with the inspiration of the behavior of microalgae. It was 

also inspired from characteristic properties. The newly 

proposed method has become a part of biological 

metaheuristic methods. AAA consists of three parts and 

those parts are helical movement, evolutionary process, 

and adaptation [53]. In the proposed algorithm the 

population consists of several algal colonies and each 

colony has several individual algae each of which plays 

an important role in the algorithm. The following 

equation represents the population: 

Population of Algal Colony=

[
 
 
 
𝑥1

1 ⋯⋯𝑥1
𝑑

𝑥2
1 ⋯⋯𝑥2

𝑑

⋮ ⋯⋯ ⋮
𝑥𝑛

1 ⋯⋯𝑥𝑛
𝑑]
 
 
 

 

𝑥𝑖 = (𝑥𝑖
1, 𝑥𝑖

2, … . , 𝑥𝑖
𝑑)𝑖 = 1,2,… .𝑁, xi is every viable 

solution in solution space. 𝑥𝑖
𝑗
 is algal cell, N is the 

number of algal colony and D is the number of decision 

variables. The problem dimension is equal to the 

number of algal cells in each algal colony. 

2.1. Helical Movement 

Algae perform typical movements to reach adequate 

light and other nutrients in the water areas. In AAA, all 

algal colonies move toward the best algal colony. The 

algal colony moves in three dimensions like its real-

world movements. The movement randomly selecting 

three distinct algal cells and changing their positions.  

𝑥𝑖𝑚
𝑡+1 = 𝑥𝑖𝑚

𝑡 + (𝑥𝑗𝑚
𝑡 − 𝑥𝑖𝑚

𝑡 )(𝑠𝑓 − 𝜔𝑖)𝑝 

𝑥𝑖𝑘
𝑡+1 = 𝑥𝑖𝑘

𝑡 + (𝑥𝑗𝑘
𝑡 − 𝑥𝑖𝑘

𝑡 )(𝑠𝑓 − 𝜔𝑖) 𝑐𝑜𝑠 𝛼 

𝑥𝑖𝑙
𝑡+1 = 𝑥𝑖𝑙

𝑡 + (𝑥𝑗𝑙
𝑡 − 𝑥𝑖𝑙

𝑡 )(𝑠𝑓 − 𝜔𝑖) 𝑠𝑖𝑛 𝛽 

where m, k and l are random integers between 1 and d, 

xim, xik and xil simulate x, y and z coordinates of the ith 

algal colony, j is the index of a neighbor algal colony, p 

is an independent random number between -1 and 1, 

𝛼and 𝛽 are random degrees of arc between 0 and 2, sf is 

shear force, and𝜔 i is the friction surface area of ith algal 

colony. 

2.2. Evolutionary Process 

An algal colony tries to reach sufficient food source, 

growing rapidly if it reaches the source and dying if it 

fails. The same is true for AAA: if the algal colony 

moves to an ideal position that 𝑥𝑖 becomes bigger than 

its starting position. The smallest algal colony is 

changed by a bigger algal colony’s cell. The equations 

below show the process:  

𝑏𝑖𝑔𝑔𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑎𝑥(𝑠𝑖𝑧𝑒(𝑥𝑖)), 𝑖 = 1,2, . . . . , 𝑛 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 = 𝑎𝑟𝑔 𝑚𝑖𝑛(𝑠𝑖𝑧𝑒(𝑥𝑖)), 𝑖 = 1,2, . . . . , 𝑛𝑏 

𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡𝑗 = 𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑗 , 𝑗 = 1,2, . . . . , 𝑛 

where smallest and biggest are the biggest and smallest 

algal colony, and j is a randomly selected algal cell. 

2.3. Adaptation 

An algal colony bears starvation in the growing process 

(1) 

(2) 

(3) 

(4) 

(7) 

(6) 

(5) 
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when there are insufficient light and nutrients. After 

starvation the algal colony tries to become part of the 

biggest colony and adapts itself to the environment. 

Initially, the value of starvation is zero and it is changed 

with helical movement, it can get worse or better. Below 

is the equation of adaptation process:  

𝑥𝑠 = 𝑎𝑟𝑔 𝑚𝑎𝑥 (𝑠𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛(𝑥𝑖)) ,   𝑖 = 1,2,… . 𝑛 

𝑥𝑠𝑗
𝑡+1 = 

{𝑥𝑠𝑗
𝑡 + (𝑏𝑖𝑔𝑔𝑒𝑠𝑡𝑗 − 𝑥𝑠𝑗

𝑡 ) × 𝑟𝑎𝑛𝑑1, 𝑖𝑓 𝑟𝑎𝑛𝑑2 < 𝐴𝑝;   𝑗 = 1,2,… 𝑑 

where s is the index of starvation with the highest value 

in the algal colony. 

The flowchart for AAA is shown in Figure 1. 

 

Figure 1. Flow chart of AAA. 

3. Discrete Artificial Algea Algorithm 

(DAAA) 

AAA is developed for continuous optimization 

problems,and AAA was reorganized and modified to 

solve discrete optimization problems. This novel 

developed discrete optimization algorithm was named 

DAAA. The organization of the DAAA processes is 

as follows: 
The first phase was implementing crossover 

operators [29] on the AAA’s methods (Helical 

movement, Evaluation process, and Adaptation), this 

operation is described in the following subsections. 

Other than crossover operators nearest neighbour 

search was applied in the first phase [28]. 

Transformation operators were used in the second 

phase [59] for improving the results. These 

transformation operators implemented on the AAA’s 

methods were Swapping, Reversing, Inserting and 

Symmetrization. 

2-opt [17] and roulette-wheel selection [35] were 

implemented in the last phase for achieving better 

results. 

3.1. Evolutionary Process with Crossover 

In Table 1 the evolutionary process if an algal colony 

does not reach a sufficient food source then a random 

selected cell of the smallest algal colony is changed by 

a bigger algal colony’s cell. We implement crossover 

here in the biggest and smallest algal colony. One point 

crossover was implemented on randomly chosen cells 

from these colonies with these cells changing places. To 

improv the results we use uniform crossover,where each 

cell is chosen from either parent with equal probability. 

These operations are described in Figures 2 and 3. 

Table 1. Example algal colony of evalutanory process. 

Xworst 3 7 6 5 

Xbest 2 4 1 8 

 

Figure 2. One-point crossover for evolutionary process. 

 

Figure 3. Uniform crossover for evalutanory process. 

3.2. Adaptation Process with Crossover 

In Table 2, algal colony starvation is increasing when 

there are insufficient light and nutrients, and the algal 

colony is becoming part of the biggest colony and it is 

adapting to the environment. We use one point and 

uniform crossover on that process. These operations are 

described in Figures 4 and 5. 

Table 2. Example algal colony of adaptation process. 

Xstarving 2 3 7 6 

Xbest 1 4 5 8 

 

Figure 4. One-point crossover for adaptation process. 

(8) 

(9) 
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Figure 5. Uniform crossover for adaptation process. 

3.3. Helical Movement Process with Crossover 

In Table 3 to reaching suificient light and other 

nutriment in the water areas, algal colony is doing 

helical movements. In these movements cells are chosen 

randomly and their positions are changed. After these 

movements the crossover operations (one point and 

uniform) are implemented in DAAA to improve the 

actual solutions as showen in Algorithm (1). These 

operations are described in Figures 6 and 7. 

Table 3. Example algal colony of adaptation process. 

X1 13 2 5 11 

X2 1 4 3 12 

 

Figure 6. One-point crossover for helical movement. 

 

Figure7. Uniform crossover for helical movement. 

Algorithm 1: The Pseudo Code of DAAA. 

Initialize a population of n algal colonies with random solutions 

Evaluate size (G) of n algal colonies 

Define  the parameters (shear force∆,loss of energy e and 

Adaptation parameter 𝐴𝑝) 

Create algal colonies with a random permutation 

Set Maximum Fitness Calculation Number as MaxFEVs 

 

While Fes is smaller than MaxFEVs 

 

If rand  < 0.25 

NNS algae= Apply Nearest Neighbour Search 

Replace the worst algae with NNS algae 

End 

 

Start with evolutionary   process 

Evaluate the worst and best algal colony 

Implement  crossover to the algal colony and get new algal colony 

If rand <0.90 than One point crossover 

XworstTemp=Xworst; 

OnePointCRIndex=randi(number of dimension) 

Apply OnePointCR for Xbest 

Apply OnePointCR for Xworst 

Xworst=Xbest; 

End 

If new cost < current cost of the algae 

Replace new algae with the current algae 

Starve Counter of the current algae =0; 

else 

Starve Counter of the current algae ++; 

end 

Else 

Uniform crossover 

End 

 

Continue with adaptation process 

Evaluate the starvation of algal colony 

Maxstarving= Xstarving 

for j =1: CrossoverSize 

Temporary Xstarving =Xstarving; 

OnePointCRIndex=randi(number of dimension-CrossoverSize) 

Apply OnePointCR for Xbest 

Apply OnePointCR for Xstarving 

Xstarving=Xbest; 

 

End 

... 

If new cost < current cost of the algae 

Replace new algea with the current algae 

Starve Counter of the current algae =0; 

else 

Starve Counter of the current algae ++; 

end 

Else 

Uniform crossover 

End 

 

Continue with helical movement 

Select a RandomAlgae 

RandomAlgae = Algs 

 If rand <0.90 than One point crossover 

 Temporary RandomAlgae = RandomAlgae; 

  

 OnePointCRIndex=randi(number of dimension) 

 Apply OnePointCR for currentAlgae 

 Apply OnePointCR for Random Algae 

 RandomAlgae=currentAlgae; 

 

End 

   

 If new cost < current cost of the algae 

   Replace new algae with the current algae 

     Starve Counter of the current algae =0; 

else 

    Starve Counter of the current algae ++; 

end 

Else  

           Uniform crossover 

End 

 

For each  algae in algae population 

Select one  operation by Roulete wheel  selection 

Case 1:   

 Do Swap 

Case 2: 

 Do Reversion 

Case 3: 

 Do Insertion 

Case 4: 

 Do Symmetry 

End 

 

Change the positions of the algae according to the selected 

operation. 
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If new cost < current cost of the algae 

 Replace new algae with the current algae 

   Starve Counter of the current algae =0; 

else 

   Starve Counter of the current algae ++; 

end 

 

End of while 

 

Apply the 2-Opt algorithm to the global best solution 

 

Report the best as the obtained best solution  

End 

2-opt, Roulette-wheel selection and transformation 

operators were used in the proposed method for 

improving the solutions achieved from crossover 

operations implemented on the evolutionary process, 

adaptation and helical movement, but 2-opt was used 

only once. 

4. Traveling Salesman Problem 

The TSP involves a salesman starting his tour from one 

city and finishing the tour back at the starting city, 

aiming to visit all necessary cities in the shortest route 

possible. All cities (which are necessary to visit) are 

included in that tour. The main achievement is to 

complete this tour on the shortest route. The number of 

possible tours is the hardest part of finding the shortest 

paths: There are (n-1)! Possible tours for n cities. This 

term signifies the total number of permutations possible 

when visiting n distinct cities. Each permutation 

represents a unique order of visiting all cities exactly 

once. The euclidean distance is used for calculating 

distance between city i and city j. There are two types of 

TSP problems, symmetric and asymmetric; this work 

uses benchmark tests of symmetric problems [7].  

5. Experimental Results and Analysis 

The benchmark tests which are used in this study are 

obtained from TSPLIB [45]. There are 32 benchmark 

tests used for our experiments. These are: Eil51, 

Berlin52, Eil76, Pr76, Rat99, Rd100, KroA100, 

KroB100, KroC100, KroD100, KroE100, Lin105, 

Pr107, Pr124, Pr136, Pr144, KroA150, Pr152, Rat195, 

KroA200, Ts225, Tsp225, Pr226, Pr264, Pr299, Lin318, 

Linhp318, Rd400, Pr439, Rat575, Rat783, Pr1002. 

The used benchmark tests are small-sized, middle-

sized, and large-sized dimensions. The best results 

obtained for each problem are marked in boldface font 

type to ease the comparison. Each problem was tested 

10 times. Experiments were run on a Windows 10 

professional OS laptop using Intel Core i7 2.80 GHz 

CPU, 16GB RAM and Windows 10 64-bit operating 

system, and MATLAB was used for implementing the 

codes. 

The first experimental benchmark instances with 

DAAA processes were tested, the general results are in 

Table 4. For the naming processes in this experiment the 

first letter of every process was used: N-nearest 

neighbor, E-evolutionary process, H-helical movement, 

A-adaptation, T-transformation operators. The purpose 

of this analysis was to identify the most effective 

combination of processes for solving the TSP 

benchmark instances (through this analysis, we sought 

to identify the most effective process for solving 

benchmark instances of the TSP. This analysis starts 

with three combinations Nearest Neighbor, 

Evolutionary Process, Adaptation (NEA) and finishes 

with five combinations NEA-Helical Movement, 

Adaptation, Transformation Operators (NEAHT); every 

possible combination between the processes was tested. 

Measurements for comparing are the following values: 

Mean (the average result obtained after testing the 

problem ten times), Standard Deviation (in optimization 

measures how much individual solutions vary from the 

average solution, indicating the consistency of 

optimization results (Std)), Best (the best result obtained 

after testing the problem ten times), Worst (the worst 

result obtained after testing the problem ten times). For 

Linhp318 the NEA process obtained best results in 

Mean, Std, and Worst, for Rat575 NEH process 

obtained best Std,for Linhp318 NHTEM process 

obtained best results in the Best value, for Berlin52 

Nearest Neighbor, Helical Movement, Adaptation 

(NAH) process obtained best Std, for tsp225 NAT 

process obtained best results in Mean and Worst, for 

KroA100 NEAT process obtained best results in Mean, 

for Tsp225 in the Best, for KroA100 NEAHT process 

obtained best results in the best value. 

Tables 5 and 6 show the results of ranking the process 

analyzing of Mean and the Best values. The NET and 

Nearest Neighbor, Evolutionary Process, Adaptation, 

Transformation Operators (NEAT) processes obtained 

best ranking for the Mean value. In the Best value, the 

best ranking results are achieved from NEAT and 

NAHT processes. The NEAT process achieved better 

results than other processes in both tables; only in Table 

5 NET is better than NEAT. Following these results, it 

was decided to continue with NEAT, so nearest 

neighbor, evolutionary process, adaptation, and 

transformation operators were used for the next tests and 

comparisons. Following the results in process analysis, 

general comparisons were continued with NEAT. 

Table 7 shows the result of small-sized problems for 

5000 iterations, the instances for this experiment are 

Burma 14, Ulysses16, Ulysses22, and Bays29. The error 

rate is 0 for all instances, Std is 0 for Burma 14, 

Ulysses16, and Ulysses 22. 

Table 8 has general results in the medium-sized and 

large-sized problems for 100,000 and 50,000 iterations. 

By comparing the results, the Error rate is lower for 

100.000 iterations, especially for the large-sized 

problems. 
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Table 4. General results of process analysis. 

Processes Problem Mean Std Best Worst 

NEA 

Berlin52 7911.40 0.00 7911.40 7911.40 

KroA100 22144.75 37.31 22120.22 22229.24 

Tsp225 4333.88 9.47 4314.81 4341.10 

Linhp318 46099.76 11.00 46068.44 46103.24 

Rat575 7297.34 20.12 7277.55 7334.53 

NEH 

Berlin52 7911.40 0.00 7911.40 7911.40 

KroA100 22440.14 485.23 22049.39 23403.30 

Tsp225 4274.45 49.78 4191.56 4343.97 

Linhp318 46360.99 224.79 46177.97 46784.95 

Rat575 7342.51 15.39 7316.01 7361.66 

NET 

Berlin52 7555.18 22.80 7544.37 7598.44 

KroA100 21955.08 264.98 21643.34 22572.68 

Tsp225 4228.47 55.15 4146.62 4316.16 

Linhp318 46162.55 316.37 45631.33 46591.38 

Rat575 7352.40 27.89 7325.95 7417.55 

NAH 

Berlin52 7911.40 0.00 7911.40 7911.40 

KroA100 22321.35 282.86 22120.22 22933.20 

Tsp225 4272.97 65.26 4118.62 4349.84 

Linhp318 46259.50 176.02 46141.51 46752.13 

Rat575 7351.03 35.38 7305.29 7435.27 

NAT 

Berlin52 7578.10 60.67 7544.37 7713.03 

KroA100 22085.43 457.82 21712.37 23291.65 

Tsp225 4196.48 42.62 4124.53 4257.60 

Linhp318 46205.37 271.99 45823.55 46752.92 

Rat575 7354.11 30.10 7319.30 7412.39 

NHT 

Berlin52 7628.18 70.90 7544.37 7716.63 

KroA100 22174.50 290.63 21622.30 22738.69 

Tsp225 4209.43 37.50 4150.60 4268.75 

Linhp318 46400.35 291.99 45999.13 46969.28 

Rat575 7358.14 50.34 7313.72 7463.24 

EAH 

Berlin52 8619.16 256.41 8250.59 8968.58 

KroA100 27539.26 1187.26 26349.69 29738.17 

Tsp225 5497.64 231.13 4958.49 5802.25 

Linhp318 62390.17 2424.13 56619.23 64715.46 

Rat575 10430.64 202.01 9934.01 10730.37 

EAT 

Berlin52 8042.15 209.04 7669.62 8408.26 

KroA100 24700.81 965.69 23420.86 25913.52 

Tsp225 5196.09 141.12 5004.44 5460.52 

Linhp318 61868.30 1944.54 58288.12 64140.80 

Rat575 10448.19 213.07 10088.54 10786.88 

EHT 

Berlin52 8011.56 205.57 7760.07 8427.79 

KroA100 25825.42 1078.48 24097.45 27602.09 

Tsp225 5379.07 183.84 5126.16 5655.10 

Linhp318 61443.75 2151.57 57839.60 66127.09 

Rat575 10399.18 259.19 10127.14 10962.35 

AHT 

Berlin52 8083.31 226.07 7606.95 8385.30 

KroA100 26277.18 1727.69 24346.70 29479.48 

Tsp225 5450.53 267.32 5255.86 6093.93 

Linhp318 62701.98 2880.93 59127.96 68967.38 

Rat575 10564.55 339.64 10308.28 11426.90 

NEAH 

Berlin52 7902.92 19.37 7853.25 7911.40 

KroA100 22386.42 386.29 22120.22 23280.51 

Tsp225 4255.50 37.88 4180.79 4327.08 

Linhp318 46375.29 241.31 46177.97 46784.95 

Rat575 7344.56 26.47 7316.67 7404.06 

NEAT 

Berlin52 7574.20 53.60 7544.37 7713.03 

KroA100 21907.48 251.60 21626.07 22385.22 

Tsp225 4209.94 52.64 4115.87 4283.04 

Linhp318 46101.07 254.20 45656.50 46439.31 

Rat575 7386.69 63.86 7317.56 7540.22 

NEHT 

Berlin52 7642.72 88.34 7544.37 7805.41 

KroA100 22180.92 205.21 21807.79 22401.74 

Tsp225 4240.39 50.63 4183.38 4352.48 

Linhp318 46225.27 316.08 45659.16 46750.15 

Rat575 7347.75 46.99 7291.45 7452.66 

NAHT 

Berlin52 7637.10 55.66 7544.37 7713.03 

KroA100 22078.31 239.30 21607.16 22355.23 

Tsp225 4245.66 60.29 4147.30 4313.86 

Linhp318 46263.68 261.62 45632.33 46468.20 

Rat575 7353.94 29.59 7305.73 7410.22 

EAHT 

Berlin52 8118.54 120.61 7855.50 8292.64 

KroA100 26403.94 712.19 25115.57 27227.13 

Tsp225 5359.01 139.47 5079.38 5632.13 

Linhp318 63497.47 1746.88 61162.83 66747.49 

Rat575 10438.94 237.64 10075.53 10865.96 

NEAH 

Berlin52 7664.34 78.24 7544.37 7800.20 

KroA100 22258.45 299.03 21591.29 22655.73 

Tsp225 4257.74 41.07 4200.59 4324.02 

Linhp318 46248.18 401.58 45693.22 46837.52 

Rat575 7353.63 39.67 7325.95 7461.64 
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Table 5. Rank results of process analysis according to mean values. 

Process Names Berlin52 KroA100 Tsp225 Linhp318 Rat575 Total rank Average rank Final rank 

NEA 
7911.40 22144.75 4333.88 46099.76 7297.34    

9 5 11 1 1 27 3.4 4 

NEH 
7911.40 22440.14 4274.45 46360.99 7342.51    

10 11 10 9 2 42 5.3 11 

NET 
7555.18 21955.08 4228.47 46162.55 7352.40    

1 2 4 3 6 16 2.0 1 

NAH 
7911.40 22321.35 4272.97 46259.50 7351.03    

11 9 9 7 5 41 5.1 10 

NAT 
7578.10 22085.43 4196.48 46205.37 7354.11    

3 4 1 4 9 21 2.6 3 

NHT 
7628.18 22174.50 4209.43 46400.35 7358.14    

4 6 2 11 10 33 4.1 7 

EAH 
8619.16 27539.26 5497.64 62390.17 10430.64    

16 16 16 14 13 75 9.4 16 

EAT 
8042.15 24700.81 5196.09 61868.30 10448.19    

13 12 12 13 15 65 8.1 13 

EHT 
8011.526 25825.42 5379.07 61443.75 10399.18     

122.4 13 14 12 12 63 7.9 12 

AHT 
8083.3191 26277.18 5450.53 62701.98 10564.55    

1411 14 15 15 16 74 9.3 15 

NEAH 
7902.292 22386.42 4255.50 46375.29 7344.56    

83 10 7 10 3 38 4.8 9 

NEAT 
75741.20 21907.48 4209.94 46101.07 7386.69    

2 1 3 2 11 19 2.4 2 

NEHT 
7642.72 22180.92 4240.39 46225.27 7347.75    

6 7 5 5 4 27 3.4 5 

NAHN 
7637.10 22078.31 4245.66 46263.68 7353.94    

5 3 6 8 8 30 3.8 6 

EAHT 
8118.54 26403.94 5359.01 63497.47 10438.94    

15 15 13 16 14 73 9.1 14 

NEAHT 
7664.34 22258.45 4257.74 46248.18 7353.63    

7 8 8 6 7 36 4.5 8 

Table 6. Rank results of process analysis according to best values. 

Process Names Berlin52 KroA100 Tsp225 Linhp318 Rat575 Total rank Average rank Final rank 

NEA 
7911.40 22120.22 4314.81 46068.44 7277.55    

13 9 11 8 1 42 5.3 9 

NEH 
7911.40 22049.39 4191.56 46177.97 7316.01    

14 8 9 10 6 47 5.9 10 

NET 
7544.37 21643.34 4146.62 45631.33 7325.95    

2 5 4 1 10 22 2.8 3 

NAH 
7911.40 22120.22  4118.62 46141.51 7305.29    

15 10 2 9 3 39 4.9 8 

NAT 
7544.37 21712.37 4124.53 45823.55 7319.30    

1 6 3 6 9 25 3.1 4 

NHT 
7544.37 21622.30 4150.60 45999.13 7313.72    

7 3 6 7 5 28 3.5 6 

EAH 
8250.59 26349.69 4958.49 56619.23 9934.01    

16 16 12 12 12 68 8.5 14 

EAT 
7669.62 23420.86 5004.44 58288.12 10088.54    

9 12 13 14 14 62 7.8 12 

EHT 
7760.07 24097.45 5126.16 57839.60 10127.14    

10 13 15 13 15 66 8.3 13 

AHT 
7606.95 24346.70 5255.86 59127.96 10308.28    

8 14 16 15 16 69 8.6 15 

NEAH 
7853.25 22120.22 4180.79 46177.97 7316.67    

11 11 7 11 7 47 5.9 11 

NEAT 
7544.366 21626.07 4115.869 45656.5 7317.561    

3 4 1 3 8 19 2.4 2 

NEHT 
7544.37 21807.79 4183.38 45659.16 7291.45    

4 7 8 4 2 25 3.1 5 

NAHN 
7544.37 21607.16 4147.30 45632.33 7305.73    

5 2 5 2 4 18 2.3 1 

EAHT 
7855.50 25115.57 5079.38 61162.83 10075.53    

12 15 14 16 13 7 8.8 16 

NEAHT 
7544.37 21591.29 4200.59 45693.22 7325.95    

6 1 10 5 11 33 4.1 7 

Table 7. Results of small sized problems for 5,000 iterations. 

Problem Best Worst Mean Std Error % 

Burma14 3323.0 3323.0 3323.0 0.00 0.00 

Ulysses16 6747.0 6747.0 6747.0 0.00 0.00 

Ulysses22 6901.0 6901.0 6901.0 0.00 0.00 

Bays29 2020.0 2026.0 2021.2 2.53 0.00 
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Table 8. General results of the TSP problems for 50,000 and 100,000 iterations. 

  100,000 iterations 50,000 iterations 

Problem Best Worst Mean Std Error Best Worst Mean Std Error 

Eil51 430.4 434.3 432.6 1.33 1.04 430.7 438.3 433.6 2.24 1.11 

Berlin52 7,544.4 7,544.4 7,544.4 0.00 0.00 7,544.4 7,544.4 7,544.4 0.00 0.00 

Eil76 553.2 560.6 557.0 2.53 2.82 552.6 564.5 557.6 3.53 2.72 

Pr76 108,882.4 110,633.1 109,898.2 538.47 0.67 109,352.5 110,512.2 109,977.9 423.32 1.10 

Rat99 1,221.0 1,230.4 1,223.7 3.23 0.83 1,221.0 1,234.3 1,227.4 5.55 0.83 

Rd100 8,038.3 8,237.6 8,149.8 66.47 1.62 8,122.2 8,233.8 8,183.2 34.17 2.68 

KroA100 21,316.4 21,497.7 21,411.7 64.08 0.16 21,294.4 21,703.0 21,455.2 125.64 0.06 

KroB100 22,337.2 22,697.0 22,448.8 110.94 0.89 22,248.0 22,800.5 22,462.8 149.82 0.48 

KroC100 20,930.1 21,244.4 21,104.9 102.06 0.87 20,923.6 21,424.0 21,168.8 160.54 0.84 

KroD100 21,974.4 22,359.4 22,184.5 149.45 3.20 21,731.7 22,343.2 22,086.0 190.38 2.06 

KroE100 22,204.0 22,413.6 22,319.8 86.78 0.62 22,136.7 22,420.2 22,308.7 95.74 0.31 

Lin105 14,475.4 14,687.5 14,576.1 71.91 0.67 14,489.1 14,779.6 14,623.6 99.03 0.77 

Pr107 44,301.7 44,324.8 44,306.3 9.76 0.00 44,301.7 44,391.7 44,323.9 33.83 0.00 

Pr124 59,245.9 59,416.8 59,312.7 86.24 0.37 59,245.9 60,052.8 59,409.5 252.46 0.37 

Pr136 101,663.2 103,913.2 103,247.1 691.02 5.05 102,743.9 104,180.0 103,674.4 504.49 6.17 

Pr144 59,021.4 60,704.1 60,173.5 663.23 0.83 58,721.3 60,719.9 60,251.2 706.06 0.31 

KroA150 27,173.4 27,585.0 27,404.1 149.87 2.45 27,258.0 27,816.5 27,472.5 188.05 2.77 

Pr152 74,255.8 74,785.9 74,479.8 181.33 0.78 74,300.5 74,710.3 74,538.2 144.46 0.84 

Rat195 2,369.8 2,415.4 2,387.2 12.35 2.01 2,376.5 2,411.5 2,394.2 12.50 2.30 

KroA200 29,578.8 29,986.6 29,825.9 117.89 0.72 29,937.4 30,961.2 30,274.5 346.51 1.94 

Ts225 127,397.8 128,958.4 128,201.8 441.01 0.60 128,297.1 132,182.8 129,325.6 1,154.57 1.31 

Tsp225 3,978.5 4,096.2 4,034.3 32.84 1.52 4,014.4 4,151.1 4,081.6 38.56 2.43 

Pr226 81,416.5 82,638.6 82,238.0 403.22 1.30 81,828.1 83,857.8 82,674.5 547.12 1.82 

Pr264 50,835.8 52,312.1 51,815.8 485.30 3.46 51,568.1 52,552.5 52,135.8 300.17 4.95 

Pr299 50,563.7 51,196.4 50,984.6 237.19 4.92 50,847.6 52,135.1 51,579.7 462.29 5.51 

Lin318 44,156.8 45,585.5 44,700.2 402.74 5.06 44,482.5 45,554.8 45,010.3 346.91 5.84 

Linhp318 44,141.2 45,354.7 44,620.2 328.80 6.76 44,708.0 45,856.4 45,198.4 403.14 8.13 

Rd400 16,107.4 16,533.0 16,294.1 136.49 5.41 16,237.6 16,689.8 16,521.7 136.63 6.26 

Pr439 112,135.0 115,489.3 113,979.4 986.27 4.59 115,230.3 117,834.1 116,219.6 900.27 7.47 

Rat575 7,260.9 7,342.1 7,297.8 28.44 7.20 7,238.7 7,423.9 7,323.8 61.40 6.88 

Rat783 9,559.4 9,767.0 9,686.6 74.66 8.56 9,680.5 9,871.7 9,757.0 62.88 9.93 

Pr1002 280,340.8 286,863.3 283,424.5 2,137.71 8.22 281,839.8 287,653.1 284,594.3 2,017.77 8.80 

Table 9. The comparison of the proposed algorithm with DSSA in the TSP benchmark. 

 DSSA DAAA 

 Problem Size Optimal Best Worst Error% Best Worst Error% 

1 Burma14  14 3323 3323.0 7702.0 0.00 3323.0 3323.0 0.00 

2 Ulysses16 16 6859 6859.0 14230.0 0.00 6859.0 6859.0 0.00 

3 Ulysses22 22 7013 7013.0 18325.0 0.00 7013.0 7013.0 0.00 

4 Bays29 29 2020 2020.0 6709.0 0.00 2020.0 2026.0 0.00 

5 Eil51 51 426 431.9 1835.0 1.38 430.5 434.3 1.04 

6 Berlin52 52 7544 7659.0 31432.0 1.55 7544.4 7544.8 0.00 

7 Eil76 76 538 559.3 2720.4 3.96 552.6 564.5 2.72 

8 Pr76 76 108159 108880.0 621210.0 0.67 108882.4 110633.1 0.67 

9 Rat99 99 1211 1221.0 9237.0 0.83 1221.0 1230.4 0.83 

10 Rd100 100 7910 8120.0 59865.0 2.65 8038.3 8237.6 1.62 

11 KroA100 100 21282 21363.0 189380.0 0.38 21294.4 21703.00 0.06 

12 KroB100 100 22141 22347.0 188300.0 0.93 22248.0 22800.5 0.48 

13 KroC100 100 20749 20997.0 191830.0 1.19 20923.6 21424.0 0.84 

14 KroD100 100 21294 21552.0 147160.0 1.21 21731.7 22343.2 2.06 

15 KroE100 100 22068 22407.0 198040.0 1.53 22136.7 22420.2 0.31 

16 Lin105 105 14379 14502.0 135670.0 0.85 14475.5 14687.5 0.67 

17 Pr107 107 44303 44346.0 68720.0 0.09 44303.0 44324.8 0.00 

18 Pr124 124 59030 59087.0 76722.0 0.09 59245.9 59416.8 0.37 

19 Pr136 136 96772 103460.0 914060.0 6.91 101663.2 103913.2 5.05 

20 Pr144 144 58537 58669.0 87320.0 0.22 58721.4 60719.9 0.31 

21 KroA150  150 26524 27027.0 359350.0 1.90 27173.4 27585.0 2.45 

22 Pr152 152 73682 74462.0 112480.0 1.05 74255.8 74786.0 0.78 

23 Rat195 195 2323 2353.0 24826.0 1.29 2369.8 2415.4 2.01 

24 KroA200 200 29368 29666.0 373590.0 1.01 29578.8 29986.6 0.72 

25 Ts225 225 126643 127230.0 1578500.0 0.46 127397.8 128958.4 0.60 

26 Tsp225 225 3919 3933.0 43032.0 0.35 3978.5 4096.2 1.52 

27 Pr226 226 80369 82186.0 180840.0 2.26 81416.5 82638.6 1.30 

28 Pr264 264 49135 50739.0 61355.0 3.26 50835.8 52312.1 3.46 

 

The main comparison in this study is between DSSA 

and the proposed method DAAA. The results of this 

comparison are presented in Table 9. Results for DSSA 

are taken from DSSA for the travelıng salesman 

problem [5]. For having a fair comparison, we use the 

same numbers from the above-mentioned work: the 

iteration number is 100000 and dimension is the number 

of the cities. In the presented table we have a 

comparison of the three values (Best, Worst, and Error). 

The Mean values are not taken because in the DSSA 

work Mean and Best values were the same. DAAA is 

over performing the DSSA in most of the problems. The 
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proposed method has better results in all the areas (Best, 

Worst and Error) for the following problems: Eil51, 

Berlin52, Eil76, Rd100, KroA100, KroB100, KroC100, 

KroE100, Lin105, Pr107, Pr136, Pr152, KroA200 and 

Pr226. For all problems, DAAAs Worst values are 

better than DSSA’s. DAAA and DSSA achieved similar 

Best and Error rate values in the following instances: 

Burma14, Ulysses16, Ulysses22, Pr76, and for Rat99. 

Table 10. Comparison of the other algorithms. 

Method Criteria Bays29 Fri26 Gr17 Eil51 Berlin52 Eil76 KroA100 KroB100 KroC100 

DVNS 

Mean - - - - - - - - - 

SD - - - - - - - - - 

Error (%) 0.00 0.00 0.00 0.69 0.03 1.37 - - - 

DWCA 

Mean - - - - - - - -  

SD - - - 2.00 - 3.30 47.90 164.40 124.60 

Error (%) - - - - - - - - - 

GA 

Mean - - - 440.80 7542 565.40 21812.40 22687.40 21510.40 

SD - - - 7.30 0.00 9.80 420.80 407.70 390.20 

Error (%) - - - - - - - - - 

IDGA 

Mean - - - 434.4 7542 557.70 21731.80 22712.60  21298.70 

SD - - - 4.50 0.00 6.80 340.70 312.80 290.70 

Error (%) - - - - - - - - - 

Discrete ESA 

Mean - - - 431.60 7542 553.70 21481.70 22602.20 21170.40 

SD - - - 2.90 0.00 4.20 150.10 210.20 188.70 

Error (%) - - - - - - - - - 

Discrete BA1 

Mean - - - 438.30 7676 558.80 21884.20 22842.90 21476.60 

SD - - - 2.50 104.40 9.00 213.60 231.20 235.10 

Error (%) - - - - - - - - - 

Discrete BA2 

Mean - - - 436.80 7681.90 560.50 21989.40 22946.70 21631.10 

SD - - - 5.30 112.30 11.60 305.20 291.30 325.00 

Error (%) - - - - - - - - - 

Discrete IBA 

Mean - - - 428.10 7542.00 548.10 21445.30 22506.4 21050.0 

SD - - - 1.60 0.00 3.80 116.50 221.3 164.70 

Error (%) - - - - - - - - - 

DFA 

Mean - - - 430.80 7542 556.80 21483.60 22604.80 21096.30 

SD - - - 2.30 0.00 4.90 163.70 243.90 148.30 

Error (%) - - - - - - - - - 

DICA 

Mean - - - 432.30 7542 557.60 21500.30 22599.70 21103.90 

SD - - - 3.10 0.00 5.80 183.40 244.90 161.10 

Error (%) - - - - - - - - - 

Discrete ACO with ABC 

Mean - - - 443.39 7544.37 557.98 22435.31 - - 

SD - - - 5.25 0.00 4.10 231.34 - - 

Error (%) - - - 4.08 0.03 3.71 5.42 - - 

Discrete PSO-ACO-3Opt 

Mean - - - 426.45 7543.20 538.30 21445.10 - - 

SD - - - 0.61 2.37 0.47 78.24 - - 

Error (%) - - - 0.11 0.02 0.06 0.77 - - 

DABC 

Mean 16751 - - - 21338 - 129960 - - 

SD - - - - - - - - - 

Error (%) 4.54 - - - - - - - - 

DPSO 

Mean 17953 - - - 21827 - 132400 - - 

SD  - - - - - - - - 

Error (%) 5.64 - - - - - - - - 

Discrete DMRSA 

Mean - - - 426 7542 540.36 21282 - - 

SD - - - 0.19 0.00 1.16 0.00 - - 

Error (%) - - - - - - - - - 

Basic DCS 

Mean - - - 439 7836 565.70 22419.96 23417.06 - 

SD - - - - - - - - - 

Error (%) - - - 3.05 3.90 5.14 5.34 5.76 - 

Improved DCS 

Mean - - - 426 7542 538.03 21282 22141.53 - 

SD - - - 0.00 0.00 0.00 0.00 0.00 - 

Error (%) - - - 0.00 0.00 0.00 0.00 0.00 - 

DSSA 

Mean 2020 937 2085 431.87 7659 559.31 21363 22347 20997 

SD 0.00 0.00 0.00 2.80 117 0.40 81 206 248 

Error (%) 0.00 0.00 0.00 1.38 1.55 3.96 0.38 0.93 1.19 

Proposed algorithm 

Mean    432.6 7544.4 557.0 21,411.7 22,448.8 21,104.9 

SD    1.33 0.00 2.53 64.08 110.94 102.06 

Error (%)    1.04 0.00     

      2.82 0.16 0.89 0.87 

 

The results in Table 10 are comparison between 

DAAA and other algorithms for these instances: 

Bays29, Fri26, Gr17, Eil51, Berlin52, Eil76, KroA100, 

KroB100, and KroC100. The Mean, SD, and Error rate 

values are presented in this table. For Eil51 DAAA had 

a better result for all values (Mean, SD and Error) than 

GA, IDGA, DiscreteBA1, DiscreteBA2, DiscreteIBA, 

Discrete ACO with ABC, Basic DCS. For Berlin52 

DAAA is better than DiscreteBA1, DiscreteBA2, and 

DSSA. For Eil76 DAAA achieved better results than 

GA, DiscreteBA1, DiscreteBA2, BasicDCS and DSSA. 

For KroA100 DAAA is better than all of the listed 

methods except Discrete ACO with ABC, Improved 

DCS and DSSA. In KroB100, Improved DCS and 
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DSSA are better than DAAA, but DAAA is better than 

other methods. For KroC100 DAAA have better results 

than GA, IDGA, Discrete ESA, DiscreteBA1, and 

DiscreteBA2. 

6. Conclusions 

AAA is a newly proposed method for solving 

continuous optimization problems, and this method has 

achieved good results for continuous optimization 

problems. To the best of our knowledge, a discrete 

version of AAA has not been proposed. We develop a 

discrete version of AAA, and the name of this newly 

proposed discrete method is DAAA. AAA has three 

processes (Helical movement, Evaluation Process, and 

Adaptation) and these processes were used for 

discretization, but crossover operations (one-point and 

uniform) were applied to these processes. In addition to 

crossover operators, this study used transformation 

operators (swapping, insertion, symmetry, and 

reversion). These steps and details are explained in the 

paper. Additionally, Roulette wheel selection and 2-

opt(but 2-opt was used only once), common tools for 

solving TSP, were used to improve the results.  

For analyzing the success of the proposed algorithm, 

DAAA was tested on thirty-two TSP symmetric 

benchmark instances. Before starting the comparison of 

DAAA with other algorithms we had a process analysis, 

the processes (Evolutionary process, adaptation, and 

helical movement) with the combination of nearest 

neighbor and transformation operators were tested for 

selected Benchmark instances. This analysis starts with 

three combinations NEA and finishes with five 

combinations NEAHT. Benchmark instances included 

small, medium and large-scale problems. NEA obtained 

the best results on large-scale problems, while NEAHT 

performed best on medium-scale problems. After this 

Process Analysis, we selected which processes will be 

continued, and after this decision comparisons with 

other algorithms were started. The main comparison 

was between DAAA and DSSA, and our proposed 

method outperformed DSSA in most of the benchmark 

instances. To analyze the performance of DAAA it has 

been compared with some of the well-known methods 

in the literature for TSP, and DAAA has achieved better 

results than other methods for some problems. DAAA 

was superior for small and medium-scale problems, but 

for large-scale problems, it achieved competitive results 

with other algorithms. In future studies Hybrid DAAA 

will be developed by using different methods for 

discrete problems.  
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