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Abstract: Living in the modern world requires having a precise, intelligent system that may be suggested to do various activities. 

Due to the scalability of AI algorithms, we have proposed a phenotypic Evolutionary Algorithm (EA)-based system to assist the 

Artificial Neural Network algorithm (ANN) in the learning process. Combining the two strategies can result in a smart neuro-

evolutionary model that is effective in accomplishing significant duties in various domains. The suggested multi-layer neural 

algorithm's design creates the conditions for learning via the EA’s processes of crossover, mutation, and selection. To aid in the 

selection and crossover processes, the learning process phase breaks up the original ANN into multiple ANNs according to the 

number of hidden layers. ANNs are ranked from worst to best in the selection phase based on the soring function that is applied 

to the fitness list. The fitness list retains each ANN’s accuracy even after breaking apart the original ANN. The crossover 

procedure is then applied between the two worst and best ANNs. Mutation provides a means of improvement for the less effective 

ANNs. Following completion of these processes, the ANN algorithms are combined to create a single ANN algorithm. The Vicon 

mobile robot (SCITOS G5) system’s multi-dimensional data, which extracted both aggressive and typical human movement, as 

well as Human Activity Recognition (HAR) datasets extracted by smartphones, both have been applied using the suggested 

method. The system achieved a high performance and efficiency rate on the intended recognition problem. 
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1. Introduction 

With the rapid evolution of life, the necessity to propose 

and design an intelligent computational method to 

forecast solutions has become increasingly crucial. The 

Artificial Neural Network algorithm (ANN) plays a 

crucial role depending on the structure of the system and 

the flexibility of learning, as it can learn in a variety of 

ways [13, 18]. One way to use this ability is to hybridize 

the ANN algorithm with another algorithm that 

strengthens and supports its learning mechanism, like 

the traits exhibited by the Evolutionary Algorithm (EA). 

The EA is a widely used algorithm that is based on the 

biological evolution process [8, 11]. 

In the abundance of data available, Artificial 

Intelligence (AI) is proving that it can help in decision-

making [17]. Combining AI systems such as EAs with 

ANNs results in a complex system [28, 29, 33, 34, 42] 

that can extract and analyze the necessary problems 

based on their structure and features [1, 4]. The EA 

provides the best possible input qualities to make up the 

supporting data [27], and multi-layered ANNs carry out 

tasks linked to pattern recognition [31]. The combined 

features and the resulting structural dimensions are 

employed together to optimize prediction and minimize 

the estimated errors [15]. The approach provides an  

 
example of how hybridised models and augmented 

forecasting accuracy can be improved [24]. 

One of the required and necessary tasks is to 

recognize human movement and the type of movement 

[12, 16, 20, 35, 39]. The academic community and other 

organizations find Human Action Recognition (HAR) 

to be an interesting topic [6, 22]. Identifying human 

motions through observation is a crucial yet difficult 

activity known as HAR. This topic includes machine 

learning algorithms' observations of changes in human 

movement and activity detection. Numerous human 

actions have been accurately predicted by Deep 

Learning (DL)-based techniques [2, 3].  

From a surveillance standpoint, activity 

identification is one of the most important needs for 

smart home, smart healthcare, and smart city 

applications. It is common practice to detect unusual 

activity in security-prone regions to avert potential 

crimes [25, 26, 40]. 

Precise human action detection and recognition may 

be achieved by combining linear discriminant analysis 

with an ANN [19]. However, the global search 

capability of the original neural network method is 

limited, and it is unable to address the issue of redundant 

data in behaviour recognition. Experts must spend a 

mailto:neurocomp.pro@gmail.com
mailto:sa.programmer1@gmail.com
https://doi.org/10.34028/iajit/21/6/6


1016                                                  The International Arab Journal of Information Technology, Vol. 21, No. 6, November 2024 

great deal of time optimizing hyperparameters through 

trial and error. For these reasons, it is preferable to 

suggest a neural network and EA-based method for 

creating a behaviour recognition prediction model. The 

optimal hyperparameters are automatically determined 

using an EA [38, 43]. The EA can empower the ANN 

learning process and improve the validation of the 

outcome [32]. Since the efficacy of ANN in the 

recognition process [14, 21], it is crucial to hybridize its 

features with another algorithm such as EA. 

Two AI techniques, ANN and EA, have been 

combined in a suggested model. The two algorithms’ 

characteristics are combined in this work such that the 

benefits of the EA selected for hybridization speed up 

and improve the learning phase of the NN without 

requiring the backpropagation procedure. 

2. Literature Review 

In this work, a smart algorithm is proposed that 

combines the features of two AI algorithms, namely the 

EA and the ANN algorithm, the proposed mechanism 

was applied to human physical motion data to 

distinguish the type of motion, aggressive or normal. 

Ten different types of actions were used for each type of 

motion. 

The EA and ANN algorithms, which were hybridized 

with other algorithms, are two of the many mechanisms 

and techniques that have been employed in the past to 

identify human action. Prior research was conducted in 

many settings to identify human behaviour for various 

objectives. A description of these applications and the 

various approaches taken is provided here. Research has 

recognized several human movements and behaviours, 

such as identifying upper limb activities, tracking and 

identifying human actions, or identifying sound and 

some types of movement through data retrieved from 

running, jogging, etc. 

 In contemporary applications, ANN have been 

enhanced by EAs, such as Genetic Algorithms (GAs) 

[15, 34], by investigating the parameters that enhance 

ANN structure and utilizing them for various tasks. 

Additionally, some studies have employed a hybrid 

approach and methods combining ANN and EA to 

measure human activity [19, 25, 26, 38, 40, 43]. The 

suggested approaches have been used on various data 

sets with varying degrees of success. However, there are 

certain drawbacks and shortcomings, including the use 

of complex data sets, multiple goals that need to be 

achieved using the suggested approach, and the 

application of the suggested model to various data sets 

with varying degrees of accuracy. 

In the work [34], the ANN’s structure has been 

improved by using a stochastic mutation function with 

a constant coefficient of variation, the work presented a 

technique permitted to tackle the intricate combinatorial 

issue of structural optimization of ANN with a high 

dimension of the space of optimization parameters. It 

was suggested that time series values be forecasted 

using this technique. The following was the ideal ANN 

architecture that GA discovered: Among the 104 

neurons in the first, 80 in the second, 86 in the third, and 

109 in the fourth hidden layers, the coefficient of the 

activation function α=10 and the norm of the learning 

speed η are 3.1. In the meteorological data time series, 

the least learning error was 1.2%. 

The goal of the research [27] was to use ANN with 

GA to identify countermeasures against Japanese 

encephalitis. The best string for the input data was 

generated and optimized using the GA. By utilizing 

machine learning techniques on our real-time data, the 

work was attempted. When employing these algorithms, 

the improvement rate were 96%. ANN and OpenCV 

colour change detection are used to identify changes in 

brain cell colour and infection information. The work in 

[15], ANN-based surrogate models were suggested as 

an effective way to perform minimum weight 

optimization of composite laminates. The trained ANN 

models were then used in an evolutionary GA to 

optimize the structural dimensions and stacking 

sequences to minimize the weight of the composite 

laminates. The constructed ANN models demonstrate a 

high the fit factor, with R2 values for the flat, blade-

stiffened, and hat-stiffened laminates, respectively, 

equal to 0.996, 0.987, and 0.987. 

Raja Subramanian and Vasudevan [26] put up a 

paradigm for identifying human activity. Rather than 

using a standard machine learning or DL method, it 

operated according to a GA optimization criterion. They 

put out a brand-new, faster genetic method that can 

identify important variations in video frames. The 

activity of the altered frame is detected by means of the 

DL algorithm. Using three common activity recognition 

data sets Hollywood2, KTH, and UCF-ARG this deep 

genetic model demonstrated sound recognition 

accuracy. Using the Hollywood2 and KTH action data 

sets, the suggested model produced sound recognition 

accuracy of 98.42% and 97.83%, respectively. A further 

evaluation of the model was conducted using the UAV-

acquired video data set, UCF-ARG, demonstrating an 

81.40% recognition accuracy. 

The research in [40] presented Human Activity 

Recognition Based on Automatic Neural Architecture 

Searchs (HARNAS), a method for leveraging Neural 

Architecture Search (NAS) to find models appropriate 

for HAR challenges. HARNAS employed the multi-

objective search algorithm known as NSGA-II as its 

search strategy. A bi-objective issue is created when the 

F1 score and the quantity of Floating-Point Operations 

(FLOPs) are chosen to tradeoff between a model’s 

performance and computation speed. Most of their trials 

were conducted using the opportunity dataset, and they 

also assessed the model's portability using the UniMiB-

SHAR dataset. The outcomes demonstrated that 

HARNAS, when created without human modifications, 

can outperform the best model with human tweaks. On 
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the Opportunity dataset, HARNAS achieved an F1 score 

of 92.16% and parameters of 0.32 MB. 

With the help of triaxial signals obtained from 

accelerometer sensors, Quaid and Jalal [25] created a 

new, efficient framework for recognizing human 

behaviors. They also suggested a reweighted GA that 

offered chromosome adjustment variation and a 

combination of windowed signal patterns for the 

recognition of random human behaviors. Numerous 

tests conducted on three difficult accelerometer sensor 

datasets the Human Microbiome Project (HMP), 

Wireless Sensor Data Mining) WISDM, and self-

annotated IM-Sporting Behavior (IMSB) datasets 

showed that the suggested approach dramatically 

outperformed state-of-the-art techniques in terms of 

accuracy, yielding results that were 85.43% higher. 

Combining linear discriminant analysis with an ANN 

for accurate human action detection and recognition was 

the main objective of the study [19], the suggested 

method identified intricate human movements in two 

cutting-edge datasets; that is, for each dataset, one-third 

of the picture sequences are retained for testing and 

validation. The suggested model received the remainder 

for training. Confusion matrices with real-class labels 

were created to demonstrate the results. Because 

running with the ball, dribbling, and standing were 

distinct movements that our multidimensional 

characteristics could easily categorize, the findings for 

these activities were 100% correct. There was also some 

misunderstanding when it came to passing, sprinting, 

shooting, and accepting passes. For this dataset, the 

average recognition accuracy was 87.57%. In [43], a 

neural network-based technique for Upper Limb 

Activity Recognition (UPLA) was introduced. The 

number of neurons in neural networks, the size of the 

sliding window, and the overlap of neighbouring 

sequences all affect how accurately activities are 

recognized. In contrast, there hasn’t been as much effort 

put into autonomously optimizing neural networks’ 

hyperparameters. Experts must spend a great deal of 

time optimizing hyperparameters through trial and 

error. The population selection method was enhanced, 

and the optimal hyperparameters were automatically 

found using the GA. Convolutional neural networks and 

seven conventional classification algorithms were 

compared with the improved approach; the new method 

produced an accuracy of 97.9%. 

A neural network and EA model were proposed in 

[38]; this model was able to recognize and forecast 

behavior. The study advances the multi-dimensional 

coevolution approach in conjunction with neural 

network algorithms and presents the idea of GA. 

Concurrently, the behaviour recognition analysis model 

was built, and the neural network algorithm's threshold 

and weight were established. The findings demonstrated 

that, when compared to the prediction accuracy and 

convergence of behaviour recognition based on a GA 

combined with a neural network algorithm, it was 86.27. 

The accuracy of the GA and the classical neural network 

algorithm was 59.22 and 80.13, respectively. 

Various studies show an attempt to use different 

techniques with the help of hybrid systems to solve 

different problems. In our paper, we tried to prove the 

efficiency of the hybrid system by using EA to carry out 

the learning process in ANN to reach the solution in a 

faster manner and with high accuracy. The proposed EA 

replaces the learning process by breaking the original 

ANN into multiple ANNs, and the selection process is 

done according to the highest accuracy obtained from 

each ANN after breaking. Crossover and mutation are 

taken for the purpose of improving each ANN; after 

that, the process of merging the ANNs into one ANN 

algorithm is done in order of the layers chosen for the 

new generation. The proposed optimization method of 

breaking the original ANN algorithm into multiple 

ANNs helped to easily and quickly find the parameters 

that need to be selected for the new generation and the 

parameters that need to be improved, while the EA 

helped to enhance the parameters that increase the 

efficiency of ANN through the process of crossover and 

improve the parameters with less efficiency through the 

mutation process. 

3. Description of Data 

Multidimensional data was suggested to apply the 

proposed methodology. The recognition of human 

actions that are aggressive or normal is the outcome of 

our implementation. Ten actions correspond to each 

type; the experiment's data was used to obtain these 

values [36]. 

Several people (aged 25 to 30) took part in the trial. 

During numerous trials, each participant was taught to 

perform ten normal and ten aggressive tasks. A human 

being is monitored engaging in physical activities 

within a three-dimensional intelligent setting. Two 

external devices, a 3D tracker Vicon system and a 

mobile robot SCITOS G5, work together as a 

perception-to-action unit to provide a categorization of 

the actions done and data based on mechanical 

properties [37]. 

The used dataset was represented by three databases 

in training and one in testing as in Figure 1. Each 

database included two kinds of actions, which are 

aggressive and normal; each action had 10 activities; 

there are 1061 samples for each activity; each sample 

consists of nine features represented by body parts that 

identify the sort of movement; each body component 

carries a pair of markers that are right and left (except 

for the head) that may be used to indicate the type of 

movement; and each of them is three-dimensional data. 

The body component is represented by the following: 

right and left arm signs represent wrist and elbow, right 

and left leg signs represent ankle and knee, and their 

measurements are obtained as x, y, and z coordinates as 

in Figure 2-a), which forms a multi-dimension data for 
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each feature as in Figure 1-b). 

The proposed system was applied on other dataset. 

The data was used to do classification of human actions. 

The data gathered by an inertial sensor-equipped 

smartphone worn around the waist was used to record 

30 people engaging in Activities of Daily Livings 

(ADLs) for the HAR database. Time-series and 

multivariate are the dataset’s characteristics. 

The studies were conducted on a sample of thirty 

individuals aged between 19 and 48. The Samsung 

Galaxy S II smartphone was worn around each person's 

waist as they engaged in six different activities: 

standing, sitting, laying, walking, walking downstairs, 

and walking upstairs.  

It recorded 3-axial angular velocity and 3-axial linear 

acceleration at a steady rate of 50Hz using its integrated 

accelerometer and gyroscope. The trials were captured 

on camera so that the data could be manually labelled. 

The collected dataset was divided into two sets at 

random, with 70% of the volunteers chosen to provide 

training data and 30% to provide test data. 

Noise filters were used to pre-process the 

accelerometer and gyroscope sensor signals before 

sampling them in fixed-width sliding windows with a 

50% overlap and a duration of 2.56 seconds (128 

readings/window). Using a Butterworth low-pass filter, 

the sensor acceleration signal which consists of both 

body motion and gravitational components was divided 

into two categories: body acceleration and gravity. 

Because the gravitational force is thought to be made up 

only of low frequency elements, a 0.3 Hz cutoff 

frequency filter was used.  

A vector of features was derived from each window 

by computing variables in the frequency and time 

domains [9]. 

This concept validates the flexibility of the suggested 

structural model in implementation by Feed-Forward 

ANN (FFANN) and in learning by EA. This is due to 

the overlapping dimensions that correspond to the 

required categorization. 

4. Methodology 

The efficiency of the phenotypic neuro-EA has been 

improved by a methodology that can learn from multiple 

databases during the necessary training stage. The 

implementation of the model passed through stages: 

data preparation, feeding data to an artificial neural 

algorithm, evaluating the outcome of the algorithm, and 

the learning stage, which is composed of three phases: 

breaking up the ANN into multiple ANNs, the process 

of an EA, and combining ANNs into ANNs. The 

training phase passed through many iterations; in each 

iteration, the obtained result was examined; if it was 

satisfactory, it was approved, and if it was not, the 

learning process was repeated until the result was 

satisfactory, after training phase, the model is tested to 

do the validation. 

Multidimensional numeric data was used, as 

previously described in the section of the data 

description. To prepare the data, it needs to work in 

stages: 

4.1. Data Preparing 

Our proposed model's data set has a connection to 

physical activities. First data set was gathered from each 

participant in 20 distinct experiments was given 

instructions to perform 10 aggressive and 10 normal 

tasks. The Vicon system, a 3D tracker, and the SCITOS 

G5, a mobile robot, work together to provide 

mechanical attribute-based data and effectively classify 

activities [36, 37], while second dataset was gathered by 

smart phones [9]. 

The normalisation function is implemented by 

Quantile Transformer using scikit-learn to prepare the 

first dataset for classification before introducing it to the 

classifiers, to maximise the classification performance 

of the classifiers, and by applying the scaling approach, 

commonly known as “Min-Max feature scaling,” which 

entails scaling data in the interval [0-1]. It entails 

rescaling data and employing minimal and maximum 

data as bounds. In mathematical terms, as in Equation 

(1), it allows a vector x to be scaled in the interval [0, 1] 

[5, 7, 30]. 

𝑥𝑖 = (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛) ∗  
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ 𝑥𝑚𝑖𝑛 

Where min and max are the minimum and maximum 

values of the feature x [5]. The data was normalized to 

a range between zero and one to be more convenient for 

the work. 

The data was arranged based on the factors required 

to obtain the classification. The factors are, in order, the 

size of the dataset, the markers or features, and the 

coordinates for each marker. The data are arranged with 

suitable format for each activity for both aggressive and 

normal behaviour. According to the required phases, 

there are two parts of data that are provided for the 

suggested method. During the training phase, three 

databases are used. Each database is separated into two 

categories: aggressive and normal behavior. Each 

category has ten actions, and each one has the data 

ordered based on the required factors, resulting in 6D. 

During the testing phase, a single database is utilized, 

which, as previously stated in this section, results in 5D. 

Data dimensions are specified as in Figure 1. In the 

training phase, we used six-dimensional data, which is 

represented by three databases; for each database, there 

are two datasets represented by the two actions 

(aggressive and normal); each action consists of ten 

activities; each activity includes 1061 samples; and each 

sample contains nine features. With each feature, there 

are three coordinates(x, y, z) to represent the dimension 

(3, 2, 10, 1061, 9, 3), whereas in Figure 1-b) the testing 

phase used a 5-dimension database, represented by (2, 

10, 1061, 9, 3), whereas DB represents the database, 

(1) 
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AGG represents the aggressive action, NM represents 

the normal action, ACn represents the 10 activities, Sn 

represents the samples of data, Fn represents the nine 

features, and x, y, and z represent the coordinates of 

data. Each database included two kinds of actions, 

which are aggressive and normal; each action had 10 

activities; there are 1061 samples for each activity; each 

sample consists of nine features represented by body 

parts that identify the sort of movement; each body 

component carries a pair of markers that are right and 

left (except for the head) that may be used to indicate 

the type of movement; and each of them is three-

dimensional data. 

 

a) DB1, DB2, DB3 for training phase. b) DB4 for testing phase. 

Figure 1. The data dimension. 

The body component is represented by the following: 

right and left arm signs represent wrist and elbow, right 

and left leg signs represent ankle and knee, and their 

measurements are obtained as x, y, and z coordinates as 

in Figure 2-a), the nine features for each sample, Figure 

2-b) The activity dimension is represented by the nine 

features, with each feature having three coordinates (x, 

y, and z) that specify each 3D marker’s origin in space. 

 

 

a) The nine features for each sample. b) (x, y, z) coordinates for each 3D market. 

Figure 2. The representation of samples. 

The proposed system was applied on other dataset. 

The data was used to do classification of human actions. 

The data gathered by an inertial sensor-equipped 

smartphone worn around the waist was used to record 

30 people engaging in ADLs for the HAR database. 

Time-series and multivariate are the dataset’s 

characteristics. 

The studies were conducted on a sample of thirty 

individuals aged between 19 and 48. The Samsung 

Galaxy S II smartphone was worn around each person's 

waist as they engaged in six different activities: 

standing, sitting, laying, walking, walking downstairs, 

and walking upstairs. It recorded 3-axial angular 

velocity and 3-axial linear acceleration at a steady rate 

of 50Hz using its integrated accelerometer and 

gyroscope. The trials were captured on camera so that 

the data could be manually labelled. The collected 

dataset was divided into two sets at random, with 70% 

of the volunteers chosen to provide training data and 

30% to provide test data. 

Noise filters were used to pre-process the 

accelerometer and gyroscope sensor signals before 

sampling them in fixed-width sliding windows with a 

50% overlap and a duration of 2.56 seconds (128 

readings/window). Using a Butterworth low-pass filter, 

the sensor acceleration signal-which consists of both 

body motion and gravitational components-was divided 

into two categories: body acceleration and gravity. 

Because the gravitational force is thought to be made up 

only of low frequency elements, a 0.3 Hz cutoff 

frequency filter was used. A vector of features was 

derived from each window by computing variables in 

the frequency and time domains [9]. 

This concept validates the flexibility of the suggested 

structural model in implementation by FFANN and in 

learning by EA. This is due to the overlapping 

dimensions that correspond to the required 

categorization. 
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4.2. Feed-Forward ANN Architecture 

FFANN consists of an input layer with two neurons, 

each neuron represents one type of action, which is 

aggressive or normal. A matrix of weights is created 

with the size of the input data and multiplied with the 

input, adding the bias to it as in Equation (2), and 

sending results to the hidden layers to be processed. 

There are 11 hidden layers, each with three neurons. The 

output is obtained from each neuron using the sigmoid 

function, as in Equations (3) and (4). The output is 

passed from the last hidden layer to the output layer by 

the identity function, as in Equation (5). The output 

layer consists of two neurons to give the result, each 

classifying aggressive or normal activity. The result is 

compared with the real result by mean square error, as 

in Equation (6) [10, 23, 41].  

𝑠 = ∑ 𝑊𝑖 . 𝑋𝑖 + 𝑏

𝑛

𝑖=1

 

𝜎 =  
1

1 + 𝑒−𝑠
 

𝑛𝑒𝑢𝑟𝑜𝑛 =  𝜎(�̂�) =  𝜎(∑ 𝑊𝑖 . 𝑋𝑖 + 𝑏

𝑛

𝑖=1

 

�̂� =  ∑ 𝑊𝑖 . 𝑛𝑒𝑢𝑟𝑜𝑛𝑖 + 𝑏

𝑛

𝑖=1

 

𝑀𝑆𝐸 =  
1

𝑚
 ∑(𝑧𝑖 − �̂�𝑖)2

𝑚

𝑖=1

 

i: the index of feature for each sample of data. 

n: the number of features. 

W: the weight. 

X: the features. 

b: the bias. 

σ: the activation function(sigmoid). 

neuron: the output from the neuron. 

�̂�: the output from FFANN for each sample of data. 

z: the desired output. 

MSE : the mean square error. 

m: the total number of samples in dataset. 

4.3. Optimization Process 

If unsatisfactory results are obtained, the optimization 

process is required in FFANN, and it is implemented 

through three phases. 

4.3.1. Breaking up Phase 

The optimization phase requires breaking up the ANN 

algorithm into multiple ANNs algorithms based on the 

number of hidden layers by assuming an output layer 

after each hidden layer as shown in Figure 3. 

After each hidden layer, the result of activation 

function sent to the assuming output layer to be the 

result of new breaking ANNs, the output from each 

ANN is computed by identity function, as in Equation 

(7), and it needs to calculate the mean square error after 

getting the output from each new ANNs, , which is 

represented by Equation (8). 

The obtained ANNs from the breaking process will 

be considered a population from each iteration of the 

learning phase, and each ANN is considered an 

individual in this population. 

The obtaining errors from each ANN are kept in a 

list, as in Equation (9), and it is considered a fitness list 

to be used in the required optimization steps.  

𝐴𝑁𝑁𝑖 =  ∑ 𝑤𝑗
𝑖 . 𝑛𝑒𝑢𝑟𝑜𝑛𝑗  

+ 𝑏

𝑟

𝑗=1

 

𝑀𝑆𝐸𝐴𝑁𝑁𝑖
=  

1

𝑚
 ∑(𝑧𝑖 − 𝐴𝑁𝑁𝑖)2

𝑚

𝑖=1

 

 

Figure 3. The breaking up the original ANN into multiple ANNs. 

i: the index of hidden layer. 

j: the index of feature for each sample of data. 

r: the number of neurons. 

neuronj: the output from neuron as in Equation (4). 

𝐸𝑟𝑟𝑜𝑟𝐴𝑁𝑁𝑠
= [𝑀𝑆𝐸𝐴𝑁𝑁1

, 𝑀𝑆𝐸𝐴𝑁𝑁2
, . . , 𝑀𝑆𝐸𝐴𝑁𝑁11

] 

4.3.2. Evolutionary Algorithm Role 

For the purpose of the optimize parameters, the EA has 

been proposed and has replaced the backpropagation 

process. This process operated through stages.  

The selection stage is considered important and is 

adopted by the subsequent stages. At this stage, it is 

examined which layer is better in terms of weight. The 

process of breaking the algorithm into multi-ANNs 

facilitated the process of examining the layers with the 

best weights, as explained in the section on breaking the 

algorithm. 

At this point, each ANN is evaluated individually 

following the process of breaking up into several ANNs, 

which represents the breaking up process. In this 

procedure, we feed the data into each ANN, compute the 

result, and compare it with the actual result using the 

mean squared error. 

(2) 

(3) 

(4) 

(5) 

(6) 

(8) 

(7) 

(9) 
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The list of saved errors, as in Equation (9), is used to 

evaluate the effectiveness of ANNs algorithms or layers 

in the original algorithm. 

The evaluation process is carried out through the 

process of ranking from best to worst; it is implemented 

by a sorting algorithm as explained in Equation (10).  

𝐴𝑁𝑁𝑖 ≤ 𝐴𝑁𝑁𝑖−1 ≤ 𝐴𝑁𝑁𝑖−2 ≤ ⋯ ≤ 𝐴𝑁𝑁𝑖−𝑛 

The stage of crossover provides the opportunity for the 

best classes to survive and be used by the next 

generation. By using the selection method, it will be 

possible to determine which ANN is the most effective 

and which one requires improvement, as well as the 

accuracy of each ANN. The qualities that show how 

well an ANN is implemented are swapped out during 

the crossover phase, which is represented by weights. 

From the ranking process that was carried out in the 

fitness list, the most efficient layers with the least error 

were known, and they are in the first positions in the 

fitness list. After ranking step, the two layers with the 

lowest error value are switched with the two layers with 

the highest error value, as in Equations (11) and (12) 

that formed from our suggestion. From the ranking 

process that was carried out in the fitness list, the most 

efficient layers with the least error were known, and 

they are in the first positions in the fitness list. After 

ranking step, the two layers with the lowest error value 

are switched with the two layers with the highest error 

value, as in Equations (11) and (12) that formed from 

our suggestion.  

𝐹(𝐴𝑁𝑁11 , 𝐴𝑁𝑁1) =  𝐹( 𝐴𝑁𝑁11(𝑊𝑖𝑗𝑘), 𝐴𝑁𝑁1 (𝐺𝑖𝑗𝑘))

=  𝐴𝑁𝑁11(𝑊𝑖𝑗𝑘)  ⟺  𝐴𝑁𝑁1 (𝐺𝑖𝑗𝑘)

= 𝐴𝑁𝑁11(𝐺𝑖𝑗𝑘), 𝐴𝑁𝑁1 (𝑊𝑖𝑗𝑘) 

𝐹(𝐴𝑁𝑁10 , 𝐴𝑁𝑁2) =  𝐹( 𝐴𝑁𝑁10(𝑊𝑖𝑗𝑘), 𝐴𝑁𝑁2 (𝐺𝑖𝑗𝑘))

=  𝐴𝑁𝑁10(𝑊𝑖𝑗𝑘)  ⟺  𝐴𝑁𝑁2 (𝐺𝑖𝑗𝑘)

= 𝐴𝑁𝑁10(𝐺𝑖𝑗𝑘), 𝐴𝑁𝑁2 (𝑊𝑖𝑗𝑘) 

W, G: the coefficient weights for ANN. 

i, j: the rows and columns for W and G. 

k: the last layer for ANN. 

The step of mutation improves the remaining ANNs 

with low accuracy by changing the weights randomly on 

neurons and layers. ANNs that are less effective and 

unsuitable for survival in the following generation are 

currently given the chance. The weighted properties of 

these ANNs need to be altered in order for them to 

survive. By altering the weights’ values, the mutation 

process is used to carry out this process of change, as 

shown in Figure 4-a) and (b), respectively, but the 

random change is restricted under certain limits, these 

limits are determined by the error obtained from the 

previous generation; the limits were in the opposite 

direction of the error. We try to choose values opposite 

the direction of the values of the weights with the 

highest error value. We set the standard boundaries in 

range (v1=0.001, v2=1). 

  

a) Neurons. b) Layers. 

Figure 4. The process of mutation on neurons and layers. 

If the value of the overall accuracy system in the 

upcoming generation is low, it must update the range 

with direction to close the zero-error value, as in 

Equations (13) and (14), which formed from our 

suggestion. The minimum limit is updated in increase, 

and the random choice will be among the values that are 

close to 1, which represents aggressive action, and vice 

versa with Equation (13), the higher limit is updated in 

decrease to be the random choice among the values that 

are close to 0, which represents normal action. In this 

process, the mutation is restricted to the suggested limit 

of the range of values to generate weights randomly.  

𝑣1 = 𝑣1 + 0.1 

𝑣2 = 𝑣2 ∗ 0.1 

4.3.3. Combining Process 

After completing the required steps for improvement, 

ANNs algorithms are combined into one ANN 

algorithm. The combining process is done after the 

mutation process, which is the last phase of the EA. 

The combining process is implemented by merging 

the last hidden layer from each ANNs algorithm to form 

a new FFANN algorithm, as in Equation (15). 

Accordingly, in the learning process, we adopted a 

mechanism to make the last layer have the highest 

accuracy in each ANN through crossover and mutation 

processes when executing an EA. 

The resulting combining process produces a new 

FFANN, which consists of 11 hidden layers. The new 

FFANN algorithm contains the most efficient hidden 

layers, which have been examined and are able to 

provide classification with high accuracy.  

FFANNNEW = f (Na1(𝐺𝑖𝑗𝑘)) . f (Na2(𝑊𝑖𝑗𝑘)) … f (Na11(𝑍𝑖𝑗𝑘)) 

Na1…. Na11: the ANNs. 

W: the coefficient weights for Na. 

G: the coefficient weights for Nb. 

i, j: the rows and columns for W and G. 

k: the last layer of ANN. 

The phenotypic neuro-EA pseudocode and flowchart in 

Figure 5. Explain the optimization process, and the 

algorithm as follows: 

Algorithm 1: Phenotypic Neuro-Evolutionary Algorithm. 

Input: Train: DB1, DB2, DB3  

            Test: DB4 

Output: Actions classification 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 



1022                                                  The International Arab Journal of Information Technology, Vol. 21, No. 6, November 2024 

data-trn = [DB1, DB2, DB3] 

w1 = np.random.rand(num_layer, num_neuron, len(data-trn)) 

data-tst = DB4 

w2 = np.random.rand(num_layer, num_neuron, len(data-tst)) 

def normaliz (data): 

      a1  = np.max(datai) 

      a2 = np.min(data) 

      a = (a1-a2)*(( datai – a2)/(a1-a2))+a2 

       return(a) 

data_train= normaliz (data-trn) 

def SumP(data, weight, Bias): 

        return(np.dot(data, weight) + Bias) 

def sigmoid(x): 

       return 1 / (1 + np.exp(-x)) 

def feedforwardANN(data_train, w1): 

       For i in range (num_layer): 

              For j in range(num_neuron): 

                     For k1 in range(len(data_train)): 

                            Z1 = SumP (data_train, w1, Bias) 

                            Z2 = sigmoid (Z1) 

                            L1.append(Z2)  

                       L2.append(L1)   

               L3.append(L2) 

        For i in range (num_layer): 

               For j in range(num_neuron): 

         mse =1/(len(data_train) * sqr(desired_output – L3)) 

                      er1.append(mse) 

                er2.append(er1) 

       error = er2(num_layer-1) 

       return er2, error                    

def select(er2, w1): 

       b = np.sort(er2) 

       for i in range(len(er2)): 

             for j in range(len(er2)): 

             if er2[i] == b[j]: 

                 d.append(i) 

        For i in range (num_layer): 

              h = d[i] 

              selc.append(w1[h]) 

        return(selc) 

 def crossover(w): 

      x = w[0] 

      w[0] = w[11] 

      w[11] = x 

      x = w[10] 

      w[10] = w[1] 

      w[10] = x 

      return(w) 

v1, v2 = 0, 1 

def mutat(w, data, v1, v2): 

      a = len(data) 

       For i in range(num_layer -2): 

              x = random.randint(0,8) 

              x1.append(x) 

              For j in range(num_neuron): 

                     s = np.random.uniform(v1, v2, size=(a)) 

                     s1.append(s) 

               w[x].append(s1) 

      return(w) 

r1, r2 = feedforwardANN(data_train, w1) 

while r2>0.1: 

    // set v1, v2 with negative direction of error 

    selc = select(r1, w1) 

    w = crossover(selc)                            

    mu = mutat(w, data_train, v1, v2)   

    r1, r2 = feedforwardANN(data_train, mu) 

    if r2 < 0.1: 

        feedforwardANN(data_tst, w2) 

        break 

5. Results 

The proposed system applied on the suggested method 

has been evaluated using multiple datasets [9, 36] in 

order to perform the task of recognizing human actions. 

Four databases were implemented to identify the 

aggressive and normal action types, which comprise ten 

different types of actions each. More varied data was 

used to apply the system; data larger than 7000 samples 

and 561 features for each [9], it was used to identify 

human activity; roughly 80% of the data was used 

during training and 20% during testing, a dataset was 

used to identify the following actions: standing, sitting, 

laying, walking, walking downstairs, and walking 

upstairs. 

To approve learning and get satisfactory outcomes, 

the implementation is separated into two phases: 

training and testing. 

 

Figure 5. Phenotypic neuro-evolutionary flowchart. 

5.1. Training Phase 

The system applied on variety datasets, to recognize the 

type of action which are aggressive or normal the 

system was trained using three databases, each with two 

types of aggressive and normal activity and 10 

categories for each activity. The system was trained on 

each of the 10 types. The data from the three databases 

was passed to the artificial neural front-end algorithm to 

check the result. If the result is not satisfactory, the 

algorithm will be improved using an EA, which requires 

breaking the artificial neural algorithm into multiple 

ANNs as shown in the Figure 3 and maintaining the 

error value resulting from each post- break algorithm to 

be used in the EA phase. The role of the EA begins with 

the selection phase based on breaking the algorithm, 

which uses the error values resulting from each ANN 
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and rearranges the algorithms from best to worst, as 

shown in Tables 1 and 2 for aggressive and normal 

actions respectively. 

Table 1. The breaking and selection phases for aggressive action. 

Aggressive action 

Breaking phase The selection phase 

ANNs Accuracy ANNs Accuracy 

0 95.06158360027369 0 95.06158360027369 

1 0.0 5 87.91257054235956 

2 70.48007827510644 10 75.37471114729755 

3 0.0 2 70.48007827510644 

4 0.0 9 69.33591670018728 

5 87.91257054235956 6 25.53584519667622 

6 25.53584519667622 1 0.0 

7 0.0 3 0.0 

8 0.0 4 0.0 

9 69.33591670018728 7 0.0 

10 75.37471114729755 8 0.0 

Table 2. The breaking and selection phases for normal action. 

Normal action 

Breaking phase The selection phase 

ANNs Accuracy ANNs Accuracy 

0 81.35306284696951 8 95.6849235023387 

1 94.34914244614108 7 95.58084144150105 

2 87.26224371406316 4 95.57670307204171 

3 94.79460998505589 6 94.8s3192204412498 

4 95.57670307204171 3 94.79460998505589 

5 87.75386133967102 1 94.34914244614108 

6 94.83192204412498 9 87.8096880562277 

7 95.58084144150105 5 87.75386133967102 

8 95.68492350233878 2 87.26224371406316 

9 87.8096880562277 10 85.27270655573171 

10 85.27270655573171 0 81.35306284696951 

Table 3. The first trained dataset. 

Aggressive action 

Action type MSE Accuracy 

Elbowing 0.09897487120762768 90.10251287923722 

Front kicking 0.09800611425948148 90.19938857405185 

Hammering 0.09929454029578523 90.07054597042148 

Headering 0.09834289985632305 90.16571001436769 

Kneeing 0.09877155432842066 90.12284456715793 

Pulling 0.09850367614771283 90.14963238522871 

Punching 0.09837148994202279 90.16285100579772 

Pushing 0.09814084253214674 90.18591574678533 

Side kicking 0.09779541407864159 90.22045859213584 

Slapping 0.09739016775488114 90.26098322451188 

Accuracy 90.16408429596956 

Normal action 

Action type MSE Accuracy 

Bowing 0.04190016579326249 95.80998342067375 

Clapping 0.04152967269503824 95.84703273049617 

Handshaking 0.04181133964618717 95.81886603538128 

Hugging 0.04190459693808727 95.80954030619128 

Jumping 0.04163499408209211 95.83650059179078 

Running 0.041872208529894483 95.81277914701054 

Seating 0.041871959693298225 95.81280403067018 

Standing 0.04186325852684629 95.81367414731538 

Walking 0.04171678131303149 95.82832186869685 

Waving 0.04157420545086991 95.84257945491301 

Accuracy 95.82320817331393 

Following the steps of breaking, selection, crossover 

and mutation are carried out, and finally, the ANNs 

algorithms are combined into a single ANN algorithm 

to generate the new FFANN algorithm, which is used to 

send data to the next generation. Ten actions 

representing both aggressive and typical sorts of 

activities are represented by multi-dimensional data that 

is stored in three databases and is passed as multi-

dimensional data that is stored in two databases. The 

data stored in the three databases is passed for training, 

as shown in the Tables 3, 4, and 5. Tables 3, 4, and 5 

show the results of mean square error and accuracy for 

each activity related to each type (aggressive and 

normal) in each iteration of the training phase. 

Table 4. The second trained dataset. 

Aggressive action 

Action type MSE Accuracy 

Elbowing 0.09767150091341069 90.23284990865893 

Front kicking 0.09907209444128845 90.09279055587116 

Hammering 0.09943420649619074 90.05657935038093 

Headering 0.09798022330296213 90.2019776697038 

Kneeing 0.09677557861330183 90.32244213866983 

Pulling 0.09787102697573434 90.21289730242657 

Punching 0.09821260161291197 90.1787398387088 

Pushing 0.09808966260534242 90.19103373946575 

Side kicking 0.09760931803604808 90.2390681963952 

Slapping 0.09804417377244205 90.1955826227558 

Accuracy 90.19239613230368 

Normal action 

Action type MSE Accuracy 

Bowing 0.041728030728533524 95.82719692714664 

Clapping 0.04167096448315706 95.8329035516843 

Handshaking 0.041743773786799776 95.82562262132002 

Hugging 0.041838898054688066 95.81611019453119 

Jumping 0.04188486333066445 95.81151366693355 

Running 0.04181148980954863 95.81885101904514 

Seating 0.04194933841371019 95.80506615862899 

Standing 0.041662435279492434 95.83375647205075 

Walking 0.04193733720242114 95.80626627975789 

Waving 0.0419489634245092 95.80510365754908 

Accuracy 95.81823905486475 

Table 5. The third trained dataset. 

Aggressive action 

Action type MSE Accuracy 

Elbowing 0.09910828139077435 90.08917186092256 

Front kicking 0.0984306689957578 90.15693310042423 

Hammering 0.10036535339502255 89.96346466049775 

Headering 0.09761926113743659 90.23807388625634 

Kneeing 0.09986006514254286 90.01399348574571 

Pulling 0.0982508114049132 90.17491885950868 

Punching 0.09937187687054405 90.0628123129456 

Pushing 0.0992029236481672 90.07970763518328 

Side kicking 0.09894738083013926 90.10526191698607 

Slapping 0.09766722776966477 90.23327722303353 

Accuracy 90.11176149415039 

Normal action 

Action type MSE Accuracy 

Bowing 0.0419121650011947 95.80878349988053 

Clapping 0.04121699348755734 95.87830065124426 

Handshaking 0.041698056506847686 95.83019434931524 

Hugging 0.04157930332086695 95.84206966791331 

Jumping 0.041624438247608773 95.83755617523913 

Running 0.041796577372944156 95.82034226270558 

Seating 0.04183029861267171 95.81697013873283 

Standing 0.04161819055245526 95.83818094475447 

Walking 0.041576037516821776 95.84239624831781 

Waving 0.04160277133952405 95.8397228660476 

Accuracy 95.83545168041508 

For three databases, the overall training phase 

accuracy of the last generation is 90.15608064080789 

for aggressive action and 95.82563296953126 for 

normal action, Figures 6 and 7 explain the accuracy for 

training phase for aggressive and normal data. 

The system achieved high accuracy when trained on 

the three databases with less error by the using of mean 

square error as explained in the Tables 3, 4, and 5. 
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Figure 6. The accuracy of training phase for aggressive action for the 

three DBs. 

 

Figure 7. The accuracy of training phase for normal action for the 

three DBs. 

Table 6. The training on classifying type of human action. 

Training phase 

Type of Action MSE Accuracy 

Standing 0.0194445942 98.05554057708704 

Sitting  0.0111889345 98.88110655044301 

Laying 0.04353273224 95.64672677596047 

Walking 0.04359575838 95.64042416179619 

Walking downstairs 0.0352878852 96.4712114801326 

Walking upstairs 0.04615227861 95.38477213898932 

 

Figure 8. The training phase accuracy of classifying human action. 

The system trained on other dataset to do action 

recognition. 80% from 7000 samples and 561 features 

for each [9]. The implementation used to recognize the 

sixth actions as explained in Table 6. Figure 8 explains 

the accuracy for training phase for classifying human 

action. 

5.2. Testing Phase 

After obtaining satisfactory results from the last 

generation in the training phase, additional data was 

passed, represented by aggressive and normal activities, 

and stored in a single database for the purpose of testing 

the validity of the results. This was done in order to 

verify the validity of the proposed system and the 

optimization process. During testing, satisfactory results 

were obtained, as shown in Table 7. The accuracy 

obtained from the testing phase is 90.16408429596957 

for aggressive and 95.82320817331393 for normal, as 

depicted in Figures 9 and 10 respectively. 

Table 7. Testing phase on the fourth dataset. 

Aggressive action 

Action type MSE Accuracy 

Elbowing 0.098974871207627 90.1025128792373 

Front kicking 0.09800611425948146 90.19938857405185 

Hammering 0.09929454029578465 90.07054597042153 

Headering 0.09834289985632313 90.16571001436769 

Kneeing 0.0987715543284206 90.12284456715794 

Pulling 0.09850367614771266 90.14963238522873 

Punching 0.09837148994202319 90.16285100579768 

Pushing 0.098140842532147 90.1859157467853 

Side kicking 0.09779541407864148 90.22045859213586 

Slapping 0.0973901677548813 90.26098322451188 

Accuracy 90.16408429596957 

Normal action 

Action type MSE Accuracy 

Bowing 0.04190016579326288 95.80998342067372 

Clapping 0.0415296726950383 95.84703273049617 

Handshaking 0.04181133964618717 95.81886603538128 

Hugging 0.04190459693808716 95.80954030619128 

Jumping 0.04163499408209218 95.83650059179078 

Running 0.041872208529894546 95.81277914701054 

Seating 0.041871959693298134 95.81280403067018 

Standing 0.04186325852684642 95.81367414731535 

Walking 0.04171678131303115 95.82832186869689 

Waving 0.041574205450869976 95.84257945491301 

Accuracy 95.82320817331393 

 

Figure 9. The accuracy of testing phase for aggressive action for the 

fourth DB. 
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Figure 10. The accuracy of testing phase for normal action for the 

fourth DB. 

Table 8. The testing on classifying type of human action. 

Training phase 

Type of action MSE Accuracy 

Standing 0.01901035943 98.09896405695486 

Sitting  0.01117056942 98.88294305827982 

Laying 0.04364527616 95.63547238410109 

Walking 0.04349302024 95.65069797595265 

Walking downstairs 0.03723951763 96.27604823715042 

Walking upstairs 0.04728140522 95.27185947798723 

 

Figure 11. The training phase accuracy of classifying human actions. 

The system was tested using a dataset to classify 

human actions, as shown in Table 8 and Figure 11, 

which provides an explanation of the testing accuracy. 

The system implementation performance was 

compared with other state-of-the-art HAR techniques as 

in Table 9. 

 
Table 9. The comparison implementation techniques of HAR. 

Accuracy Dataset Method Reference/Year 

93.68%, 59.06% 
Fusion techniques of virtual reality and SOM 

neural network 

UT-Kinect action, 

MSRdailyactivity3D 
[16], 2020 

81.25% GA 
MuHAVi-Uncut, iXMAS, and 

IAVID-1 
[20], 2022 

92.16% raw depth maps SU 3DHOI dataset [35], 2021 

95.79% Feature Selection and Dense Neural Network UCI HAR data set [3], 2020 

For the Convolution Memory Fusion Algorithm 

(CMFA), the percentage was 96.76%, while for 

the Convolution Gated Fusion Algorithm 
(CGFA), it was 84.35%, with 96.91% for both 

smartwatches and smartphones 

Time-series data produced by wearable sensors 

and smartphones 
Hybrid Learning Algorithms (HLA) [2], 2022 

98.42%, 97.83%, and 81.40% Hollywood2, KTH, UCF-ARG A deep GA [26], 2021 

92.16% HARNAS 
Opportunity dataset, and UniMiB-

SHAR dataset 
[40], 2020 

%85.43 HMP, WISDM and self-annotated IMSB datasets GA [25], 2020 

%87.57 KTH-dataset and Weizmann human action. ANN [19], 2020 

97.9% 
Raw data was gathered by an LP-RESEARCH 

sensor. 
ANN with GA [43], 2020 

91-96%, 95-98% 
HAR [36] by Vicon mobile robot SCITOS G5 

system, HAR by Smartphones [9] 

A neuro phenotypic evolution 

algorithm 

The proposed 

method 

 

The computational complexity of the proposed 

algorithm is represented by the combination of 

mathematical features such as entering the equation to 

obtain the result from each layer to facilitate the learning 

process represented by breaking the original algorithm, 

thus reducing the training time due to the fact that the 

process of the mutation facilitated the learning process 

and through the processes of breaking and selection, 

which accelerated the training process, thus leading to 

the ease and speed of the learning process of the 

artificial neural algorithm. 

Depending on the adaptability and speed of the 

learning process, the suggested algorithm can be used 

for increasingly difficult tasks. The fuzzy logic 

algorithm, which can speed up the process of selecting 

the best neuron and avoiding potential limitations, is one 

way to enhance and add more features to the learning 

process. 

6. Conclusions 

A combination model comprising two AI algorithms: 

the EA and the ANN algorithm utilizing multi-

dimensional data, the suggested approach was applied 

to prove the system’s efficacy. The data is fed to a multi-

layer FFANN, and the results are obtained from the two 

neurons in the output layer. The mean square error 

method is used to verify and assess the outcome. 

Depending on how many hidden layers it has, the 

original ANN is divided into multiple ANNs to start the 

optimization process. In order to determine which two 
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ANNs are the best and worst, the EA sorts the errors 

acquired from each ANN in order to perform the 

selection phase. The rest of the ANNs seize the 

opportunity to improve it through the process of 

mutation. Following these procedures, ANNs combine 

to produce one ANN, which is then fed data until the 

result is affirmed. Every generation undergoes these 

procedures. Training and testing were the two stages of 

the system's implementation on a variety of datasets. 

During the training phase, the first datasets applied were 

the three databases with two different types of actions 

for recognition employed. Each kind is assigned ten 

activities, each with 1061 samples. Each sample has 

nine features; each one is represented by three-

dimensional coordinates in space. Another dataset used 

the HAR data extracted from smart phones to classify 

different human actions with 80%. Training yielded a 

high accuracy for aggressive and normal actions. Two 

different types of actions from another database were 

used to test the system for the first datasets suggested to 

be used, and the system tested on 20% of the second 

suggested datasets. The results were close to the training 

stage and satisfactory, with a high level of accuracy of 

the two actions. 
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