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Abstract: Session-based recommendations are used to convert complex items by using the graph neural network, where this 

also involves combining session-level and global-level information to discover user preferences. However, this ap-proach en-

counters certain problems. A user with extensive interests should be offered more than one recommendation of candidate items. 

We propose a neural network-based model to fuse candidate items based on this premise. We first use a graph neural network 

to acquire session-level and global-level information, and then use an attention mechanism to obtain a representation of 

candidate items recommended to the user. Finally, we integrate the candidate-level, glob-al-level, and session-level information 

to acquire rich information on the items in the given session. Extensive tests on three empirically ac-quired datasets showed that 

our model is superior to baseline models in most cases. 
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1. Introduction 

Recommendation systems are essential in various 

network platforms because they help customers avoid 

redundant messages by recommending suitable items to 

them. Traditional recommendation algorithms often 

rely on personal user information and a long history of 

their access-related data. Such traditional algorithms as 

collaborative filtering [17] segment users based on their 

interests and recommend to them products that have 

been chosen by users with similar interests, whereas 

content-based recommendation algorithms [1, 13] 

generate recommendations to users based on 

information on the relevant items. However, the 

traditional method performs poorly when users log in 

anonymously because no information on the user's 

configuration and long-term historical information on 

their inter-actions is available in this case. Session-

based recommendation has been developed to solve 

such problems [2, 4, 8, 15, 21]. 

Session-based recommendation has recently 

attracted wide attention as it can be used to forecast the 

next item of interest in a chronological order based on a  

 
series of anonymous activities. At the outset of research 

on models for session-based recommendation, many 

scholars employed Markov chains [7, 18] as the core 

algorithm to model the sessions. Wu et al. [26] 

introduced a Markov chain-based approach to 

embedding that can be used to transfer items and users 

into the Euclidean space, with the distance between 

them representing the probability of their transference. 

The results of embedding are then used to rank the 

candidate items. Rendle et al. [16] pro-posed a hybrid 

Factorizing Personalized Markov Chains (FPMC) 

model that can mix methods of matrix decomposition 

with the Markov chain to obtain both the general interest 

and the expected interest of the user, and achieved 

promising results. However, the Markov chain model 

assumes that the user’s next action can be predicted 

based on their preceding actions, and this is easily 

influenced by noisy data that limit its effectiveness in 

conversation-based recommendation scenarios. 

Many deep neural network models have been 

proposed for the above problems and have achieved 

impressive performance. session-based 
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recommendations with Recurrent Neural Networks 

(RNN) (GRU4Rec) [6] were the first session-based 

model of recommendation founded on a Recurrent 

Neural Network (RNN) model. It uses a Gated 

Recurrent Unit (GRU) layer to form a one-way 

sequence from session-related data in strict 

chronological order, given that the user’s data are often 

created during a short period and the relevant 

information may be temporally related. A Neural 

Attentive session-based Recommendation Model 

(NARM), reported by Li et al. [10], is based on the 

RNN, and incorpo-rates an attention mechanism into the 

GRU encoder to gather information on short-term 

sessions. Liu et al. [11] introduced a Short-Term 

Attention/Memory Priority model (STAMP), which 

employs a Multi-Layer Perceptron (MLP) model and an 

attention mechanism to extract the potential interests of 

users. However, many deep neural network models [19, 

20, 22] simply extract information on users based on a 

time series to model the session. Transitioning an item 

is an intricate task, and the user's behavior may not 

develop in strictly chronological order. Changing the 

order of the items in a session has no effect on the user’s 

preference for them; rather, modeling the items in a 

session in strict chronological order may result in 

overfitting. 

Graph Neural Networks (GNN) have been 

introduced to imitate the intricacy of item relationships 

in session-related data to better portray the links 

between them. The first graph neural network developed 

for session-based recommendations Spatial Relation-

aware Graph Neural Network (SR-GNN) was by Wu et 

al. [25]. It models sessions as graphs to capture item 

associations and then uses an attention mechanism to 

record user preferences. Following its success, many 

graph neural network models have emerged, such as the 

Graph-Contextualized Self-Attention Network 

(GCSAN) [28], the personalized GNN with an attention 

mechanism Alarm Propagation Graph Neural Network 

(A-PGNN) [31], and the Lossless Edge Order-

Preserving Aggregation and Shortcut Graph Attention 

(LESSR) [3]. Qiu et al. [14] proposed a Full Graph 

Neural Network (FGNN) that uses a multi-headed 

attention mechanism to collect information about an 

item's neighbors to derive item representations. Fang et 

al. [5] proposed a session-based recommendation with 

Spatial Relation Self-Attention Networks (SR-SAN) to 

mine long-term dependencies between items by 

introducing a self-attention network layer. However, 

these methods consider only item transitions for the 

given session and do not consider information on 

transitions for all sessions. Several models that consider 

the global fusion of information have emerged in 

response to this problem. Wang et al. [23] introduced a 

Global Context Enhanced Graph Neural Network 

(GCE-GNN), which can examine transitions between 

items from a session as well as the global perspective. 

Xia et al. [27] proposed a Dual Channel Hypergraph 

Convolutional Network model (DHCN) to capture 

higher-order information between items through a 

hypergraph-based neural network. They used self-

supervised learning to help improve hypergraph 

modeling. Pang et al. [12] proposed a Heterogeneous 

Global Graph Neural Networks model (HG-GNN) that 

constructs a heterogeneous graph to obtain the user's 

preference-related representation. 

Although fusing information from other sessions into 

the present one can enrich the available content, it may 

fix the user's attention and degrade performance. 

Furthermore, adding information on the candidate items 

can pique the user's interest and improve the 

representation of information on the session. 

 

Figure 1. An example of considering information from sessions other 

than the current one as well as information on the candidate item. 

Figure 1 illustrates this point for presentation 

purposes. Assuming that the current session is “session 

5,” recommending the next item to the user according to 

the previous three items is purpose of the session-based 

recommendation. Figure 1 shows the following: 

1) Using information from other sessions facilitates the 

discovery of user preferences for the current session. 

For instance, in the other sessions, items related to 

the item “computer” are present in “session 3,” items 

related to “dress” are present in “session 2,” and 

items related to “lipstick” are present in “session 1.” 

The representational information in “session 5” can 

be enriched by using information from the other 

sessions.  

2) Using materials relevant to the current session and 

directly recommending them to the user may lower 

the user's interest if they have a wide variety of 

interests and want to see content other than their 

historical items. The user in “session 5” wants to look 

at furniture but, as in the GCE-GNN [23], the 

representation information obtained may contain 

only a few types of makeup, clothes, and digital 

items. Subsequent downstream recommendations 

then become limited to these types, and this may 

reduce the user's interest. According to the strategy 

proposed by Zhou et al. [32], given a candidate item, 

a user with a diverse set of interests is activated. We 

choose all items of session as candidate items. The 
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click rate of users can be improved if information on 

the candidate items is added to “session 5” in Figure 

1. A large amount of information on the candidate 

items is a key aspect of session-related data, and can 

be used to tap into potential user preferences. 

To better learn the preferences of users in their current 

session, this study introduces the fusion of the candidate 

items with the graph neural network model Furnish 

Charging Information Graph Neural Network (FCI-

GNN), a graph neural network model based on session-

based rec-ommendations, that includes information on 

the candidate items as well as global-level and session-

level information. We construct global and session 

diagrams to obtain global-level and session-level item-

embedding layers, respectively:  

1. The global-level item-embedding layer linearly com-

putes each item in a node's neighborhood set by using 

a session-aware attention mechanism in the global 

graph. The resulting representation of the 

neighborhood of the item is then aggregated with the 

representation of the node to generate a global-level 

embedding. To combine efficient messages into the 

representation of the current session, we use multiple 

aggregations to explore higher-order infor-mation.  

2. The session-level item-embedding layer uses an at-

tention mechanism to obtain the weights of distinct 

nodes to finally obtain the session-level embedding.  

3. In addition, after merging global- and session-level 

embeddings, we provide a candidate-level 

representation layer that computes the soft attention 

score of the candi-date item with respect to the item 

in the current session by applying a target attention 

mechanism. The ultimate repre-sentation of the 

session is created by merging the candi-date-level 

embedding with the global and session levels, and 

linearly transforming them. 

The main contributions of this work are as follows:  

 To accommodate changes in the user’s intent during 

a session, we use attention mechanisms to calculate 

the relevance of their historical actions on items in 

the present session to the candidate items. This 

improves recommendation-related performance. 

 The assumption of sequence independence is 

violated through the creation of messages from the 

global per-spective of cross-session, which is the 

process of ob-taining information from different 

sessions. 

 We build a session graph and use it to obtain intricate 

relationships among the items in the given session. 

This enhances the representation of the session. 

2. Preliminaries 

We now define the problem that we consider here before 

describing the session graph and the global graph. Table 

1 lists the notation used in this study. 

Table 1. Notation used in this study. 

Notation Explanation 

Input  

𝒯 
Set of all session items, 𝒯 = {𝑡1, 𝑡2, … , 𝑡𝑛}; the total number 

of items is 𝑛. 

s 
An anonymous session, 𝑠 = {𝑡𝑠,1, 𝑡𝑠,2, … , 𝑡𝑠,𝑚}; m is the 

length of the session. 

𝑆 Set of all sessions. 

Output  

�̂� Output probability of item. 

Graph  

𝑁𝓇(𝑣)，𝑁𝑣
𝑔
 
All represent node 𝑣’s 𝓇-order neighbor set on the global 
graph. 

Gg Global graph (undirected graph). 

𝑁𝑣
𝑠 Node 𝑣’s neighbor set in the session graph. 

𝐺𝑠 Session graph (directed graph). 

𝑒𝑖,𝑒𝑜,𝑒𝑖−𝑜, 𝑒𝑠 
Four types of edges in a session graph, namely, in-edge, out-
edge, two-way edge, and self-circulating edge. 

Variable  

x𝑣
𝑔,(𝑢)

 
Item 𝑣 representation generated by the 𝑢-th layer information 
propagation in the global graph. 

x𝑁𝑣𝑖

𝑔  Neighbor representation of item 𝑣𝑖 in the global graph. 

s Vector representation of the current session s(letter s bolded). 

x𝑣 Vector representation of (item) node 𝑣. 

𝑣𝑡 Candidate item. 

2.1. Problem Setting 

Session-based recommendation is designed to forecast 

the products that users will select according to 

information on their past sessions, rather than a long-

term profile of their preference. Let T={t_1,t_2,…,t_n } 

be the set of items that the user has involved during all 

their sessions, where the total number of items in all 

sessions is n. The sequence of anonymous sessions 

comprises a series of interactions that can be described 

as a list “s = {“ “t” _ “s,1” ”, “ “t” _“s,2”  “,…,”“ “t” 

_“s,m” ”} ” , where t_(s,i)∈T denotes the item t_i chosen 

during session s, and the length of s is m. According to 

the session-based recommendation, the main purpose of 

the model is to output the next chosen item t_(s,i+1) in 

the current session. The probability value of the 

candidate items y ̂ is output by processing, the items are 

sorted, and the K highest-ranking items are selected to 

generate a sequence of suggested candidate items for the 

user. 

Each item t_i∈T is encoded into a unified embedding 

space according to time sequence l. Let x_(l,t)∈R^d be 

the item vector, where d indicates the number of 

dimensions of the embedded item. Accordingly, each 

item is initialized to x_(0,t)∈R^(|T|). The embedding is 

performed based on one-hot embedding, and the items 

are converted into a d-dimensional potential vector 

space via the matrix W_0∈R^(d×|T|). A vector s 

represents each session embedding. In the following, we 

use v to denote the node and the item unless otherwise 

specified. 

2.2. Global Graph Module 

During the learning of graph-based models, the 

information contained in the graph structure defines the 

upper limit of the performance of the model. It is thus 

important for the graph model to contain as much 
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information as possible, especially across sessions, to 

obtain good performance. To capture information on the 

transfer of global-level items, we use the method in [24] 

to generate a global graph and learn information 

between sessions.  

The set of r-order neighbors of the item in the current 

session is defined as N_r（v). The neighboring set of 

the set of items in the current session consists of items 

that have been interacted with in a certain step length r. 

Specifically, let the neighbor set of node v of the current 

session S_a be represented as: 

N_r（v_i^a)={v_j^b 

|v_i^a=v_(i^’)^b∈S_a∩S_b;v_j^a∈S_b;j∈[i^'-

r,i^'+r];S_a≠S_b}, where v_i^a is node i of session S_a, 

i^' is the sequential position of item v_i^a from session 

S_a in session S_b and r is a super-parameter that 

controls the transformation modeling between items. If 

r is out of range, it may capture noise from global-level 

information on item conversion. Note that in terms of 

gains in efficiency, our proposed model does not 

discriminate between the directions of global-level item 

conversion. 

 

Figure 2. Construction of the global graph. 

Moreover, we use the set of r-order neighboring 

items in all sessions to structure a global graph. Let the 

global graph be represented by G_g=(V_g,E_g), where 

V_g∈T is the set of clicked items in all sessions, 

E_g={e_ij^g} indicates all edge sets, and e_ij^g is the 

edge between nodes v_i^s and v_j^s. Each edge 〖

(v_i^g,v_j^g)〗_(v_j∈N_v^g ) corresponds to two 

paired terms in all sessions. To identify the significance 

of node v_i’s neighbors, we compute the weights of its 

neighboring edges. In other words, the frequency of the 

adjacent edges in all sessions is used to determine the 

weight of each edge 〖(v_i^g,v_j^g)v_j∈N_(v_i)^g〗
because the set of r-order neighbors is undirected, the 

global graph G_g is an undirected weighted graph, and 

its topology is not dynamically updated during the 

testing phase. To maximize efficiency, node v_i 

preserves only K edges with the largest weight. Figure 

2 shows the construction of the global graph. 

2.3. Session Graph Module 

It is important to mine the current session for data on the 

relationship of item conversion, which refers to such 

relationships between items as outgoing edges, 

incoming edges, bidirectional edges, and self-

circulation. To learn session-level item representation, 

we use the method in [23] to model a session graph that 

can capture the complex graphical patterns of a session. 

For each session s={t_(s,1), t_(s,2),…, t_(s,m)}, we set 

the session graph to G_s=(V_s, E_s), where V_s∈T 

indicates the collection of selected items during session 

s, E_s presents the collection of edges, and 

E_s=(v_i,v_j,e_ij^s) is the edge between adjacent items 

in s. According to the relationship between items in the 

session graph, there are four types of edges 

(v_i^s,v_j^s,e_ij^s): e_i, e_o, e_(i-o), and e_s, where e_i 

indicates the incoming edge into an item, e_o denotes 

the outgoing edge, e_(i-o) defines a two-way edge 

between items, and e_s represents the item's own loop. 

Figure 3 shows the structure of the session graph. 

 

Figure 3. Structure of the session graph. 

3. The Proposed Model 

We now present the FCI-GNN model, which is based on 

graph neural network for session-based 

recommendation based on the fusion of candidate items. 

Figure 4 shows FCI-GNN model flow. The 

organizational framework of our model is made up of 

five main components, as shown in Figure 5: 

 

Figure 4. FCI-GNN model flow chart. 
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Figure 5. Organizational framework of the FCI-GNN model, where two sessions are used as an example in the session set. In practice, some 

items may not be clicked in one only session. We have thus listed v_3 and v_5 in two sessions to simulate this process. 

 Global-level item-embedding layer: we use content 

on the global graph to compute nodes of the current 

session. This breaks the assumption of sequence 

independence and makes more potential information 

available to the current node. Because information on 

the node of the current session is affected by its r-

order set of neighboring nodes, the attention 

mechanism is used to compute the affinity between 

the neighbor set and the current session of the current 

node. 

 Session-level item-embedding layer: we compute 

nodes of the current session by using information on 

the session graph. We consider the relationships 

between items in the session sequence.  

 Candidate-level item-embedding layer: to better 

grasp the user's intention, we analyze the influence of 

candidate items on nodes in the current session by 

using the attention mechanism.  

 Position embedding: we use reverse location coding 

to transform the item-embedding vector to identify 

the location of each item to obtain valid information 

between the current and the predicted items. 

 Prediction layer: we combine session-level, global-

level, and candidate-level item-embedding 

representations, and linearly convert their results by 

using the click vector. The output probabilities are 

then sorted by using the top-K sorting method, and 

the final result is thus obtained. 

3.1. Global-Level Item-Embedding Layer 

Inspired by Li et al. [9] and Wang et al. [23], we update 

the characteristics of the global graph to obtain item 

conversion messages across sessions. We also use the 

graph attention network theory to generate the weights 

of the linked items. Each layer is composed of 

information dissemination and aggregation. The 

following illustrates how information dissemination and 

aggregation take place in each layer, and then extend to 

multiple layers. 

Information dissemination: an item may involve 

numerous sessions, through which we can gain its 

available conversion relation to improve the forecast. 

A simple technique for generating the first-order 

characteristics of the neighborhood of item v is the mean 

pooling approach. However, not all items of the r-order 

neighborhood set are related to the interests of the user 

in the current session. We think it is important to use 

session-aware attention to differentiate among items of 

the neighborhood set N_r(v). We use session-aware 

attention to linearly compute each item in the set of 

neighbors to obtain a neighborhood representation of 

the given item, namely, x_(N_v^g), illustrated in 

Equation (1).  

𝑥_(𝑁_(𝑣_𝑖)^𝑔 ) = ∑_(𝑣_𝑗 ∈ 𝑁_(𝑣_𝑖)^𝑔)▒〖𝜉(𝑣_𝐼, 𝑣_𝑗)𝑥_(𝑣_𝑗 ) 〗 

where ξ(v_i,v_j) represents the important weights of 

distinct neighbors. In particular, if such a neighboring 

item is close to the interest of the user in the current 

session, it is considered critical. Ξ(〖v_i〗_i,v_j) can be 

expressed as Equation (2).  

𝜉(𝑣_𝑖, 𝑣_𝑗 ) = 𝑃_1^ ⊺  𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝑙𝑢(𝑊_1 [𝑠⨀𝑥_(𝑣_𝑗 ); 𝜆_𝑖𝑗]) 

where ⊺ denotes the transpose, Leaky Relu is the 

activation function used, ⨀ denotes the elemental 

product, [;] denotes the splicing operation, λ_ij∈R^m 

denotes the weights of the edges (v_i,v_j) of the global 

graph, P_1∈R^((d+1)×1) is a trainable parameter, and 

so is W_1∈R^((d+1) ×d). s is a feature of the current 

session that is obtained from the average value of its 

item representation. Illustrated in Equation (3). 

s=(∑_(v_i∈s) ▒x_ (v_i))/(|s|) 

Then, the coefficients of all neighbors of item v_i are 

normalized by applying the softmax activation function 

in Equation (4). 

𝜉(𝑣_𝑖, 𝑣_𝑗) = (𝑒𝑥𝑝(𝜉(𝑣_𝑖, 𝑣_𝑗)))/( ∑ 𝑒𝑥𝑝 (𝜉(𝑣𝑖 , 𝑣𝑘))

𝑣𝑘∈𝑁𝑣𝑖

𝑔

)  

Information aggregation: We combine the item 
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representation x_v with the representation x_(N_v^g ) of 

its neighbor by using the aggregation function in 

Equation (5). 

𝑥_𝑣^𝑔 = 𝑟𝑒𝑙𝑢(𝑊2[𝑥𝑣; 𝑥 (𝑁𝑣
𝑔

)])  

Where the transformation weight is W_2∈R^(d×2d) and 

the activation function is ReLU. 

The representation of an item in the aggregator layer 

is determined by it and its immediate surroundings. We 

use the aggregator to augment the item representation of 

the current session by mining higher-order interactions 

through numerous aggregations. Equation (6) is a 

representation of an item in layer u. 

𝑥_𝑣^(𝑔, (𝑢)) = 𝑎𝑔𝑔(𝑥𝑣
(𝑢−1)

, 𝑥
𝑁𝑣

𝑔
(𝑢−1)

) 

where x_v^((u-1)) denotes the representation of item v 

generated from the previous layer u-1 of information 

propagation. Let x_v^0 be the initial iteration of the 

propagation of x_v. Finally, the representation of layer 

u of the item is composed of its original representation 

and those of its neighbors that cycle to u. This allows for 

the integration of efficient information into the 

representation of the current session. 

3.2. Session-Level Item-Embedding Layer 

In the session graph module, we defined four types of 

edges for the relationships between items of the session 

graph: the incoming edge e_i, outgoing edge e_o, 

bidirectional edge e_(i-o), and self-looping edge e_s. 

The aim is to learn the transformation of information on 

pairs of items in the current session. We now detail the 

learning of session-level representation. 

We use an attention mechanism in the session graph 

to obtain the weights of distinct nodes because the 

neighbors of items have varying importance to them. 

The element-wise product and non-linear conversion are 

applied to compute the attention factor μ_ij in Equation 

(7).  

𝜇_𝑖𝑗 = 𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐸𝑒𝑖𝑗

⊺ (𝑥𝑣𝑖
⊙ 𝑥𝑣𝑗

)) 

where E_*∈R^d represents the weight vector, μ_ij 

represents the importance weight between nodes v_i and 

v_j, and e_ij denotes the relationship between v_j and 

v_i. 

There are four relations in the session graph that are 

trained for four weight vectors: E_“i” , E_“o” , E_(i-o), 

and E_s. As not all pairs of nodes in the network are 

connected, only the attention factor μ_ij for node 

j∈N_(v_i)^s is determined, where N_(v_i)^s is the first-

order neighbor of node v_i. We then apply the session 

graph to the model. We use the softmax function to 

normalize the attention weight and measure the 

coefficients of distinct nodes: 

Because neighbors of the node v_i are different, the 

attention factor β in Equation (8) is asymmetric, 

meaning that the neighbors in this case do not contribute 

equally to each other’s representations.  

𝛽_𝑖𝑗 = (𝑒𝑥𝑝(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝐸_(𝑟_𝑖𝑗)^ ⊺ (𝑥_(𝑣_𝑖 )
⊙ 𝑥_(𝑣_𝑗 )))))

/( ∑ 𝑒𝑥𝑝 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝐸𝑟𝑖𝑘

⊺ (𝑥𝑣𝑖
⊙ 𝑥𝑣𝑘

)))

𝑣𝑘∈𝑁𝑣𝑖
𝑠

)  

The result obtained by using Equation (8) can be 

linearly combined with features of the node to obtain its 

output, illustrated in Equation (9). 

𝑥_(𝑣_𝑖)^𝑠 = ∑_(𝑣_𝑗 ∈ 𝑁_(𝑣_𝑖)^𝑠)▒〖𝛽_𝑖𝑗 𝑥_(𝑣_𝑗 )〗 

In summary, the representation of items in a session 

graph is composed of the features of items and their 

neighbors in the current session. Information on the 

conversation is further enhanced by using the attention 

mechanism. 

3.3. Position Embedding 

To prevent over-fitting, we use dropout in Equation (10) 

in the global-level representation. We estimate the 

embedding of the items by merging global-level and 

session-level representations, and we use sum pooling 

to get the result of fusion:  

𝑥_𝑣^(𝑔, (𝑢)) = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑥𝑣
𝑔,(𝑢)

) 

Then, the vector of items for the current session is 

acquired by Equation (11), namely, 

X=[x_(v_1^s)^’,x_(v_2^s)^’,…,x_(v_m^s)^’], where m 

indicates the length of the series of the current session.  

𝑋_𝑣^’ = 𝑥_𝑣^(𝑔, (𝑢)) + 𝑥_(𝑣_𝑖)^𝑠 

As each item's location is unique, we transform the item-

embedding vector by using position embedding to 

distinguish the locations of the items. We also use the 

matrix of trainable location embedding Q=[q_1, 

q_2,…,q_l], where q_i∈R^d denotes the vector of 

location i. 

Without loss of generality, we use reverse position 

embedding because the distance between the current 

item and the predicted item provides more efficient data 

than the data on the forward location. For instance, in 

“session “{1, 2, 3, ?}”,” “3” is the third item in the 

sequence, and has a significant effect on the predicted 

items. However, its influence on the predicted items is 

minimal in session ““{3, 2, 1, 4, ?}”,” where “3” is the 

first in the sequence. Information on the reverse location 

thus provides a more realistic representation of each 

item’s importance. The location information is obtained 

by splicing as well as non-linear transformation by 

Equation (12).  

𝜃_𝑖 = 𝑡𝑎𝑛ℎ(𝑊3 [𝑥𝑣𝑖
𝑠

′ ; 𝑞𝑚−𝑖+1] + 𝑏3) 

Where b_3∈R^d and W_3∈R^(d×2d) are trainable 

parameters. 

We calculate the average of item representations of 

the current session to obtain session-related 

information, illustrated in Equation (13).  

𝑠^′ = 1/𝑚 ∑_(𝑖 = 1)^𝑚▒𝑥_(𝑣𝑖
𝑠)^′  

(5) 

(6) 

(7) 

(9) 

(10) 

(11) 

(12) 

(13) 

(8) 
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We then use soft attention to learn the corresponding 

weights, illustrated in Equation (14).  

𝛼_𝑖 = 𝑃_2^ ⊺  𝜎(𝑊4𝜃𝑖 + 𝑊5𝑠′ + 𝑏4) 

Where W_4∈R^(d×d), W_5∈R^(d×d), P_2^⊺∈R^d, and 

b_4∈R^d are trainable parameters. 

Following this, we use terms of the linear 

combination to generate the representation of the new 

session, illustrated in Equation (15).  

𝐻_1 = ∑_(𝑖 = 1)^𝑚▒〖𝛼_𝑖 𝑥_(𝑣_𝑖^𝑠)^′ 〗 

This new representation H_1 contains the items 

involved in the current session. 

3.4. Candidate-Level Item-Embedding Layer 

According to the idea proposed by Yu et al. [29], we 

create an embedding of candidate items to extract more 

meaningful information on the current session and 

model different user intentions in it. It considers the 

correlation between the user’s historical behavior and 

the items in their current session. We define all items to 

be predicted {t_1, t_2,…, t_n } as the candidate items 

v_t. In general, the items recommended to the user 

represent only a small portion of their preferences. To 

establish the model for this process, the soft attention 

scores of all items v_i in session s relative to each 

candidate item v_t∈T are calculated by the attention 

mechanism, illustrated in Equation (16).  

𝜌_(𝑖, 𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜑_(𝑖, 𝑡) )

= (𝑒𝑥𝑝(𝑣_𝑡^ ⊺ 𝑊_6 𝑣_𝑖))/(∑ 𝑒𝑥𝑝(𝑣𝑡
⊺𝑊6𝑣𝑗)

𝑛

𝑗=1

) 

where v_t∈T is the candidate item. A non-linear 

transformation is used to apply the weight matrix 

W_6∈R^(d×d) to each node–candidate pair, and the 

softmax function normalizes the attention score.  

For each session, we define H_2∈R^d as the interest 

of the user in candidate item v_t, namely, the candidate 

representation. It is calculated as Equation (17).  

𝐻_2 = ∑_(𝑖 = 1)^(𝑠_𝑛)▒〖𝜌_(𝑖, 𝑡) 𝑣_𝑖〗  

Lastly, to construct the final representation of the 

session, we splice and linearly transform the session and 

the candidate representation generated by Equation 

(18).  

𝐻 = 𝑊_7 [𝐻1; 𝐻2] 

3.5. Prediction Layer 

The probability of each candidate item of being chosen 

as the final recommendation is determined by its initial 

embedding and the final representation derived by 

Equation (18). The final output y ̂ can be generated 

through a dot product and the softmax function in 

Equation (19).  

𝑦 ̂ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 ̂) 

𝑧 ̂ = 𝐻^ ⊺  𝑣_𝑡 

where ẑ represents the predicted score of the candidate 

item and y ̂ is the probability of the next clicked item. 

The recommended items are chosen from the top K 

items with the highest probability value in y ̂. 

We use cross-entropy as the loss function in Equation 

(20).  

𝐿(𝑦 ̂ ) = −∑_(𝑖 = 1)^𝑛▒〖(1 − 𝑦_𝑖)𝑙𝑜𝑔(1 − 𝑦 ̂_𝑖)  
+  𝑦_𝑖  𝑙𝑜𝑔 (𝑦 ̂_𝑖 )〗 

Where y_i represents the one-hot encoding vector of the 

ground truth items. 

4. Experiments 

We performed detailed trials on three publicly available 

datasets to assess the efficacy of the FCI-GNN model 

and respond to the following research questions: 

 RQ1: is FCI-GNN better than other cutting-edge 

SBRS methods? 

 RQ2: does changing the value of “K” affect the 

performance of our model? 

 RQ3: are all components of our model valid? 

 RQ4: how does the number of neighbors influence 

the model? 

 RQ5: how much influence do the number of 

dimensions of the embedding have on the model, and 

what is an appropriate value appropriate for this? 

To answer the above questions in sequence, we now 

present basic information on the experiment, followed 

by a report and analysis of the results. 

4.1. Datasets and Preprocessing 

We used the Diginetica, Tmall, and Nowplaying 

datasets to assess the performance of the proposed 

model. Diginetica contains data on user interactions, 

and can be downloaded from the website of the 

Conference on Information and Knowledge 

Management (CIKM) Cup 2016. The tmall dataset is 

composed of anonymous data on purchases made by 

consumers on the tmall e-commerce site, and is 

available on the website of the IJCA15 competition. 

Zangerle et al. [30] published the Nowplaying dataset, 

which is a collection of the listening habits of Twitter 

users. 

Following the preprocessing strategy provided by 

Rendle et al. [16], to have the same comparability in the 

follow-up research, when we preprocessed the three 

data sets, we removed the sessions with one length and 

less than five items. The Diginetica dataset contained 

43,097 items, Tmall contained 40,728 items, and the 

Nowplaying dataset had 60, 417 items after 

preprocessing. 

Moreover, each session was divided again to obtain 

more session-related data for training. For each session 

s= {t_(s, 1),t_(s, 2), …, t_(s, m)}, we constructed a 

sequence of clicked items and the matching labels, i.e., 

([t_(s, 1)],t_(s, 2)), ([t_(s, 1),t_(s, 2) ], t_(s, 2)), …, 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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([t_(s, 1), t_(s, 2), …, t_(s, m-1) ],t_(s, m)). They were 

used to train and test the three datasets. Table 2 lists 

statistical data from the datasets. 

Table 2. Statistics of the datasets used. 

Data 
No. of 

items 
No. of train No. of test No. of click Avg. length 

Tmall 40,728 351,268 25,898 818,479 6.69 

Diginetica 43,097 719,470 60,858 982,961 5.12 

Nowplaying 60,417 825,304 89,824 1,367,963 7.42 

4.2. Evaluation Metrics  

According to a previous study [11, 25], the validity of 

the model was tested by using two metrics: The Mean 

Reciprocal Rank (MRR) and precision. They are often 

used in recommender systems. P@K (precision) is a 

measure of a recommendation system's predictive 

accuracy, and MRR@K (mean reciprocal rank) 

indicates the average of reciprocal places in the 

correctly recommended items to rank the results of the 

recommendation. If the MRR is zero, this means that the 

correctly recommended item does not occur in the 

recommendation sequence. The higher its value is, the 

better is the predictive ability of the algorithm. K was 

set to either 10 or 20 in this experiment. 

Baseline methods. Our method was compared with 

SBR representational methods. The 10 baseline models 

listed below were examined. 

 POP suggests items based on items that appear the 

most frequently in the training dataset for the session. 

Items with a large number of clicks are more likely 

to be recommended. 

 Item-KNN [17] suggests items depending on the 

extent to which items in the current session are 

related to those from past sessions. 

 FPMC [16] merges matrix decomposition and first-

order Markov chains to acquire sequential 

information on the user’s interests. It neglects the 

potential content of users when calculating 

recommendation scores. 

 GRU4Rec [6] uses the gated recurrent neural 

network to obtain dependencies with long sequential 

distances. 

 NARM [10] is an RNN-based model that uses the 

attention mechanism to acquire the user’s intent in 

the current session. 

 STAMP [11] substitutes the RNN with an attention 

layer, and relies on the last item of the current session 

to acquire the user’s preference. 

 SR-GNN [25] models sessions as graphs to capture 

item associations, and then uses an attention 

mechanism to record user preferences. 

 FGNN [14] uses a multi-headed attention mechanism 

that aggregates information on an item's neighbors to 

derive the item representation. 

 GCE-GNN [23] learns the session and global item-

embedding layers by creating a session graph and a 

global graph. 

 DHCN [27] uses a hypergraph to obtain higher-order 

information between items, and self-supervised 

learning to enhance the expressiveness of the 

diagram. 

4.3. Hyperparameters Settings 

Following previous studies [23, 29], we used a hidden 

vector with 100 dimensions, 20 iterations, and a batch 

size of 100 to training the FCI-GNN model. We 

assumed that a 10% random subset of the training set 

was the verification set. The Gaussian distribution was 

used to initialize all parameters, where their mean and 

standard deviation were 0 and 0.1, respectively. Our 

model used the Adam optimizer, with a degradation in 

the learning rate of 0.1 and a learning rate of 0.001 per 

three iterations, and a regularization factor of 10-5. 

Wang et al. [23], the number of our neighbors was set 

to 12. Note that we directly used the report results [23, 

27] for the baseline models, because we used the same 

datasets and evaluation indicators as the relevant 

studies. 

4.4. Overall Performance Comparison (RQ1) 

Table 3 presents the experimental outcomes of the 

baseline methods and the FCI-GNN model on the three 

public datasets. We used 12 evaluation indicators, and 

our model outperformed the baseline models in 10 of 

them. 

Among the traditional methods, POP delivered the 

weakest performance as it simply considers widely 

chosen items. The FPMC approach surpassed the POP 

algorithm, which demonstrates the significance of 

considering user interests in recommendation 

algorithms.  Item-KNN delivered the best results on the 

diginetica and nowplaying datasets because it applies 

similarities between items to capture session-related 

information. This shows that there is some 

interdependence between sessions. Nevertheless, it 

struggled to obtain the relationship of consecutive 

transitions among items because it does not consider the 

chronological sequence of items within a session. 

The first recurrent neural network model used for 

session-based recommendation was GRU4Rec. It uses 

recurrent neural networks on a session to achieve 

excellent predictive performance. Although the scores 

of GRU4Rec are worse than item-KNN in the diginetica 

dataset, it is pretty significant in all other datasets. It can 

be demonstrated that considering the sequence of 

sessions as a factor has a positive effect. However, 

session-based recommendation in general does not only 

consider the task of sequence modeling, but also the fact 

that the preferences of users may alter during the 

session. It is not sufficient to consider the sequential 

factor. The attention mechanisms used in NARM and 

STAMP perform much better than the one in GRU4Rec, 

which further suggests that attention mechanisms play a 

key role in enhancing the efficacy of recommendations.  
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The GNN-based approach was the most effective of 

all baseline approaches on the three datasets, which also 

indicates that the GNN is superior to the traditional 

method and deep learning-based methods. This is 

because when a GNN simulates relationships of item 

conversion in a session to model a graph, it gains better 

item dependencies than the other methods. It is thus 

better suited to session-based recommendation. 

Moreover, the GCE-GNN and DHCN outperformed the 

SR-GNN and FGNN because the SR-GNN and FGNN 

model only the current session, whereas the GCE-GNN 

and DHCN consider all sessions as well as the current 

one.  

Because our approach incorporates the GNN, our 

proposed FCI-GNN recorded substantially superior 

metrics than traditional recommendation and deep 

learning-based recommendation on all three datasets. A 

detailed comparison with GNN-based methods follows: 

Compared with the FGNN and SRGNN, which 

model only the current session, our approach achieved 

significant improvements on all metrics. The proposed 

FCI-GNN outperformed SRGNN by 17.66% on average 

on the Tmall dataset, by 7.09% on average on 

Diginetica, and by 18.61% on average on Nowplaying. 

This is because our method considers more cross-

session information and information on the candidate 

items than the FGNN and SRGNN.  

Our method outperformed the best-performing 

baseline algorithms, namely the GCE-GNN and DHCN, 

on 10 of the 12 metrics. The FCI-GNN surpassed the 

DHCN and GCE-GNN on both the Tmall and the 

Diginetica datasets. It outperformed GCE-GNN by 

1.86% in terms of MRR@10 and 1.49% in terms of 

MRR@20 on the Tmall dataset. This demonstrates the 

efficiency of introducing attention mechanisms for 

candidate items while considering session- and global-

level information. There is an exception on the 

Nowplaying dataset: DHCN delivered the best precision 

while FCI-GNN delivered the best MRR. It exceeded 

the DHCN by 5.84% on MRR@10 and 6.36% on 

MRR@20, and was superior to GCE-GNN by 3.74% on 

MRR@10 and 3.57% on MRR@20.  

On the one hand, the significant improvement in the 

precision of DHCN occurred because hypergraph 

modeling can capture potential information about cross-

sessional interactions on datasets with longer average 

session lengths. On the other hand, the FCI-GNN 

outperformed the DHCN on MRR because the addition 

of candidate items enriches the information on the 

current session. This indicates that our model has 

considerable room for improvement in terms of cross-

session information. The improvement in MRR was 

more evident than that in precision, which reveals that 

the FCI-GNN model can significantly enhance the 

accuracy of rankings of recommended items. 

Table 3. Comparison of the methods. The best traditional model is marked in italics, the best deep learning method is underlined, and the best 
GNN model is marked in bold (we directly used the report results (Wang et al. [23], Xia et al. [27]) for the baseline models). 

 Tmall Diginetica Nowplaying 

 Methods P@10 MRR@10 P@10 MRR@10 P@10 MRR@10 

Traditional method (a) 

POP 1.67 0.88 0.76 0.26 1.86 0.83 

Item-KNN 6.65 3.11 25.07 10.77 10.96 4.55 

FPMC 13.10 7.12 15.43 6.20 5.28 2.68 

Deep learning method (b) 

GRU4Rec 9.47 5.78 17.93 7.73 6.74 4.40 

NARM 19.17 10.42 35.44 15.13 13.60 6.62 

STAMP 22.63 13.12 33.98 14.26 13.22 6.57 

GNN method 

SR-GNN(c) 23.41 13.45 38.42 16.89 14.17 7.15 

FGNN(d) 20.67 10.07 37.72 15.95 13.89 6.80 

GCE-GNN(e) 28.01 15.08 41.16 18.15 16.94 8.03 

DHCN(f) 26.22 14.60 40.21 17.59 17.35 7.87 

ours FCI-GNN 28.18 15.36 41.30 18.17 17.21 8.33 

Gain (%) 

c 20.38 14.20 7.50 7.58 21.45 16.50 

d 36.33 52.53 9.49 13.92 23.90 22.50 

e 0.61 1.86 0.34 0.11 1.59 3.74 

f 7.48 5.21 2.71 3.30 -0.81 5.84 

 Methods P@20 MRR@20 P@20 MRR@20 P@20 MRR@20 

Traditional method (a) 

POP 2.00 0.90 1.18 0.28 2.28 0.86 

Item-KNN 9.15 3.31 35.75 11.57 15.94 4.91 

FPMC 16.06 7.32 22.14 6.66 7.36 2.82 

Deep learning method (b) 

GRU4Rec 10.93 5.89 30.79 8.22 7.92 4.48 

NARM 23.30 10.70 48.32 16.00 18.59 6.93 

STAMP 26.47 13.36 46.62 15.13 17.66 6.88 

GNN method 

SR-GNN(c) 27.57 13.72 51.26 17.78 18.87 7.47 

FGNN(d) 25.24 10.39 50.58 16.84 18.78 7.15 

GCE-GNN(e) 33.42 15.42 54.22 19.04 22.37 8.40 

DHCN(f) 31.42 15.05 53.66 18.51 23.50 8.18 

ours FCI-GNN 33.63 15.65 54.32 19.08 22.65 8.70 

Ain (%) 

c 21.98 14.07 5.97 7.31 20.03 16.47 

d 33.24 50.63 7.39 13.30 20.61 21.68 

e 0.63 1.49 0.18 0.21 1.25 3.57 

f 7.03 3.99 1.23 3.08 -3.62 6.36 
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4.5. Effect of K on Recommendation 

Performance (RQ2) 

The number of items suggested to the user may vary in 

number in practice. To simulate this, we compared the 

proposed model with the benchmark model GCE-GNN, 

which delivered the best performance on the Diginetica 

and Tmall datasets. To further assess the performance 

of the model, we change the values of K of MRR and 

precision to K=5 and K=30 for the three datasets.  

Table 4 presents the experimental findings for K=5 

and K=30 on the three datasets. The FCI-GNN model 

outperformed the GCE-GNN on all evaluation metrics. 

Moreover, while its performance was only slightly 

superior on the Diginetica dataset, it was considerably 

better on the other two datasets. This shows that 

combining information on candidate items and global 

information in the Tmall and Nowplaying datasets had 

a significant influence on obtaining item information. 

The difference between the FCI-GNN model and the 

GCE-GNN model is that the FCI-GNN model 

introduces a candidate layer that considers the 

correlation between the user's historical behavior and 

the items in the current session. Figure 6 shows that this 

additional layer improves the recommendation 

performance, which enhances the effectiveness of the 

model. 

 

  
a) P@5 on datasets of tmall, diginetica and nowplaying. b) MRR@5 on datasets of tmall, diginetica and nowplaying. 

  
c) P@30 on datasets of tmall, diginetica and nowplaying. d) MRR@30 on datasets of tmall, diginetica and nowplaying. 

Figure 6. Experimental results on the Diginetica, Tmall and Nowplaying datasets in terms of P@5 and MRR@30. 

Table 4. Experimental results for the proposed method for K=5 and 
30 on the three datasets in comparison with the GCE-GNN. 

 Tmall Diginetica Nowplaying 

Algorithm P@5 MRR@5 P@5 MRR@5 P@5 MRR@5 

GCE-GNN 22.27 14.19 29.50 16.58 12.48 7.54 

FCI-GNN 22.46 14.42 29.51 16.60 12.52 7.72 

Gain(%) 0.85 1.62 0.03 0.12 0.32 2.39 

Algorithm P@30 MRR@30 P@30 MRR@30 P@30 MRR@30 

GCE-GNN 35.56 15.38 61.93 19.34 25.92 8.65 

FCI-GNN 35.83 15.62 62.00 19.39 26.22 8.84 

Gain(%) 0.76 1.56 0.11 0.26 1.16 2.19 

4.6. Ablation Study (RQ3) 

To determine the impact of each module on the 

performance of the FCI-GNN, three variants of it were 

studied on the three datasets: FCI-GNN(-G), FCI-

GNN(-S), and FCI-GNN(-T). 

 FCI-GNN(-G) simply removes the information 

contained in the global-level representation layer. 

 FCI-GNN(-S) does not use the information of the 

session-level representation layer. 

 FCI-GNN(-T) does not use information from the 

candidate-level representation layer, and is 

practically equivalent to the GCE-GNN.  

Figure 7 shows the comparison between the proposed 

FCI-GNN and its variants. FCI-GNN(-S) delivered the 

worst performance because it could not capture 

information on the sequence of items and the 

relationship between items without session-related 

information. This highlights the necessity of using 

session-related information for analyzing the 

complicated transformation-related information on 

items. The removal of global information affected the 

performance of FCI-GNN(-G) as it provides 

information across sessions. When the candidate layers 

were deleted, the performance of FCI-GNN(-T) 

declined. This affected its results on Tmall and 

Nowplaying because the candidates items provide the 

most relevant information on users with a wide variety 

of interests. 
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a) P@5 on datasets of tmall, diginetica and nowplaying. 

 
b) MRR@5 on datasets of tmall, diginetica and nowplaying. 

Figure 7. Comparison of different variants of the FCI-GNN in terms 

of P@5 and MRR@5 on the three datasets. 

4.7. Effect of Different Numbers of Neighbors 

(RQ4) 

The number of neighbors also has a significant influence 

on the performance of the model. We used the metric 

P@20 to explore the impact of different numbers of 

neighbors on the performance of the proposed model on 

the Diginetica and Tmall datasets. 

   

a) P@20 on Tmall dataset. 
b) P@20 on Diginetica 

dataset. 

c) P@20 on Nowplaying 

dataset. 

Figure 8. Experimental results on the Diginetica, Tmall and 

Nowplaying datasets in terms of P@20, obtained by using different 

numbers of neighbors. 

Figure 8 shows that when the number of neighbors 

was 12, our model was able to take the maximum value 

in the Diginetica and Tmall dataset. This is because 

when an item is clicked by a user, it is difficult to obtain 

reliable information if the number of items neighboring 

it is too small; if there are too many neighbors, the 

obtained information is noisy. As a result, we think that 

setting the number of neighbors of the diginetica and 

tmall datasets to 12 is appropriate in most 

circumstances. However, the model delivered its worst 

performance on the nowplaying dataset when the 

number of neighbors was 12. This is consistent with 

RQ1. Specifically, because the Nowlaying dataset had a 

long average session, it was difficult for our model to 

extract useful information on the sessions, and some of 

the information contained noise. We plan to examine 

this issue in future work. 

4.8. Impact of Number of Dimensions of 

Embedding (RQ5) 

We trained the model with d=10, 40, 70, 100, and 130 

as the number of dimensions of the embedding to 

investigate the influence on its overall performance. 

 
a) P@20 and MRR@20 on tmall dataset. 

 
b) P@20 and MRR@20 on diginetica dataset. 

 
c) P@20 and MRR@20 on nowplaying dataset. 

Figure 9. Experimental results in terms of MRR@20 and P@20 

when using embeddings with varying numbers of dimensions d on 

the three datasets. 

Figure 9 shows that the proposed model delivered the 

worst performance on all three datasets when the 

number of dimensions of the embedding was d=10. This 

is because the number of dimensions was too small, and 

led to insufficient information for the neural network to 
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be trained. As the number of dimensions was increased, 

the values of P@20 and MRR@20 rose. However, after 

d=100, the results did not improve significantly. We 

thus think that 100 dimensions of the embedding should 

be used in the FCI-GNN model to ensure good 

performance. 

5. Conclusions 

In this paper, we offered a reconsideration of 

representations based on session-related information to 

generate recommendations for users. We argued that a 

user with a wide range of interests should have a rich set 

of candidate recommendations, rather than being 

limited to one type of content. We proposed the FCI-

GNN, which first applies a graph neural network to 

obtain global- and session-level representations, and 

then uses an attention mechanism to acquire the 

representations of candidate items. Finally, the 

candidate-, session-, and global-level information is 

fused to acquire information on the complex 

dependencies among items in a session. The results of 

extensive experiments verified the validity of the FCI-

GNN model. It outperformed state-of-the-art models in 

a vast majority of the cases considered. In the future we 

have a lot of work to do. First, we hope to further 

explore the useful information of the FCI-GNN model 

in extracting useful information from sessions with a 

long average session. Second, GNN-based models take 

a long time to train and consume a lot of resources. We 

want to reduce the complexity of the model without 

sacrificing its performance. 

Declarations 

Ethical Approval Written informed consent was 

obtained from all the participants before the publication 

of this study. 

Competing interests The authors have no relevant 

interests to disclose. 

Authors’ contributions Wanhua Li wrote the main 

manuscript text. Yingjuan Sun, Bangzuo Zhang and 

Dongbing Pu gave comments and guidance. Yingjuan 

Sun and Dongbing Pu provided financial support. Qian 

Liu, Jingqi Xing and Yinghui Sun examined 

manuscripts. All authors reviewed the manuscript. 

Funding This work was supported by the Jilin 

Province Industrial Technology Research and 

Development Funds of China (Grant Nos. 2019C052-

9).  

Availability of data and materials the raw/processed 

data required to reproduce these findings cannot be 

shared at this time as the data also forms part of an 

ongoing study. 

References 

[1] Balabanovic M. and Shoham Y., “Fab: Content-

Based, Collaborative Recommendation,” 

Communications of the ACM, vol. 40, no. 3, pp. 

66-72. 1997. 

https://doi.org/10.1145/245108.245124 

[2] Bonnin G. and Jannach D., “Automated 

Generation of Music Playlists: Survey and 

Experiments,” ACM Computing Surveys, vol. 47, 

no. 2, pp. 1-35, 2014. 

https://doi.org/10.1145/2652481 

[3] Chen T. and Wong R., “Handling Information 

Loss of Graph Neural Networks for Session-Based 

Recommendation,” in Proceedings of the 26th 

ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining, 

California, pp. 1172-1180, 2020. 

DOI:10.1145/3394486.3403170 

[4] Fang H., Zhang D., Shu Y., and Guo G., “Deep 

Learning for Sequential Recommendation: 

Algorithms, Influential Factors, and Evaluations,” 

ACM Transactions on Information Systems, vol. 

39, no. 1, pp. 1-42, 2020. 

https://doi.org/10.1145/3426723 

[5] Fang J., “Session-based Recommendation with 

Self-Attention Networks,” arXiv Preprint, vol. 

arXiv:2102.01922, pp. 1-12, 2021. 

https://doi.org/10.48550/arXiv.2102.01922 

[6] Hidasi B., Karatzoglou A., Baltrunas L., and Tikk 

D., “Session-based Recommendations with 

Recurrent Neural Networks,” in Proceedings of 

the International Conference on Learning 

Representations, Banff, pp. 1-10, 2014. 

https://www.semanticscholar.org/reader/e0021d6

1c2ab1334bc725852edd44597f4c65dff 

[7] Huang Y., Huang T., Wang K., and Hwang W., “A 

Markov-based Recommendation Model for 

Exploring the Transfer of Learning on the Web,” 

Educational Technology and Society, vol. 12, no. 

2, pp. 144-162, 2009. 

[8] Jannach D., Ludewig M., and Lerche L., “Session-

Based Item Recommendation in E-Commerce: On 

Short-Term Intents, Reminders, Trends and 

Discounts,” User Modeling and User-Adapted 

Interaction, vol. 27, no. 3, pp. 351-392. 2017. 

https://doi.org/10.1007/s11257-017-9194-1 

[9] Li A., “Transition Information Enhanced 

Disentangled Graph Neural Networks for Session-

based Recommendation,” arXiv Preprint, vol. 

arXiv:2204.02119, pp. 1-34, 2022. 

https://doi.org/10.48550/arXiv.2204.02119 

[10] Li J., Ren P., Chen Z., Ren Z., Lian T., and Ma J., 

“Neural Attentive Session-based 

Recommendation,” in Proceedings of the ACM on 

Conference on Information and Knowledge 

Management, Singapore, pp. 1419-1428, 2017. 
https://doi.org/10.1145/3132847.313292 

[11] Liu Q., Zeng Y., Mokhosi R., and Zhang H., 

“STAMP: Short-Term Attention/Memory Priority 

Model for Session-based Recommendation,” in 

Proceedings of the 24th ACM SIGKDD 

https://dl.acm.org/toc/cacm/1997/40/3
https://dl.acm.org/toc/csur/2015/47/2
http://dx.doi.org/10.1145/3394486.3403170
https://dl.acm.org/toc/tois/2021/39/1
https://dl.acm.org/toc/klu-user/2017/27/3-5
https://dl.acm.org/toc/klu-user/2017/27/3-5
https://doi.org/10.1145/3132847.3132926


Enhancing Session-Based Recommendations by Fusing Candidate Items                                                                                1041 

International Conference on Knowledge 

Discovery and Data Mining, London, pp. 1831-

1839, 2018. 

https://doi.org/10.1145/3219819.3219950 

[12] Pang Y., Wu L., Shen Q., Zhang Y., Wei Z., Xu 

F., Chang E., Long B., and Pei J., “Heterogeneous 

Global Graph Neural Networks for Personalized 

Session-Based Recommendation,” in Proceedings 

of the 15th ACM International Conference on Web 

Search and Data Mining, Arizona, pp. 775-783, 

2022. https://doi.org/10.1145/3488560.3498505 

[13] Pazzani M. and Billsus D., The Adaptive Web, 

Springer, 2007.  

[14] Qiu R., Li J., Huang Z., and Yin H., “Rethinking 

the Item Order in Session-based Recommendation 

with Graph Neural Networks,” in Proceedings of 

the 28th ACM International Conference on 

Information and Knowledge Management, 

Beijing, pp. 579-588, 2019. 

https://doi.org/10.1145/3357384.3358010 

[15] Quadrana M., Cremonesi P., and Jannach D., 

“Sequence-Aware Recommender Systems,” ACM 

Computing Surveys, vol. 51, no. 4, pp. 1-36, 2018. 

https://doi.org/10.1145/3190616 

[16] Rendle S., Freudenthaler C., and Schmidt-Thieme 

L., “Factorizing Personalized Markov Chains for 

Next-Basket Recommendation,” in Proceedings 

of the 19th international Conference on World 

Wide Web, Raleigh, pp. 811-820, 2010. 

https://doi.org/10.1145/1772690.177277 

[17] Sarwar B., Karypis G., Konstan J., and Reidl J., 

“Item-Based Collaborative Filtering 

Recommendation Algorithms,” in Proceedings of 

the 10th International Conference on World Wide 

Web, Hong Kong, pp. 285-295, 2001. 

https://doi.org/10.1145/371920.372071 

[18] Shani G., Heckerman D., and Brafman R., “An 

MDP-Based Recommender System,” in 

Proceedings of the 8th Conference on Uncertainty 

in Artificial Intelligence, Alberta, pp. 1265-1295, 

2005.  

[19] Wang H., Liu G., Liu A., Li Z., and Zheng K., 

“DMRAN: A Hierarchical Fine-Grained 

Attention-Based Network for Recommendation,” 

in Proceedings of the 28th International Joint 

Conference on Artificial Intelligence, Macao, pp. 

3698-3704, 2019. 

https://doi.org/10.24963/ijcai.2019/513 

[20] Wang M., Ren P., Mei L., Chen Z., and Rijke M., 

“A Collaborative Session-based Recommendation 

Approach with Parallel Memory Modules,” in 

Proceedings of the 42nd International ACM SIGIR 

Conference, Paris, pp. 345-354, 2019. 

https://doi.org/10.1145/3331184.333121 

[21] Wang S., Cao L., Wang Y., Sheng Q., Orgun M., 

and Lian D., “A Survey on Session-Based 

Recommender Systems,” ACM Computing 

Surveys, vol. 54, no. 7, pp. 1-38, 2021. 

https://doi.org/10.1145/3465401 

[22] Wang S., Hu L., Wang Y., Sheng Q., and Cao L., 

“Modeling Multi-Purpose Sessions for Next-Item 

Recommendations via Mixture-Channel Purpose 

Routing Networks,” in Proceedings of the 28th 

International Joint Conference on Artificial 

Intelligence, Macao, pp. 3771-3777, 2019. 

https://doi.org/10.24963/ijcai.2019/523 

[23] Wang Z., Wei W., Cong G., Li X., Mao X., and 

Qiu M., “Global Context Enhanced Graph Neural 

Networks for Session-based Recommendation,” 

in Proceedings of the 43rd International ACM 

SIGIR Conference on Research and Development 

in Information Retrieval, China, pp. 169-178, 

2020. https://doi.org/10.1145/3397271.340114 

[24] Wang Z., Wei W., Cong G., Li X., Mao X., Qiu 

M., and Feng S., “Exploring Global Information 

for Session-based Recommendation,” arXiv 

Preprint, vol. arXiv:2011.10173, pp. 1-14, 2020.  

https://doi.org/10.48550/arXiv.2011.10173 

[25] Wu S., Tang Y., Zhu Y., Wang L., Xie X., and Tan 

T., “Session-based Recommendation with Graph 

Neural Networks,” in Proceedings of the AAAI 

Conference on Artificial Intelligence, Vancouver, 

pp. 346-353, 2019. 

DOI:10.1609/aaai.v33i01.3301346 

[26] Wu X., Liu Q., Chen E., He L., Lv J., Cao C., and 

Hu G., “Personalized Next-Song 

Recommendation in Online Karaokes,” in 

Proceedings of the 7th ACM Conference on 

Recommender Systems, Hong Kong, pp. 137-140, 

2013. https://doi.org/10.1145/2507157.2507215 

[27] Xia X., Yin H., Yu J., Wang Q., Cui L., and Zhang 

X., “Self-Supervised Hypergraph Convolutional 

Networks for Session-Based Recommendation,” 

in Proceedings of the AAAI Conference on 

Artificial Intelligence, Vancouver, pp. 4503-4511, 

2021. https://doi.org/10.1609/aaai.v35i5.16578 

[28] Xu C., Zhao P., Liu Y., Sheng V., Xu J., Zhuang 

F., Fang J., and Zhou X., “Graph Contextualized 

Self-Attention Network for Session-based 

Recommendation,” in Proceedings of the 28th 

International Joint Conference on Artificial 

Intelligence, Macao, pp. 3940-3946, 2019. 

https://doi.org/10.24963/ijcai.2019/547 

[29] Yu F., Zhu Y., Liu Q., Wu S., Wang L., and Tan 

T., “TAGNN: Target Attentive Graph Neural 

Networks for Session-Based Recommendation,” 

in Proceedings of the 43rd International ACM 

SIGIR Conference on Research and Development 

in Information Retrieval, China, pp. 1921-1924, 

2020. https://doi.org/10.1145/nnnnnnn.nnnnnnn 

[30] Zangerle E., Pichl M., Gassler W., and Specht G., 

“Nowplaying Music Dataset: Extracting Listening 

https://doi.org/10.1145/3219819.3219950
https://doi.org/10.1145/3488560.3498505
https://doi.org/10.1145/3357384.3358010
https://dl.acm.org/toc/csur/2019/51/4
https://dl.acm.org/toc/csur/2019/51/4
https://doi.org/10.1145/1772690.1772773
https://doi.org/10.1145/371920.372071
https://doi.org/10.24963/ijcai.2019/513
https://doi.org/10.1145/3331184.3331210
https://doi.org/10.24963/ijcai.2019/523
https://doi.org/10.1145/3397271.3401142
https://doi.org/10.48550/arXiv.2011.10173
https://doi.org/10.48550/arXiv.2011.10173
http://dx.doi.org/10.1609/aaai.v33i01.3301346
https://doi.org/10.1145/2507157.2507215
https://doi.org/10.1609/aaai.v35i5.16578
https://doi.org/10.24963/ijcai.2019/547


1042                                                  The International Arab Journal of Information Technology, Vol. 21, No. 6, November 2024 

Behavior from Twitter,” in Proceedings of the 1st 

International Workshop on Internet-Scale 

Multimedia Management, Orlando, pp. 21-26, 

2014. https://doi.org/10.1145/2661714.266171  

[31] Zhang M., Wu S., Gao M., Jiang X., Xu K., and 

Wang L., “Personalized Graph Neural Networks 

with Attention Mechanism for Session-Aware 

Recommendation,” IEEE Transactions on 

Knowledge and Data Engineering, vol. 34, no. 8, 

pp. 3946-3957, 2020. 

DOI:10.1109/TKDE.2020.3031329 

[32] Zhou G., Zhu X., Song C., Fan Y., Zhu H., Ma X., 

Yan Y., Jin J., Li H., and Gai K., “Deep Interest 

Network for Click-Through Rate Prediction,” in 

Proceedings of the 24th ACM SIGKDD 

International Conference on Knowledge 

Discovery and Data Mining, London, pp. 1059-

1068, 2018. 

https://doi.org/10.1145/3219819.3219823 

 

Yingjuan Sun was born in 1972. She 

received her Bachelor degree and 

Master degree in Computer Science 

from Northeast Normal University in 

1995 and 2004, Ph.D. degree in 

Computer Application Technology 

from Jilin University in 2011, 

respectively. She currently is a Professor in the College 

of Computer Science and Technology, Changchun 

Normal University. Her main research interests include 

Recommender Systems, Machine Learning, and Data 

Mining. 

 

Wanhua Li was born in 1998. In 

2023, she obtained her master's 

degree from the School of Computer 

Science and Technology of 

Changchun Normal University. She 

is currently a Teacher at Pingsha New 

City School, Jinwan District, Zhuhai 

City. Her main research interests are Artificial 

Intelligence, Recommendation System, etc. 

 

Jingqi Xing was born in 2001. She is 

currently studying at the College of 

Computer Science and Technology, 

Changchun Normal University., 

Changchun Normal University. Her 

main research interests are Artificial 

Intelligence, Recommendation 

System. 

 

 

 

 

 

 

Bangzuo Zhang was born in 1971. 

He received his Bachelor degree in 

Computer Science from Northeast 

Normal University in 1995, and the 

Master degree and Ph.D. degree in 

Computer Application Technology 

from Jilin University in 2002 and 

2009, respectively. He currently is an Associate 

Professor in the School of Information Science and 

Technology, Northeast Normal University. His main 

research interests include Information Retrieval, 

Recommender Systems, Machine Learning, and Data 

Mining. 

 

Dongbing Pu was born in 1970. He 

received the Bachelor degree from 

the Northeast Normal University, 

China, in 1995, and the Master 

degree and Ph.D degree in Computer 

System Architecture from Jilin 

University in 2003 and 2010, 

respectively. He is currently an Associate Professor in 

the School of Information Science and Technology, 

Northeast Normal University. His research interests are 

Pattern Recognition, Intelligent Computation, 

Intelligent Control, and Embedded Systems. 

Qian Liu was born in 1995. In 2024, 

he obtained his Master's degree from 

the College of Computer Science and 

Technology, Changchun Normal 

University. He main research interests 

are Artificial Intelligence, 

Recommendation System. 

 

Yinghui Sun was born in 1975. She 

received her Master degree in 

computer science from Northeast 

Normal University in 2005. She 

currently is an Associate Professor in 

the College of Computer, Jilin Normal 

University. Her main research interests 

are Image Processing, Data Mining. 

 

https://doi.org/10.1145/2661714.2661719
https://doi.org/10.1145/3219819.3219823

