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Abstract: Fetal Heart Disease (FHD) based Structural Heart Disorders (SHD) occur when certain features of the heart develop 

abnormally. These flaws may cause blood flow to circulate in the erroneous spot, slow down, or be utterly blocked. Heart Defects 

(HD) caused via FHD or disorders that primarily impact embryonic heart conditions are alternatively referred to as Congenital 

Heart Defects (CHD). Multiple prior investigation algorithms such as Multi-Resolution Convolutional Neural Network 

(MRCNN), Deep Convolutional Neural Network (DCNN), Faster-RCNN (FRCNN) and DANomaly Wgan-GP and Convolutional 

Neural Network (DGACNN) rendered in the detection of FHD. Yet, the models have endured several challenges due to fuzzy 

constraints and irrelevant adherence. The intended aim is to detect the dilemma of the fetal heart in UltraSound (US) images 

using two distinct tier methods. The initial tier detects the fetal heart chamber's walls and valves using the Convolutional Neural 

Network (CNN)-incorporated Visual Geometry Group 16 (VGG 16) technique for processing fetal ultrasound images, allowing 

it to detect and dissolve anomalies in heart walls. This initial investigation concerns improving the image's quality in each 

subsequent sequence, from lowest to most improved using the conventional Augmented Wiener Filtering (AWF) approach. 

Succeeding, an instance-level Region of Interest (ROI) segmentation for exploiting the feature mining approach will be carried 

out via spatial features masking and ground-truth labeling framework for septal defect diagnosis. The second tier determines 

the flaws in fetal heart blood flow size, structure and vessels utilizing Deep Recurrent Neural Network (DRNN) integrated with 

region-based texture characteristics Local-Binary-Pattern (LBP), Histogram-of-Oriented-Gradient (HOG) and the Bags Of 

Features (BOF) segmentation framework via image acquiring. In eventual, the histogram equalization enhancement algorithm 

with Median Modified Wiener Filter (MMWF) is enumerated to enhance the visual quality, tests for signal-to-noise ratio, rate 

of variations, and noise proportion for sorting the blood vessels of the input fetal image. The analyzed CNN’s VGG 16 and 

DRNN model’s efficiency via Matrix Laboratory (MATLAB) has detected the cardiac features both in normal and abnormal 

ranges with an overall accuracy of 99.89% and 98.7%. 
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convolutional neural network, visual geometry group 16, deep recurrent neural network. 
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1. Introduction 

Fetal Heart Disease (FHD) is a serious congenital 

abnormality with an increase in annual prevalence of 6-

8 percent [32]. Despite adept surgery, many infants may 

die within the first few weeks after birth from myocardial 

and pulmonary complications induced by severe cardiac 

pathologies. So, it’s crucial to prevent and treat FHD in 

prior. Fetal intervention at the premature phase of 

pregnancy i.e., 2nd trimester (18 to 22 weeks) [42] will 

be more beneficial with encouraging results. With the 

subsequent prognosis outcomes, fetal therapy is intended 

to improve cardiac perfusion and minimize ischemia by 

restoring forward flow and lowering intraventricular 

pressures. 

This paves the path to Fetal Echocardiography (FE) 

which has been a prominent screening method for early  

 
diagnosis of fetal cardiac malformations due to its 

reliability, sensitivity, non-invasive nature and real-time 

imaging [16, 23, 50]. Further, the prenatal ultrasound 

detection parts the crucial 4-Chamber Scan (4CS) and 3-

Vessel Scan view (3VS) depicted in Figure 1, allowing 

for a full evaluation of fetal heart development [25, 56] 

which is acquired via ultrasound transducer by 90 

degrees to the mid-sagittal part of the embryonic heart 

and fine-tuning the acquired image. However, the 4CS 

and 3VS captured by detached observers at different 

views result in diverse images, making the obstetrician a 

very challenging task to distinguish its size and location 

[22, 34, 47]. To alleviate this dispute, a computer-driven 

approach has gained prominence in enabling 

obstetricians to automatically locate the four chambers 

and blood vessels [17, 33]. This automated procedure 

assists in improving the efficiency of FHD diagnosis. 

https://doi.org/10.34028/iajit/21/6/13
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However, there still exists several flaws such as poor 

resolution and high speckles. Moreover, there is a high 

degree of similarity in discrimination between the four 

cardiac chambers and blood vessels. 

 

Figure 1. Fetal heart’s ultrasound image for four-chamber and three-

vessel view. 

Considering these challenges, a meta-heuristic 

detection system is necessary to characterize the 

invariant-position, structure-specific, and spatial 

features of 4CV and 3VS. Machine Learning (ML) and 

Deep Learning (DL) are at the forefront of use in several 

medical domains for their learning invariant features 

which include screening breast cancer [11, 57], 

classifying tumor [41], clustering EEG signals and 

classification [7, 49], autism screening [51, 52] and brain 

disease diagnosis [36, 45]. At current, DL is more 

prevalent in heart ultrasound images to segment, classify 

and detect adult and fetal hearts [6, 8, 26, 31]. 

Convolutional Neural Network (CNN) and Recurrent 

Neural Network (RNN) are the foremost representative 

DL methods to learn and discriminate robust features 

from medical images [2, 4]. The inert features of 

congenital heart acquired via CNN necessitate the 

automatic aiding system in detecting FHD features 

accurately. 

Recent findings reveal that CNN is more suited for 

detecting both fetal and adolescent patterns in ultrasound 

images where Selvathi and Chandralekha [39] 

propounded a novel acoustic Deep Convolutional Neural 

Network (DCNN) to predict ventricular endocardium in 

adolescent ultrasound images. The DCNN incorporated 

prior knowledge of the heart’s scale and label for the 

automatic acquirement of the left heart's constraints 

prediction. Following the framework of DCNN, Smistad 

and Lovstakken [44] put forward an automatic DCNN 

framework for fetal heart vessel detection via ultrasound 

images from echocardiography recordings which 

integrates a so-called substantial random field technique 

in the prognosis of congenital heart. Xu et al. [55] 

implied a dilation-based convolution chain framework to 

enhance the field of image vision via the Gaussian 

filtering and extracted substantial fetal cardiac info. The 

CNN chain model features global and local data info 

from spatial maps to segment and prognose the 

ventricular elements in Fetal Cardiac (FC) regions 

precisely. In subsequent, a new deploying neural 

network Faster RCNN is propounded by Patra and Noble 

[33] to extract the fetus’s fuzzy traits from the four-

chamber and classify the spatial data to detect the 

embryo’s 4CV anatomical features. Ensuing with the 

work of Faster-RCNN, Wu et al. [54] further deployed 

the FRCNN model to extract the fetal heart region from 

the FC image which subsequently combined with 

DGACNN to classify the extracted features of 4CV and 

3VS. Eventually, Gong et al. [19] implied DANomaly 

Wgan-GP and CNN (DGACNN) for effective prognosis 

of FHD in US imaging via region-based extraction 

which permits high-scale accuracy with low latency in 

detection. Nurmaini et al. [30] developed an enhanced 

Mask-RCNN (MRCNN) for early detection and 

diagnosis of FHD which deployed the data analytical 

method of DL to diminish the necessity for expertise and 

vision error, leading to the prediction accuracy of upto 

90%. 

Succeeding the anatomical work of DL, a meta-

heuristic implementation model named RNN is 

developed by Choi et al. [12] for early phase fetal 

detection i.e., 18 months screening of fetal heart 

dilemma and regulates the timely events of disease 

diagnosis. The efficiency of the model has been assessed 

with logistic regression in the parametric analysis. In 

subsequent, Narmadha et al. [29] further implied RNN 

utilizing the integrated models of Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM) to 

forecast myocardial abnormalities. Leveraging the 

combination model and ROI segregation with accessible 

data, the GRU predicted the anomalies more accurately 

than the LSTM. Later on, Babu et al. [5] put forth a 

hybrid strategy for assessing multiple sorts of embryonic 

conditions by integrating Grey WolF optimization 

(GWF) in extracting the features with an auto-encoder-

based RNN in disease detection which utilized multiple 

datasets including Cleveland, Mammographic, and 

Hungarian. The suggested model enumerated with a 

precise rate of 90.82% efficacy in detection. In advance, 

future enhancement can possibly be addressed via 

various combined tactics that attain more accuracy than 

current procedures. In closing, Shinde and Martinez-

Ovando [48] enumerated the efficacy of deep learning 

algorithms with the intrinsic features of CNN-RNN to 

stream the fetal heart rate abnormalities in real-time 

patients enabling better efficiency than prior reported 

findings. 

The key flaw of the prior methods is that they solely 

performed fragmentation of the fetal’s heart chamber 

and blood vessel rather than an extensive prenatal FHD 

diagnosis. Moreover, the embryo's heart petite scale and 

imprecise anatomical features render it more difficult to 

prognose 4CV and 3VS in the fetal heart. Furthermore, 

several cardiac extraction methods are inappropriate 

since the congenital heart constantly changes in every 
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constraint. Despite this, most CNN and RNN acquire 

fetal features from the overall image where image-

leveling of the heart region, occlusion and clutter 

complicates to precisely prognose the four-chamber and 

blood vessels. 

In summary, our key contributions are outlined as 

follows: The research endeavours the defects septation 

of the cardiac chambers and blood vessels to retrieve 

congenital cardiac malformations. Based on current 

research developments of several DL and meta-heuristic 

algorithms, the intent work aims to examine the internal 

functioning of the fetus's heart in ultrasound imaging via 

two unique methods. 

1. The first leverages a novel CNN of VGG 16 with the 

augmented wiener filter and multi-level ROI 

framework to characterize the fetal diseased chamber. 

2. Succeeding, the second assesses the 3-vessel blood 

flow amongst fetal cardiac abnormalities via DRNN 

utilizing Median Modified Wiener Filter (MMWF) 

with region-based segmentation. The acquired model 

resulted in high precision on the FHD testimony. 

The Structure of the paper is listed below: 

Section 2 depicts the proposed methodology and the 

acquisition of the research. The results of the proposed 

VGG16 and DRNN are discussed in section 3. Section 4 

summarizes the performance and training phase of the 

proposed model. The significance of the study is 

concluded in section 5. 

2. Proposed Methodology 

The prominent methodology in Figure 2 exploits the key 

fragment of this research to detect the septal flaw at all 

phases as follows: 

1. Pre-configured regions that use distinct image forms 

are set up as established resolutions for de-noising 

and enhancement. 

2. Segmentation masks with high boundary 

specialization are defined to generate regional 

proposals for cases of septal defects if positive. 

3. In subsequent, composite featured regions are 

pruned using non-maximum suppressed 

classification and determine the presence or absence 

of abnormalities in the septum, i.e., ASDs, VSDs, 

and AVSDs. 

 
Figure 2. Overall proposed methodology for FHD. 

2.1. Ultrasound Fetal Heart Image Acquisition 

Table 1 depicts the prenatal fetal cardiac ultrasound 

datasets accessed through the Digital Imaging and 

Communications in Medicine (DICOM) from 

Mohammad Hoesin Medical University’s associated 

Hospital in Indonesia via the radiopaedia web [35] with 

the patient's confidentiality of both normal and abnormal 

fetal heart planes. The data was gathered and reviewed 

by trained sonographers using Ganglionic Eminence 

(GE), Mindray, Philips, and subsequent ultrasonic 

devices after the patient had been notified. Figure 3 

depicts the fetal cardiac screening via sonographic 

scanning planes. The size of the collected data includes 

1527 images in total from pregnant women who have 

been testified between 18 to 22 weeks of gestation with 

testified 4-chamber (RV, RA, LV, LA) and 3-vessel 

(SVC, PA, AO) scan rate of 465, 326 normal and 326, 

409 abnormal images which guarantee the accurate 

result analysis. 

Table 1. FHD dataset acquirement. 

S. No Image planes Normal images 
Anomalous 

images 
Total images 

1. 4CS 465 326 791 

2. 3VS 326 409 735 

3. Total image planes 791 735 1527 

 

Figure 3. Sonographic scanning planes for fetal cardiac screening. 
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2.2. Phase of Ultrasound Image Pre-Processing 

Ultrasound screening has been the forefront and 

conventional testing method to prognose atherosclerosis. 

To accurately identify carotid plaque, the afflicted region 

of the carotid artery ought to be segregated from the 

ultrasonic image because noise originates during the 

capture of arterial images resulting from the high-

frequency rate which reflects the state of the data 

entering the sensors. Several methods are being 

developed to detect the plaque in ultrasonic data. Herein, 

the image processing and restorations are crucial 

procedures for obtaining de-noised enhanced images 

[24, 40]. The preliminary processing is the initial stage 

where the nature of the noises i.e., Speckle and Gaussian 

noise are identified and diminished via the AWF and 

MMWF de-noising algorithms integrated with the 

Adaptive Histogram Equalization (AHE) strategy to 

obtain the fetal image of excellent quality. This 

combined approach eliminates and filters out 

multiplicative noises with improved fetal image 

acquisition. 

2.2.1. Wiener Filter Augmentation 

The input fetal acquisition images were fed into the 

Augmented Wiener Filter (AWF) [20] to acquire the 

noise-prone deteriorated images in the non-linear 

temporal region using the appropriately stated numerical 

Equations (1) and (2):  

𝑔(𝑥, 𝑦) = 𝑓(𝑥, 𝑦) ∗ 𝑢(𝑥, 𝑦) + 𝑛(𝑥, 𝑦) 

ℎ(𝑥, 𝑦) = 𝑅[𝑔(𝑥, 𝑦)] 

where f(x, y) is the assimilated image, u(x, y) is the image 

degraded function, * represents convolution, n(x, y) 

showcases the noise disturbances i.e., Speckle and 

Gaussian noise [27], g(x, y) is the deteriorated image, 

and h(x, y) enumerates the resultant image via 

Redistribution (R). 

A masking matrix of size n x m is created initially via 

the spatial noise [18] elimination filter which is then 

utilized to compute the new pixel for the downgraded 

image concerning pixel size and value. Utmost, every 

pixel value is transposed by the average filter [15] of the 

mean pixel corresponding to the masking matrix at the 

centred pixel value. The AWF includes both the 

variation and median values of pixels in the n, m 

dimensions as enumerated in Equations (3) and (4). As 

a result, the misfits can be eliminated without affecting 

image clarity.  

𝜇 =
1

𝑁𝑀
∑ 𝑎(𝑛,𝑚)

𝑛,𝑚𝜖𝜂

 

𝜎2=
1

𝑁𝑀
∑ 𝑎2

𝑛,𝑚𝜖𝜂 (𝑛,𝑚) − 𝜇2 

where µ is the mean, σ2 represents the Gaussian noise 

variance in the image and n, m enumerates the mask 

matrix pixel size of regional dimensions h. The AWF is 

fitted to the additional pixels equated as bw(n,m) 

employing the estimated metrices in Equation (5).  

𝑏𝑤(𝑛,𝑚) = 𝜇 +
(𝜎2 − 𝑣2)

𝜎2 . (𝑎(𝑛,𝑚) − 𝜇) 

Where v2 is the noise dispersion of the mask metrics. 

Aside from the de-noising, AWF estimates to replicate 

biometric parameters generated from the segmented 

region, which are clinically evaluated for the fetal heart 

to achieve highly categorized prognosis results. 

2.2.2. Median Modified Wiener Filter (MMWF) De-

Noising Enhancement 

The reflection fronts of ultrasound waves cause random 

speckle noise in the acquired fetal images. The existence 

of noise with speckles degrades the image quality and 

obscures image features, affecting segmentation, feature 

classification and most significantly disease detection. 

The standardisation of metrics taken from fetal 

ultrasound scans will aid physicians in making accurate 

diagnoses. Cannistraci et al. [9] and Cannistraci et al. 

[10] developed the MMWF approach to minimize noise 

dispersion in deteriorated images. This MMWF is used 

to denoise the surrounding region of blurred pixels and 

enhance its quality via adaptive histogram equalization 

[1, 43]. Relying on the wiener filter, the MMWF 

approach largely diminishes the interior and exterior 

noise signal. The MMWF masks the dimensions and 

pixel counts, reducing chaos in the deteriorated image. 

The median (�̃�) value replaces the mean value (µ) in the 

wiener filter calculation. MMWF is formatted in 

Equation (6) as follows:  

𝑏𝑚𝑛𝑤𝑓(𝑛,𝑚) =  𝜇 +
(𝜎2 − 𝜈2)

𝜎2
(𝑎(𝑛,𝑚) − 𝜇) 

The MMWF technique benefits in improving the image 

quality of degraded images where the edge signal is 

retained from the drop-off effect as correlated and 

outperforms traditional filters in terms of denoising 

effect and boarding the contour signal while removing 

the neighboring noise signals as enumerated in Figure 4. 

   

a) Original Image. 
 b) Image with speckle 

noise. 

 c) De-noised MMWF 

image. 

Figure 4. Instance of MMWF de-noised fetal image. 

2.2.3. Evaluation of Image Qualities 

Equations (7), (8), and (9) determine the Signal-to-

Noise Ratio (SNR) [21], COVariance (COV) [28], and 

Contrast-to-Noise Ratio (CNR) [37] deliberately to 

assess the phantom images generated by MMWF noise 

reduction filters. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 
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𝑆𝑁𝑅 =
𝑆𝐴

𝜎𝐴
 

𝐶𝑂𝑉 =
𝜎𝐴

𝑆𝐴
 

𝐶𝑁𝑅 =
|𝑆𝐴 − 𝑆𝐵|

√𝜎𝐴
2 + 𝜎𝐵

2
 

Where SA and 𝜎 A are the mean and variance 

computation for Region Of Interest (ROI), SB and 𝜎 B 

determines the mean and standard deviations of the 

surrounded noise for ROI. 

Although a proper selection of de-noised threshold 

values may eventually disrupt false regions, there exists 

undesired information that needs to be segmented from 

the images. For this, the segmentation algorithm must 

be applied after the pre-process. 

2.3. Segmentation Phase 

Following the most current referendum [38], 

segmentation on region-based generates fetal 

characteristics with an immediate level set. Thus, this 

study applied a unique and prominent image 

segmentation algorithm-ROI with the highest entropy to 

segment and identify the tumor region in the bounding 

regression by assessing defect size. The segmentation 

task first computes the pre-processed fetal data, i.e., the 

histogram value of the grey-scale fetal image, and then 

masks it with ground truth. Feature maps are labeled to 

produce segmented fetal features with the regression 

region to separate the foreground image (i.e., diseased 

area) from the background in the four-chamber and 3- 

vessel region, as shown in Figure 5. 

 

Figure 5. Segmented ROI fetal heart image. 

2.4. Convolutional Neural Network (CNN) 

Integrated VGG-16 

The deep-learning neural network CNN is the forefront 

design in current sectors to recognize patterns of 

structured arrays with high-yielding rates and numerous 

throughput transitions resulting in radial breakthroughs 

in the inflating learning fields. 

 

Figure 6. CNN architectural design. 

The classification task is accomplished by modifying 

the CNN via the VGG Net, which primarily boosts the 

precision in the imaging design phase [3] with the 

network outputs and inputs. The proposed model has a 

grey beam appearance with the filter area layer of the 

VGG model by 3 3 3 to 3 3 1 dimensions. As 

enumerated in Figure 6, the propounded CNN layout is 

detached into seven blocks where the first set of five 

blocks are stepped into a couple of layering 

convolutions, maximum pooling and in subsequent with 

fully-connected and softmax. The Convolutional Layer 

(CL), which is similar to the filter is a significant part 

of Neural Networks (NN) as wholesome convolutional 

kernels. The size of CL is determined by the network 

dimensions of 3×3, 5×5, 7×7, and 11×11 with the 

fluctuated activation function and pooling layer. The 

augmented input image is subjected to a weighted 

mean-based computation i.e., backpropagation on the 

convolution kernel's setup size with the outcome of the 

image as a conclusion matrix. This phase determines 

the duration of each convolutional kernel move, and 

end convolution value through multiplying the 

convolution kernel variables with the resultant pixel 

values in the matrix. The total amount of image 

features that are extracted during the convolution 

process differs based on the step size, convolution 

kernel size, and settings where the size of the entire 

image featured matrix will be decreased through the 

estimation of kernel shift. Next, a labeled stimulation-

activation function modulates the samples in an 

increasing monotonic style, mitigating CL’s 

(8) 

(7) 

(9) 
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determinate responses. The attenuated output samples 

from the interim activation is received by the max 

pooling layer, reducing the spatial dimensions of the 

feature maps. The acquired result undergoes 

transmission via a Fully Connected Neural Network 

(FCNN) incorporating softmax, which generates the 

final class anticipation and classifies the 

resultant image. Utilizing the propounded model, 

image classification challenges with distinct existing 

models via comprehension of deep learning in 

computer vision. 

2.4.1. VGG 16 Architectural Design for Fetal 

Detection 

Figure 7 shows the architectural design of VGG 16 Net 

that upholds 92.7% top-5 trial precision at the 

ImageNet datasets and in holds 14 million snaps from 

1000 groups. The ImageNet dataset's trial is to include 

images with a defined enormity of 224x224 and RGB 

passages. As a result, inputs are given as tensors of 

(224, 224, 3) and generate 1000 vectors. 

 

Figure 7. Integrated VGG-16 architecture. 

VGG 16 reflects the likelihood of classification for 

the given class via probability vector �̂�. For instance, 

the model provides forecast images which relates to 

class 0 with probability 1, class 1 escorted by 

probability 0.05, class 2 escorted by probability 0.05, 

class 3 over 0.03, class 780 with 0.72, class 999 with 

probability 0.05, and all other subsequent classes over 

0. In conclusion, the categorization paves the path via 

FCNN and softmax value to guarantee the total 

probabilities as escalated in Equation (10).  

�̂� =  

[
 
 
 
 
 
 
 
 

𝑦0

𝑦1

𝑦2

𝑦3
.
.
.

𝑦999̂

̂

̂

̂

̂

]
 
 
 
 
 
 
 
 

   �̂�= 

[
 
 
 
 
 
 
 
 
 
 
 

𝑦0̂ = 0.1
0.05
0.05
0.03

.

.

.
�̂�780 = 0.72

.

.
�̂�999 = 0.05]

 
 
 
 
 
 
 
 
 
 
 

 

2.4.2. VGG 16 Intern Filter Design and Object 

Localization in Image 

To carry out the localization prognosis, the class score is 

displaced by the boundary traits contention values 

where a 4-D vector with centre dimensions (x, y), height, 

and width is determined. VGG 16 localizing design 

comes in two distinct forms: 

1. Global boundaries (resulting in four feature vectors). 

2. Class-specific boundaries (resulting in a four-

parameter vector).  

The research tested both methods on the VGG 16 design 

where in case switches from classifying loss to regress 

loss problems, which penetrates the departure of 

anticipated loss from the real world. 

The VGG Net 16 is stimulated with an input image 

size of (224, 224, 3) wherein the first two levels claim 64 

channels with similar width and filter size of 3x3. Next, 

a max pool layer with a stride of (2, 2), two layers of 

CONVolution (conv) phasing with 128 and (3, 3) 

filtration size (3, 3) is implemented. In subsequent, the 

second phase of the convolution filter estimates (3, 3) 

widths and 256 filtrations whereas the third phase 

enumerates 2-layer conv of 512 filters with identical size 

(3, 3) and spacing. In last, a 3-layer conv of 51 filter size 

frames the residual block. The resultant image traits (7, 

7, 512) feature map via convolution stack and max pool. 

To avoid changes in the image's spatial characteristics, 

1-pixel padding is included after each layer of 

convolution. After the residual blocks of convolution, 

two consecutive FCNN linked Relu layers take the final 

feature vector as input and generate (1, 4096) vectors as 

output and the final softmax layer outcomes 1000 

channels for classifying the classes. 

2.5. Deep Recurrent Neural Network 

Enframement 

The propounded 3-vessel view detection put forth an 

enhanced DRNN model [14], a forefront DL which 

incorporate output from prior input of current phase. 

The inputs and outputs of DRNN are sequentially 

independent, but when predicting the next scenario, the 

current work is needed, where it upholds the previous 

(10) 
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steps. The DRNN was created to detect and solve the 

fetal dilemma using the hidden Layer. In DRNNs, the 

Hidden state is the crucial feature that retains 

information about the image sequence i.e., Memory 

State. Similar to CNN, DRNN handles from input to 

output. Further, it employs feedback loop, such as 

backpropagation via time and loop the input back into 

the network during the computing process. This links 

input, allowing DRNNs to handle image’s sequential 

and temporal data. The diminished backpropagation via 

time DRNN scenes the number of time steps in the input 

sequence which has been limited by a truncation. This 

benefits deep recurrent neural networks in sequence-to-

image models i.e., the input sequence to output image. 

2.5.1. Architecture Design of DRNN 

Figure 8 illustrates the DRNN internal design of input 

(Xt) and output (Lt) with a similar weight matrix (w) 

across the network and computed hidden state (ht) as 

determined in the recursive Equation (11)  

h=𝜎(𝑈𝑋 + 𝑊ℎ−1 + 𝐿) 

 

Figure 8. Architectural design block of deep recurrent neural 

network. 

Where h is the hidden state, σ is the numerical 

variable to modify input features, U represents the 

unfold regression of Neural Network (NN), X is the 

input feature, W estimates the weight matrix and L is the 

output threshold. 

The DRNN Process is analyzed using linear 

regression (v) where the continuous output value is 

predicted using the regression algorithm to determine 

whether input features and output values are linearly 

related. Succeeding with the input sequences (X) and 

linked labels (L), the model trains over 100 epochs and 

optimizes the model parameters to minimize categorical 

cross-entropy loss. In eventual, the weighted sum of 

input features predicts the output value. 

2.6. DRNN feature Extraction for 3-Vessel PA, 

AO and SVC Via Region-based LPB and 

HOG 

Feature extraction, which involves proceeding detectors 

of every image is the initial step in creating a bag of 

visual knowledge regarding the statistical data where a 

grid is applied at regular intervals to extract several type 

of local unaffected descriptor and extract mean RGB 

values from random locations in the images. Figure 9 

estimates the texture feature extraction methods of 3- 

vessel view where the variance is calculated based on 

the combination of features- Local Binary Pattern (LBP) 

and Histogram of Oriented Gradient (HOG) [53] to 

perform distinct fetal images via histogram equalization 

process. 

 
Figure 9. Blood vessel extraction using DRNN. 

2.6.1. Extraction of Texture Features for Multi-

Level Segment Zone of Interests 

In the propounded model, the forefront region and 

texture-enumerated LPB approach is implemented to 

regulate and extract texture characteristics with 

rotational and grey scale consistency where the centered 

pixels serves as threshold for the initial LBP operator, 

which is specified in the nxm neighborhood pixels as 

core component and adjacent matrix. The primary LBP 

technique imputes to expand the spatial operation range 

upto 20x20 dimensions as represented in Equation (12) 

and the calculation for the core and its surrounding 

pixels is estimated in Equation (13). 

LBP’s precise calculation is as follows:  

𝐿𝐵𝑃(𝑠𝑐,𝑦𝑐) = ∑𝑠(𝑔𝑝 − 𝑔𝑐)

𝑖=𝛿

𝑖=0

2𝑖 

𝑠(𝑔𝑝 − 𝑔𝑐) = {
1, {𝑔𝑝 − 𝑔𝑐} ≥ 0

0, {𝑔𝑝 − 𝑔𝑐} < 0
 

Where P represents central pixel (XC, YC), gc is the 

grayscale value of the central pixels, gp is the greyscale 

value of neighborhood pixels. 

Next in Current, HOG makes up more significant 

function for extracting texture features within the realm 

of machine vision wherein grayscale and segregated 

image processing has been evinced, particularly in the 

areas of object tracking and detection. The idea behind 

the path of the gradient histogram is to employ gradient 

operations [−1 0 1] and [−1 0 1] for every central pixel 

and to acquire the gradient's direction and amplitude of 

every pixel. The magnitude and direction of the gradient 

are determined by Equations (14) and (15).  

{
𝐼𝑥 = 𝐹(𝑥 + 1, 𝑦) − 𝐹(𝑥 − 1, 𝑦)

𝐼𝑦 = 𝐹(𝑥, 𝑦 + 1) − 𝐹(𝑥, 𝑦 − 1)
 

𝑚(𝑥, 𝑦) = √𝐼𝑥 
2 + 𝐼𝑦

2 

𝜃(𝑥, 𝑦) = tan−1
𝑦

𝐼𝑥  𝜖 [0,360°)𝑜𝑟 𝜖 [0,180°)  

Where F is the feature extraction, (x, y) enumerates the 

magnitude gradient of spatial dimensions, lx
2 and ly

2 are 

(11) 

(13) 

(12) 

(14) 

(15) 

(16) 
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the gradients directional bitmap.  

In order to gain access to the histogram 

representation of each cell, the target image is portioned 

based on cell size during the texture feature extraction 

stage and then restructure the HOG and LBP extracted 

features into several neighboring cell arrays. Equation 

(16) derives the structural distributions and gradients 

directional bitmap on the fetal image combined with the 

histogram parameters to generate the output features 

i.e., computation of each cell's binary pattern and the 

gradient histogram with similar cell size and non-

overlap in distinct location data as displayed in Figure 

10. So that the image depicts as the sphere of pixels in 

matrix structures or vectors and can be estimation of 

manifestation of Bag Of Features (BOF) [58]. BOF code 

to traits in accelerated and stabilized attribute vectors for 

automatic feature segmentation and predicts the model 

for vessel images with determined number, size, 

equilibrium, and vessel configurations as depicted in 

Figure 11. Thus retrieves the LPB and HOG model to 

perform high in distinguishing aberrant and normal fetal 

heart planes in optimal regions for the identification of 

hereditary heart defects. 

 

Figure 10. LPB and HOG computation of feature vector 

arrangement. 

 

Figure 11. BOF extraction model of fetal heart using multiple feature 

vectors. 

3. Results and Discussions 

3.1. Four-Chamber Detection via Integrated 

CNN 

The proposed work is carried out using MATLAB 

R2023a software and the dataset results are acquired 

from the retrospective research data examined at 

Mohammad Hoesin Healthcare in Indonesia and the 

Radiopaedia site via Digital Imaging and 

Communications in Medicine (DICOM). In ideal, 

Figure 12 depicts the input image of the second-

trimester fetal ultrasound 4C scan view. 

 
Figure 12. Fetal ultrasonography-input image. 

3.2. AWF De-Noising and AHE Image 

Enhancement 

In commencing with the de-noising phase, Figure 13 

delineates the outcome of the preliminary processing via 

the wiener filter augmentation procedure. The AWF 

image showcased speckle noise being identified and 

diminished with improved feature intensity from the 

simulated dataset. 

 

Figure 13. Augmented wiener filtered image. 

Succeeding, the collation of the input and de-noised 

filtering with stretched contrast imagery (i.e., the 

normalisation) alters the variation of image value with 

respect to noise intensity as depicted in Figures 14 and 

15. This preliminary phase in Figure 15 results with the 

deployed Local Gaussian-Markov Random Field (LG-

MRF) in characterising the image’s regional traits and 

hyperparameter in replenishing spatial correlation 

between adjacent pixel intensities. 

 

Figure 14. Comparison of input and AWF image. 

about:blank
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Figure 15. Contrast stretched image. 

Figures 16 and 17 illustrate the Adaptive Histogram 

Equalization (AHE) output and its value plot graph 

representation. AHE hikes the peak value of the 

histogram pixels along the y-axis and the image's size 

along the x-axis and maps the image trait’s functional 

slope. AHE fabricates the minimal input intensity values 

to conceive a wide range of output intensity values which 

then conceptualized as a redistribution of the clipped 

pixels to augment the image enhancement. 

 

Figure 16. AHE Image view. 

 

Figure 17. Graphical view of AHE value plot. 

3.2.1. Multi-Level ROI Image Segmentation 

Figure 18 renders the segmentation labeling via ground 

truth detection of four-chamber fetal imagery segregated 

to ROI. The ROI section depicted in Figures 19 and 20 

includes vital featured data using the threshold 

determination of the adaptable histogram exploiting the 

multilevel segmented region. From the segmented 

image, the prediction model VGG 16 algorithm retrieve 

the traits of the diseased feature region of fetal heart 

anatomy which estimates more comprehensive depiction 

of septal defects composition as exploited in Figure 21. 

 

Figure 18. Multi-level ROI segmentation. 

 

Figure 19. Fetal heart region’s segmented output. 

 

Figure 20. Segmented output phase based on predictive modelling. 

 

Figure 21. FHD prediction model output. 

3.2.2. Image Classification via CNN Integrated 

VGG 16 Net 

Succeeding with the final phase of the segregated image, 

Figure 22 pictures the detection output which estimates 

the adequate variables that the model is designed to 

predict. The classification outcome of the CNN beneath 

different echo intensity levels in the proximal and distal 

quadriceps stages where the mid-region has the least 

intensity, most likely caused due to the upsurge in 
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filament lessons adjacent to the tendon ends and 

myotendinous juncture. 

 

Figure 22. Fetal heart diseases detected image via bounding. 

 

Figure 23. Normal ultrasound fetal image. 

The anomalous image in Figure 22 depicts the 

irregularities on Right Artery (RA) and Right Ventricle 

(RV) via yellow circular bounding, resulting from the 

abnormal spiral of the truncus arteriosus and a formation 

lack of the membranous septum of the fetal anatomy. 

The heart's walls and components i.e., RA and RV are 

shaped and matured in irregular disparities via integrated 

VGG 16 Net accounting for congenital heart defects. 

Figure 23 showcases the normal fetal imaging of cardiac 

disorders. 

Figure 24 delineates the propounded system's 

interpreted outputs with accuracy, training, testing and 

validation set. The graphical measurements are typically 

plotted with a combined training and validation loss 

plots in order to analyze their proficiency over time. The 

degree of accuracy ranges at 99.89%. Both the training 

and validation accuracy improved and loss ratio 

diminished at each epoch phase via the network's 

equivalent operation. The CNN’s VGG 16 Net measures 

the performance of train and test data via the train-test 

loss. For instance, the iteration error is evaluated on the 

model’s set i.e., subset of the data primitively generated 

to degrade error of the system. Subsequent error in the 

training set is added to calculate the training loss 

alongside test and validation. In addition, utmost each 

adequate batch is calculated for overall loss curves. 

Eventually, the integrated VGG-16 is acquired with a 

classified error of 6.66% and a correlation rate of 

25.32%. 

 

Figure 24. CNN incorporated VGG-16 Net model validation. 

3.3. Blood Vessel Detection Via DRNN 

Major arteries such as the AOrta (AO), Pulmonary 

Artery (PA) and Superior Vena Cava (SVC) are 

transposed in the outflow view of Figure 25, originating 

from the 3-vessel view. 

 

Figure 25. Input blood vessel image. 

3.3.1. Enumeration of Preliminary and 

Segmentation Phase Via MMWF Integrated 

Region-Based Selection 

Figures 25 and 26 illustrate the 3-vessel input imagery 

with improved filtering outcome utilizing the centered 

MMWF where the image is de-noised to its intensity 

level and appropriated for sub-ranged images with 

differentiated pixel intensity and background. Plus, the 

average discrepancies resulting from higher intensity is 

reduced with the optimum threshold. To justify the 

MMWF process, Figure 27 generates the comparison 

result via input vs filtered blood vessel image. Ensuing 

with pre-processed image, Figures 28 and 29 depict the 

image improvement process utilizing the contrast stretch 
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AHE and flexible thresholding of groundtruth labeling 

via masking using region-based segmentation. 

 

Figure 26. MMWF de-noised image. 

 

Figure 27. Collation image of input and de-noised vessel view. 

 

Figure 28. Image enhancement via AHE. 

 

Figure 29. Segmented image via region-based LPB and HOG. 

3.3.2. DRNN’s 3-Vessel View Fuzzy Detection  

In enumeration with region-based, Figure 30 pictures 

the fabricated outputs of the segmentation phase paired 

with the dark blue region of the fetal cardiac ultrasound 

images of the PA, AO, and SVC using LPB and HOG 

which necessitated the appropriate feature extraction 

and segregated the foreground and background areas 

from the pre-processed region. Enclosing, the 

segmented region is trained via classifcation wherein 

Figure 31 displays the detection output of DRNN 

training model with the predictive yellow bounding 

mask in the diseased PA and AO region with image 

precision acquirement of 98.7%. The division of the 

classified area detection has resembled as inconsistent 

criteria i.e., ischemia regions. The fetus’s ischemia area 

of the interior and exterior has been covered and 

characterised via segregated region-based segments and 

DRNN. 

 

Figure 30. Predictive segmented region of blood vessel image. 

 

Figure 31. Fetal ischemia detection via DRNN. 

4. Performance and Training Phase 

The following stage incorporates the statistical and 

simulated findings of the intended CNN and DRNN in 

Figures 32 to 35 using the obtained dataset with the 

efficacy of the parametric assessment which delineates 

the training phase of the neural network of the specific 

instance accomplished by calculating the variation 

among the overall system's processing outcome i.e., the 

desired predictions. The network then modifies its 

weight link in accordance with a learning rule and error 

rate. The automated image classification NN training 

depicted in Figure 32 utilized the levenberg-marquardt 

algorithm in driving healthcare systems of NN 

performance phase and regression plots. Similar to 

feedforward neural networks, this NN have recurrent 

connections associated with tap delays and has been 

implied with finite input response of the Time Delay Net 

(TDN) and Distributed Delay Net (DDN) that validates 

the time-series and sequential data. 
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Figure 32. Neural network training. 

 

Figure 33. Training performance. 

 

Figure 34. Gradient and epochs. 

 

Figure 35. Training regression fit curve. 

The performance graph in Figure 33 displays the 

status of the training state pursuant to the no. of iterations 

and the Mean Squared Error (MSE) with the succession 

of 8.5824e-06 network validation efficiency at epoch 48. 

The commencement and recurrence of errors after epoch 

48 show that the data match is ideal in Figure 34, with 

an overall gradient of 0.00025356, Mu of 1e-05, and zero 

validation check. The linear graph in Figure 35 

represents the target (T) and output (y) dataset in a 

straight-line equation Y=T with the overall 0.99998 

regression R-value for the training data set, which is 

close to 1 and the trained neural network emerged to be 

more accurate. 

4.1. Model VGG-16 and DRNN’s Confusion 

Metrices 

This test yields a 2 by 2 matrix of confusion entries in  

Equations (17) to (20) for True Positive (TP), True 

Negative (TN), False Positive (FP), and False Negative 

(FN) [13] with the widely used evaluation metrics 

accuracy, sensitivity, specificity, recall and F1-Score 

rate [46] to estimate the efficiency of the propounded 

VGG-16 and DRNN models. 

In context to FHD, Accuracy escalates the proportion 

to correctly identify the disease’s presence and absence 

via the propounded VGG 16 and DRNN distinct to the 

total no. of predictions.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
 𝑇𝑃 +  𝑇𝑁

 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Sensitivity/Recall enumerates the proportion of actual 

prediction i.e., true positive FHD cases correctly 

identified by the proposed model.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦/𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

Specificity depicts the proportion of actual negative 

FHD cases i.e., disease absent, correctly identified by the 

integrated CNN and RNN.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

F1-score enumerates the precise proportion of the 

balanced measure i.e., target and actual FHD test case.  

(17) 

(18) 

(19) 
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𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 1/2(𝐹𝑃 + 𝐹𝑁)
 

Where TP is the test outcome that correctly indicates the 

FHD with the confirmed presence of the defect, TN 

pictures the test enumeration that correctly identifies the 

absence of a fetal heart condition i.e., four-chamber and 

blood vessels lesion when it is truly absent, FP is the test 

intent that incorrectly pertains to the presence of fetal 

heart disease when absent, FN showcases the test sequel 

that incorrectly indicates the absence of fetal heart 

disease when it is present. 

In examined comparison of Figure 36 with existing 

MRCNN, DCNN and DGACNN, the proposed system 

is up to 99.89% and 98.7% more accurate whereas 

accompanied systems estimated with the efficacy of 

97.48%, 95.2%, 96%, 90.43% as depicted in Table 2. In 

evaluating the system’s efficacy, the Error Dispersion 

(EP) i.e., the average error also concerns where the we 

have generated the PE distribution of the testing samples 

to insight the average error into the prediction accuracy. 

In accordance with EP, the propounded CNN has 

accomplished less than 2% PE for all practical samples 

in the 3-mode phase, and the pre-trained DRNN has 

reached a PE of less than 5% and the associated 

percentage is computed as the coordinate value. The 

inclusion of the major overflow tracts and flaws in the 

four-chamber and three-vessel views during cardiac 

screening has accurately estimated the detection of 

CHD. 

 

Figure 36. Comparison graph for the existing and proposed system. 

Table 2. Performance analysis of existing vs proposed work. 

S. No. System classifier Model Accuracy (%) Sensitivity (%) Specificity (%) F1-Score (%) 

1. Existing classifier-I [34] MRCNN 97.48 92.13 92.21 93.04 

2. Existing classifier-II [33] DANomaly Wgan-GP and CNN (DGACNN) 95.2 92.2 91.36 94.36 

3. Existing classifier-III [28] DCNN 96 93.21 94.32 91.42 

4. Existing classifier-IV [29] DCNN + AlexNet 90.43 89.32 87.65 85.32 

5. Propounded system 
Proposed CNN + VGG16 99.89 96. 97.91 96.32 

DRNN 98.7 96 93.3 92 

 

5. Conclusions 

Septal defects or FHD are known to be a serious 

dilemma and have to be anticipated at a premature phase. 

The deep learning models or algorithms are one with the 

consequent detection tools utilized for septal defects. 

The research intended to develop two evident classifier 

techniques to prognose diseases in four-chamber via 

CNN incorporated VGG 16 and three-vessel via DRNN 

of the fetal heart in ultrasound images. Adopting the pre-

processing visions of wiener filter augmentation and 

MMWF techniques, the image quality of acquired fetal 

images has been assessed with high noise removal and 

image enhancement. In subsequent, multiclass ROI and 

region-based segmentation algorithms have designated 

the pre-processed fetal features of atria, ventricles, 

pulmonary artery and aorta with masking, grouped the 

data with ground truth labeling and extracted the 

diseased features for the further detection procedure of 

classification. The propounded models CNN and DRNN 

which rely on MATLAB software have detected the 

FHD with the inclusive metrics of 99.89% accuracy, 

96.2% sensitivity, 97.91% specificity and 96.32% f1-

score in four-chamber view and 98.7% accuracy, 96% 

sensitivity, 93.3% specificity and 92% f1-score in 3-

vessel view of the fetal heart with highly estimated 

comparison of the current cardiac screening detection 

DL models of MRCNN, DGANN and DCNN. As the 

outcome of disease abnormalities, FHD parents are 

counselled at an early stage of their diagnosis. 
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