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Abstract: Ovarian cancer constitutes a notable proportion of cancer-related mortalities among women. The diagnostic 

classification of ovarian cancer subtypes has demonstrated complexity, characterized by limited concordance among 

pathologists. Vision Transformer (ViT) models have emerged as the predominant architecture in numerous computer vision 

applications, encompassing tasks such as image classification and cancer detection. Their success stems primarily from their 

capacity to integrate global contextual information through self-attention mechanisms during the learning process. However, 

the key issue with ViT is its compatibility with high-res images. Computation grows quadratically with image size, resulting in 

a large number of tokens and significant computational demands for self-attention. Swin Transformer (Swin-T) addresses this 

challenge by introducing two main concepts: hierarchical feature mapping and windowed attention transformation. This work 

presents a parallel implementation of Swin Transformers (Swin-Ts) that leverages the powerful feature extraction capabilities 

and aimed at classifying five subtypes within ovarian cancer utilizing Whole Slide Imaging (WSI) and it yielded average 

precision, recall, and F1-score metrics of 0.958, 0.964, and 0.96 correspondingly. The findings show that the proposed parallel 

Swin-Ts reduce the misclassification errors and improve medical image analysis robustness. Additionally, the suggested 

technique is promising for accurate and efficient ovarian carcinoma subtype categorization, with possible applicability to other 

cancers. Future research will integrate other data sources and validate the technique in various clinical contexts. 
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1. Introduction 

Ovarian cancer represents a substantial contributor to 

mortality within the spectrum of cancer afflictions 

affecting women. Statistics from 2021 reveal that 

ovarian cancer was responsible for approximately 40% 

of fatalities associated with malignancies affecting the 

female genital system [4]. Ovarian cancer encompasses 

five primary subtypes and the process of diagnosing and 

categorizing ovarian cancer has also been demonstrated 

to present challenges, characterized by limited to 

moderate consensus among pathologists. Therefore, 

conventional approaches to classifying ovarian cancer 

subtypes typically depend on histological examination, 

a process susceptible to subjectivity and constrained by 

tissue accessibility [10]. Medical imaging, crucial in 

cancer detection, includes various modalities like X-

rays, MRI, and CT scans. However, Whole Slide 

Imaging (WSI) stands out in histopathological analysis. 

Unlike other techniques, WSI digitizes entire 

histological slides at high resolution, enabling detailed 

cellular analysis. WSI offers unparalleled spatial 

resolution for accurate tumor identification and margin 

assessment. Furthermore, it is digital form can easily 

kept, shared, and analyzed. As a result of using these 

 
advanced algorithms, the diagnoses are more accurate 

and effective in terms of the workflow [3]. It is, 

therefore, diagnostic tool number one in cancer of the 

ovary. Examining pathology slides in the field of 

pathology involves detecting or diagnosing illnesses 

through the study of microscopic slide images. These 

images show a wide variety in features and patterns, and 

one of the most significant differences concerning the 

more conventional natural images is their scale. It is a 

typical workflow in that a pathologist reviews a slide 

image for types of tissue, where she iteratively moves to 

various regions to identify regions of tissue types. This 

is an iterative process for observing individual details of 

tissues, but one can zoom out to observe broader 

patterns created from groups of tissues [3]. The 

computer-aided analysis of images allows for the 

opening of thousands of research opportunities in 

microscopic image processing. Moreover, the automatic 

and precise detection and classification of cancer are 

essential in improving treatment modalities and the 

betterment of patient prognoses [19]. 

With the advancements in machine and deep learning 

techniques, Convolutional Neural Networks (CNNs) 

have long been the predominant method for cancer 

detection [1, 15, 22]. Wu et al. [20] utilized a deep CNN 
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based on AlexNet to automatically diagnose different 

types of ovarian cancer from cytological images, 

achieving an accuracy rate of 78.20%. Hwangbo et al. 

[6] created machine learning models to predict platinum 

sensitivity in the High-Grade Serous Ovarian Cancer 

Carcinoma (HGSOC) patients. The Logistic Regression 

(LR)-based model, utilizing six variables, performed 

best in identifying platinum-resistant cases with an Area 

Under Curve (AUC) of 0.741. Sengupta et al. [16] 

introduced an innovative deep hybrid learning 

framework integrating XGBoost, a variant of Random 

Forest (RF), and a CNN. Their objective was to 

establish associations between nuclear morphological 

features and nuclear lamin protein distribution for 

distinguishing between normal and ovarian cancer 

tissues. Their approach yielded impressive results, 

achieving a flawless test AUC score of 1. However, 

their model was limited by its small sample size, and its 

reliance on samples from a single institution serving a 

specific patient demographic. Similarly, Sun et al. [17] 

used a graph convolutional network to rebuild the gene 

characteristics utilizing by considering both gene 

features and the structure of the network. Then applied 

a boosting technique to forecast which genes might be 

linked to ovarian cancer susceptibility. Consequently, 

our approach attained a strong AUC score of 0.7541. An 

Inception V3 deep learning model was developed by Liu 

et al. [11] for predicting ovarian cancer response to 

platinum-based chemotherapy, relying solely on 

histopathology images and achieved an AUC of 

0.846±0.009. Another deep learning strategy has been 

developed by Farahani et al. [4] for ovarian carcinoma 

histotype classification based on histological features. 

The approach is generalizable even on externally 

stained test sets and has potential for informing 

histotype diagnosis and supporting histotype-specific 

ovarian cancer treatment by training four AI algorithms 

based on deep CNNs to automatically classify 

hematoxylin and eosin-stained whole slide images. The 

best-performing model achieved an accuracy of 80.97% 

on the test data. As an advanced deep learning 

technique, the transformer network has emerged as a 

prominent performer in the field of computer vision. It 

is particularly noteworthy that the Vision Transformer 

(ViT) [2] has demonstrated the superiority of a pure 

attention-based model over CNN-based models, 

yielding better results. The ability of ViTs to aggregate 

instance-level features for fine-grained classification 

tasks was demonstrated by Gao et al. [5]. The instance 

based Vision Transformer (i-ViT) framework was 

applied by the authors of this study to classify papillary 

renal cell carcinoma subtypes. The results indicate that 

ViT models could be promising candidates for 

summarizing patch-level features (similar to their 

“instances”) to WSI-level metrics. Furthermore, 

develop a machine learning-based strategy was 

proposed for improving ovarian carcinoma histotype 

diagnosis. Four different architectures were trained and 

evaluated on an external dataset, including 948 WSIs. 

The proposed models achieved a mean slide-level 

diagnostic concordance of 80.97±0.03% using a One-

Stage Deep Transfer Learning Network (1STL). The 

model outperformed DeepMIL, VarMIL21, and a two-

stage deep transfer learning network. The color 

normalization strategy was used to overcome color 

inconsistencies in H and E images. In the same context, 

a combination of multi-scale CNN and transformer 

model was proposed by Zhou et al. [21] to directly 

extract features. Pathological image features were 

selected using Elastic-Net and then merged with clinical 

information. Survival prediction was conducted using 

Support Vector Classifier (SVC), RF, and XGBoost via 

cross-validation. Results indicated RF model 

outperformed SVC in survival prediction, with 

XGBoost being less effective. More recently, the Swin 

Transformer (Swin-T) [12] stands out as a prominent 

and remarkable architecture. It focuses solely on 

modeling local relationships within each stage, 

progressively diminishing the width and height of the 

feature map while enlarging the receptive field. 

Consequently, it serves as a versatile foundational 

framework for various primary downstream visual 

tasks. Thus, recent advancements in deep learning, 

notably with Swin_T, have improved ovarian carcinoma 

subtype classification by better analyzing image 

context. Integrating histopathological images with 

molecular and clinical data has increased accuracy and 

personalized treatment. Challenges with consistent 

model performance across datasets highlight the need 

for ongoing research. 

This paper introduces a distinct approach aimed at 

harnessing the capabilities of the Swin-T models for the 

identification of the five different subtypes of ovarian 

cancer. The key contributions of this work are: 

• Harnessing the power of Swin-Ts in a parallel 

configuration to get precise differentiation of the five 

unique subtypes of ovarian cancer, .and significantly 

enhance the model performance. 

• Demonstrating improvements over traditional 

classification (CNN and ViT) methods. 

• The proposed multi-Swin_Ts model consistently 

surpasses the prior methodologies in the 

classification of ovarian cancer across various 

datasets. 

The remainder of this paper is structured as follows: 

section 2 provides a brief literature review of related 

work. Section 3 outlines the proposed methodology. 

Section 4 presents and discusses the findings. Finally, 

section 5 concludes the work. 

2. Material and Methodology 

2.1. Dataset 

The dataset focused on ovarian carcinoma, the most 

lethal type of female reproductive system cancer, is 
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accessible through Kaggle which called ovarian-cancer-

classification dataset [9]. It includes data on the five 

most common subtypes: High-Grade Serous Carcinoma 

(HGSC), Clear-Cell Ovarian Carcinoma (CC), 

Endometrioid (EC), Low-Grade Serous Carcinoma 

(LGSC), and Mucinous Carcinoma (MC). Each subtype 

is characterized by distinct cellular morphologies, 

etiologies, molecular and genetic profiles, and clinical 

attributes, which are crucial for subtype-specific 

treatment approaches. The depicted examples of various 

WSIs in Figure 1 show diverse characteristics and color 

profiles. These images pose unique challenges distinct 

from conventional image recognition tasks. 

 

Figure 1. The dataset description. 

2.2. Data Pre-Processing and Sampling 

The WSI images were pre-processed via images 

resizing and normalization, to prepare the data for 

model training. Data sampling is then performed to 

separate training, validating and testing sets. The 

validation data was selected as 10% of the training 

dataset. Let D denote the dataset, which is divided into 

Dtrain, Dval, and Dtest then, 

𝐷 = 𝐷𝑡𝑟𝑎𝑖𝑛 ∪ 𝐷𝑡𝑒𝑠𝑡, 𝐷𝑡𝑟𝑎𝑖𝑛 ∩  𝐷𝑡𝑒𝑠𝑡 = ∅ 

𝐷𝑣𝑎𝑙 = 0.1 ⋅ 𝐷𝑡𝑟𝑎𝑖𝑛 , 𝐷𝑡𝑟𝑎𝑖𝑛 ∩  𝐷𝑣𝑎𝑙 = ∅ 

For the ovarian carcinoma dataset, which has a varying 

number of samples across different subtypes, down 

sampling can be a handy technique to balance the 

training dataset. Down sampling basically means 

decrease the number of data instances in the majority 

class to be equal to that of the minority one hence 

achieving an even data distribution for training. By so 

doing, each type within the training dataset will have an 

equal representation with other classes as indicated by 

the minimum original class size LGSC. The rationale 

for choosing down sampling over other techniques, such 

as oversampling or synthetic data generation, was to 

avoid introducing potential bias or noise from synthetic 

samples, which could compromise the model’s ability 

to generalize. By balancing the dataset in this manner, 

equal representation of each subtype during training was 

ensured, enhancing the model's ability to learn from all 

classes effectively. 

2.3. Swin Transformer 

The Swin-T, characterized by its purely transformer-

based architecture as shown in Figure 2, is increasingly 

recognized as a versatile foundational framework 

applicable across a spectrum of tasks. With an increase 

in network depth, the prior ViT maintains consistent 

down sampling operations to generate cohesive feature 

maps devoid of segmentation, as depicted in Figure 3-

a). Conversely, the Swin-T employs a hierarchical 

architecture of maps, as depicted in Figure 3-b), 

mirroring the hierarchical structure found in CNNs. 

During the initialization phase, the input images are 

divided into non-overlapping patches facilitated by a 

patch splitting module. Subsequently, through 

successive transformer layers, the adjoining patches are 

progressively amalgamated. By employing non-

overlapping windows for self-attention computation, 

the computational complexity shifts from a quadratic to 

a linear paradigm. 

 

 

a) Architecture. 

 

b) Swin-T blocks. 

Figure 2. The general structure of the Swin-T. 

(1) 

(2) 
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a) Feature maps of 

conventional ViT. 

b) Hierarchical feature 

mapping method. 

c) Swin-T way for self-attention 

computation. 

Figure 3. Comparing feature maps: ViT vs. Swin-T. 

However, such partitioning would lead to a reduction 

in the interconnectedness of each individual window 

[12]. In tackling this particular issue, the Swin-T adopts 

the shifted window strategy, a method illustrated in 

Figure 3-c). In layer L (left), a standard window 

partitioning method is employed, where self-attention is 

calculated within each window. In the subsequent layer 

layerL+1 (right), the partitioning of the windows is 

shifted, leading to the formation of new windows. The 

self-attention calculation in the new windows extends 

beyond the boundaries of the previous windows in layer 

L, establishing connections between them [8]. The 

incorporation of shifted windows facilitates the 

integration of information across each window within 

the preceding layer, thus notably augmenting the 

model’s receptive field. This aspect serves as a pivotal 

point of difference from conventional transformer 

structurers. The graphical representation of the Swin-T 

structure is depicted in Figure 2-a). Comprising four 

distinct stages dedicated to the extraction of feature 

maps, each stage is characterized by the inclusion of 

Swin-T blocks. The dual components encompassing 

patch partition and linear embedding function 

analogously to the consolidation of patches. The 

operational mechanism of the Patch Merging module 

bears resemblance to the pooling layer of the CNNs, as 

it effectively in the above samples of input images. 

2.4. The Blocks of the Swin Transformer 

In contrast to the traditional Multi-head Self-Attention 

(MSA) module, the Swin-T block is structured around 

the concept of shifted windows (SW-MSA) [13]. There 

are two sequential Swin-T blocks. Each block consists 

of four components: a Layer Normalization (LN) layer, 

a MSA module, a residual connection, and a 2-layer 

Multi-Layer Perceptron (MLP) as shown in Figure 2-b). 

The Window-based Multi-head Self-Attention (W-

MSA) module and the SW-MSA module are utilized in 

two consecutive transformer blocks, respectively. Using 

this window partitioning strategy, the procedure for 

computing the feature map across successive Swin-T 

blocks is detailed below:  

�̂�𝑙 = 𝑊 − 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1))  + z𝑙−1 

𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(�̂�𝑙))  +  z𝑙−1 

where �̂�1 represents the output features of the SW-MSA 

module for block l1, and zl denotes the output features 

of the MLP module for the same block. The global 

context learning of feature representations is facilitated 

by the interaction between windows achieved through 

shifting. In the Shifted Window Multi-head Self-

Attention (SW-MSA) mechanism, the window 

arrangement is adjusted towards the upper-left corner of 

the image. This adjusts the window configuration, 

allowing each window to consist of multiple sub-

windows while maintaining the same number of patches 

[7]. The output of SW-MSA can be expressed as:  

�̂�𝑙+1 = 𝑊 − 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙)) + 𝑧𝑙 

𝑧𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁(�̂�𝑙+1)) + �̂�𝑙+1 

In a traditional ViT block, each token is compared to all 

other tokens, resulting in a quadratic increase in 

computational demands as the image resolution grows. 

Assuming each window has dimensions of M by M, the 

input images with height h and width w will be divided 

into windows of h/M×w/M. The computational intricacy 

of the MSA is formulated as:  

𝛺𝑀𝑆𝐴 = 4ℎ𝑤𝐶 2 +  2(ℎ𝑤)2 𝐶 

while the computational intricacy of the W-MSA) is 

delineated as:  

𝛺𝑊 − 𝑀𝑆𝐴 = 4ℎ𝑤𝐶 2 +  2𝑀2ℎ𝑤𝐶 

In this context, let C denote the dimensionality. When 

M is predetermined to a constant size (default set to 7), 

the computational complexity of W-MSA correlates 

linearly with the multiplication of h and w. 

3. Methodology 

The attention mechanisms have been employed in 

various capacities in recent years; however, the 

emergence of transformers represents new neural 

network backbone that prominently leverage attention, 

particularly self-attention. The proposed algorithm 

utilizes five Swin-T models operating in parallel to 

classify five common ovarian carcinoma subtypes. Each 

Swin-T model is dedicated to classifying a specific 

subtype, enhancing the overall accuracy and efficiency 

of the classification process. The reason behind utilizing 

five parallel Swin-T models instead of a single multi-

class model is essential due to the dataset's complexity, 

which includes five distinct ovarian cancer subtypes. 

Each subtype has unique features that are challenging 

for one model to differentiate effectively. By dedicating 

a separate model to each subtype, we enhance 

classification accuracy and reduce misclassification by 

allowing each model to specialize in its specific 

subtype. The workflow begins with WSI going via pre-

processing and data sampling phase to create training 

and testing sets. The training set is used to train the 

Swin-T models, each focusing on one specific of the 

subtypes. In the parallel configuration, each Swin-T 

model processes its respective input images through a 

series of stages, including patch partitioning, linear 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 
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embedding, and Swin-T blocks. The models learn to 

extract and represent features specific to their assigned 

subtype, thereby improving classification performance. 

The outputs from the Swin-T models are then 

aggregated to form the final classification results. This 

parallel approach allows for specialized feature 

extraction and reduces the complexity of multi-class 

classification, leading to higher precision and recall 

rates, as reflected in the results. The use of multiple 

Swin-T models ensures that each subtype is classified 

with a high degree of accuracy, demonstrating the 

robustness and effectiveness of the proposed 

methodology. Figure 4 illustrates the overall workflow 

of the proposed methodology, while Algorithm (1) 

provides the corresponding pseudocode. The 

hyperparameters of model training were optimized by 

implementing the grid search method, setting key 

parameters. This optimizations were crucial for 

enhancing model performance. Accordingly, the image 

dimensions of 224×224 pixels, the window size was 

specified as 7×7, and the training spanned 100 epochs. 

Adam served as the optimizer with a learning rate of 

0.0001. Furthermore, the patch size was defined as 4 × 

4, while ReLU function acted as the activation. Lastly, 

the output function was Sigmoid for the final 

predictions. The training hyperparameter configuration 

that utilized for the multi-Swin ViT models is provided 

in in Table 1. 

 

 

Figure 4. The general workflow of the proposed parallel Swin-transformer. 

Algorithm 1: The Pseudocode for Parallel Swin-T Classification 

Algorithm. 

#Step 1. Load and preprocess the dataset. 

function load_and_preprocess_data(): 

    WSI_images=load_WSI_images() 

    pre_images=preprocess_images(WSI_images) 

    training_set, testing_set = data_sampling(pre_images) 

    return training_set, testing_set 

 

#Step 2. Initialize Swin-T models. 

function initialize_swin_t_models(): 

    swin_t_HGSC=Swin_T1() 

    swin_t_CC=Swin_T2() 

    swin_t_EC=Swin_T3() 

    swin_t_LGSC=Swin_T4() 

    swin_t_MC=Swin_T5() 

    return [swin_t_HGSC, swin_t_CC, swin_t_EC, 

swin_t_LGSC, swin_t_MC] 

 

#Step 3. Train Swin-T models. 

function train_models(training_set, swin_t_models): 

    for model, subtype_images in zip(swin_t_models, 

training_set): 

   #Each subset D_train(i) is used to train the corresponding 

Swin-T model M_i, 

   #where i indicates the specific carcinoma subtype. The 

training process involves 

   #optimizing the model parameters θ_i by minimizing the loss 

function L: 

   #θ_i*=argmin_θ_i L(M_i(D_train(i); θ_i)) 

        model.train(subtype_images) 

 

# Step 4. Test Swin-T models and classify subtypes. 

function test_and_classify(testing_set, swin_t_models): 

    results=[] 

    for model, subtype_images in zip(swin_t_models, 

testing_set): 

        predictions=model.predict(subtype_images) 

        results.append(predictions) 

    return results 
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# Step 5. Aggregate and evaluate results. 

function aggregate_and_evaluate(results): 

    combined_results=aggregate_results(results) 

    evaluation_metrics=evaluate(combined_results) 

    return evaluation_metrics 

 

#Main function 

function main(): 

    #Step 1. Load and preprocess data. 

    training_set, testing_set=load_and_preprocess_data() 

    #Step 2. Initialize Swin-T models. 

    swin_t_models=initialize_swin_t_models() 

    #Step 3. Train Swin-T models. 

    train_models(training_set, swin_t_models) 

    #Step 4. Test Swin-T models and classify subtypes. 

    results=test_and_classify(testing_set, swin_t_models) 

    #Step 5. Aggregate and evaluate results. 

    evaluation_metrics=aggregate_and_evaluate(results) 

    #Output evaluation metrics 

    print(evaluation_metrics) 

 

#Execute the main function 

main() 

Table 1. The configuration of the training hyperparameters. 

Hyperparameters Setting 

Image size 224×224 

Window size 7×7 

Epoch 100 

Optimizer Adam 

Learing rate 0.0001 

Patch size 4×4 

Activation function ReLU 

Output function Sigmoid 

4. Results and Discussion 

This work was implemented using Python 3.9.10 on a 

high-performance system featuring an Intel Core i7-

11800H CPU, an NVIDIA GeForce RTX 3060 GPU, 

and 16GB of DDR4 RAM. This hardware and software 

configuration provided a robust and efficient 

environment for the training and evaluation of the 

parallel Swin-T models, facilitating rigorous and high-

quality analysis. 

4.1. Metrics for Evaluating Performance 

The assessment of the suggested approach utilizes 

common classification performance indicators, such as 

precision, recall, and the F1-score. Here, True Positive 

(TP) stands for the number of true positives, which are 

the instances accurately recognized. FN refers to the 

number of false negatives, meaning the instances that 

were missed. FP indicates the number of false positives, 

which are the instances wrongly classified as positive 

when they are actually negative. Precision is calculated 

as the fraction of TP instances among all instances 

predicted to be positive [14, 18], and it can be 

formulated as:  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) 

The proportion of positive samples that are accurately 

predicted as positive is known as recall, and it can be 

represented as follows:  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁) 

The F1-score represents the balanced assessment of the 

classifier's performance, calculated as the harmonic 

mean of precision and recall:  

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 

2 × ( (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙))))/((𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙) ) 

Additionally, the accuracy of the model is defined as the 

ratio of correctly predicted instances to the total 

instances in the data:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 

4.2. The Performance of the Proposed 

Methodology 

To evaluate the performance of the proposed 

methodology, the ovarian carcinoma Image Samples 

dataset was utilized. The sample of the comparison 

between training and validation accuracy and loss per 

epoch is displayed in Figure 5. The accuracy plot 

demonstrates that both training and validation accuracy 

consistently increase before stabilizing within a specific 

range. Conversely, in the loss graph, both loss curves 

initially trend towards zero, but after several epochs, the 

validation loss begins to diverge from the training loss. 

 

 

a) Loss progression per epoch. 

 

b) Training/validation accuracy patterns. 

Figure 5. The proposed model training progression. 

The evaluation of the effectiveness of the proposed 

methodology in classifying the five most prevalent 

subtypes of ovarian carcinoma was conducted using the 

ovarian carcinoma Image Samples dataset. This 

assessment utilized confusion matrices and the metrics 

of precision, recall, and F1-score, which collectively 

demonstrate the performance of the classification 

approach. The confusion matrices presented in Figure 5 

for both the parallel Swin-Ts configuration Figure 6-a) 

(9) 

(11) 

(12) 

(10) 
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and the single Swin-T configuration Figure 6-b) offer 

valuable insights into the classification accuracy and the 

distribution of errors for each subtype. While Table 2 

shows the performance evaluation metrics of the 

proposed methodology. 

 

 
 

a) Parallel Swin-Ts. b) Uni-Swin-T. 

Figure 6. Confusion matrices. 

Table 2. The performance evaluation metrics of the proposed 
methodology. 

 Cancer subtype Precision Recall F1-score 

Parallel Swin-Ts 

HGSC 0.98 0.97 0.97 

CC 0.95 0.95 0.95 

EC 0.95 0.97 0.96 

LGSC 0.91 0.97 0.94 

MC 1 0.96 0.98 

Mean  0.958 0.964 0.96 

Uni_Swin-T 

HGSC 0.96 0.95 0.95 

CC 0.91 0.94 0.93 

EC 0.94 0.93 0.93 

LGSC 0.85 0.92 0.88 

MC 1 0.94 0.97 

Mean  0.932 0.9326 0.932 

For the parallel Swin-Ts setting, the precision on the 

HGSC subtype is 0.98, making it very accurate in which 

cases are true positive. The recall is a bit lower, at 0.97, 

showing that the model nicely catches positive 

instances. The F1 score, balancing the two, similarly 

presents high figures, leading to a value of 0.97, which 

leaves good model performance. The MC subtype, 

meanwhile, achieved the best performance metrics of 1 

for precision and 0.96 for recall, resulting in an F1-score 

of 0.98. As such, the parallel model of Swin-Ts delivers 

a high level of effectiveness in correctly diagnosing MC 

cases with minimum incidences of false positives and 

false negatives. The EC subtype exhibited vital 

performance metrics, with a precision of 0.95 and a 

recall of 0.97, giving an F1-score of 0.96. In contrast, 

the LGSC subtype displayed a relatively reduced 

precision of 0.91 but a good recall of 0.97, providing an 

F1-score of 0.94. 

The lower performance with LGSC compare to other 

classes can be due to several aspects, such as the 

complexity and variability of this subtype. These factors 

introduce difficulties in both the histopathological and 

molecular characteristics, distinguishing it from other 

subtypes. Furthermore, the limited labeled data for 

LGSC may have reduced the model's ability to 

generalize effectively. This means that, though the 

model shows a suitable identification of the actual cases 

of LGSC, it compares a more elevated frequency of 

wrong identifications with the rest of the histological 

subtypes, especially in the form of false positives. As 

such, using parallel Swin-Ts, mean precision, recall, and 

F1-score of 0.958, 0.964, and 0.960, respectively, were 

derived. 

The Uni-Swin-T approach, on the other hand, gives 

slight decreases in the performance measures. Notably, 

precision values reflected a decline in the LGSC of 0.85 

against a recall of 0.92 and F1 of 0.88. It shows a low 

performance score when Uni-Swin-T correctly 

identifies the LGSC cases but with a higher rate of false 

positives and negatives. The Swin-T model can further 

reduce the values of recall (0.93) and F1-score (0.93) of 

the EC subtype than the parallel Swin-Ts. The values of 

precision and recall of the CC and HGSC subtypes are 

slightly less under the single Swin-Ts than under the 

parallel, resulting in a somewhat lower F1 score. This 

makes the average precision, recall, and F1-score over a 

number of the evaluation methodologies turn out to be 

approximately 0.932, 0.9326, and 0.932, respectively. 

Overall, the parallel Swin-Ts configuration 

outperforms the Uni-Swin-T configuration in most 

subtypes, especially in terms of precision and recall for 

LGSC and EC subtypes. The superior performance of 

proposed methodology can be attributed to its enhanced 

ability to capture and distinguish intricate patterns 

within the ovarian carcinoma subtypes, thereby 

reducing misclassification errors and improving the 

overall robustness of the classification model. 

On the other hand, the resource demands associated 

with running multiple parallel Swin-T models present a 

potential limitation, as they may lead to increased 

processing times and higher requirements for memory 

and computational power. Despite these challenges, the 

methodology has demonstrated effective performance 

with significant improvements in classification 

accuracy. The notable gains achieved highlight the 

method’s potential value and effectiveness, even when 

faced with resource constraints. 

4.3. Comparing State-of-the-Art Performance 

Evaluations 

It is clear from Table 3 which demonstrates through a 

detailed comparative analysis with current methods that 

the proposed approach highlights significant strengths 

and potential improvements over established 

benchmarks. The effectiveness of the proposed 

methodology lies in its adoption of the parallel Swin-Ts 

that demonstrates significant advantages over 

traditional models. By reducing memory overhead and 

enhancing scalability, the methodology optimizes 

resource utilization, ensuring effective management of 

complex datasets. Furthermore, the utilization of shift 

window mechanism enables the model to adapt to 

various spatial relationships within images, thereby 

efficiently capturing intricate patterns and dependencies 

across different regions. 
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Table 3. The state-of-the-art and performance comparison. 

Method Image type #Images 

Data 

sampling 

Performance % 

Train Test Acc. F1-score 

AlexNet [20] Cytological 20328 18295 2033 78.20 NA 

RF [21] 
H and E 

slides 
16594 12 224 

4370 94.6 94 

CNN-CAE [8] Ultrasound 1613 1,289 648 90.12 NA 

1STL [4] WSI 1008 948 60 80.97 78.41 

Ours WSI 17,622 14,540 3,082 96.8 0.96 

*Acc: Accuracy; NA: Not available. 

5. Conclusions 

A distinct methodology has been proposed via utilizing 

parallel Swin-T models for the subtype’s classification 

of the ovarian carcinoma. Using the power of feature 

extraction and attention skills in Swin-Ts, this work 

proved mass improvement in performance classification 

in all subtypes, validated on an ovarian carcinoma WSI 

dataset. More importantly, it showed that the parallel 

Swin-Ts configuration outperformed the single Swin-T 

model in average precision, recall, and F1-score values 

of 0.958, 0.964, and 0.96, respectively. Notably, this 

parallel configuration achieved the best F1 scores for the 

MC and HGSC subtypes, proving that this is a practical 

approach to dedicating a specified model for each 

subtype. Although the LGSC subtype reached the worst 

performance compared to other ones and is more 

challenging in terms of this class accurate classification, 

it also benefited from this approach most, showing the 

improvement of such metrics as recall and F1-score to 

be 0.91, 0.97, and 0.94, respectively. This could be 

remedied by the parallel part, which allows for 

embedded directed learning and classification for each 

subtype and helps reduce misclassification errors. This 

not only enhances the classification process but also 

shows high potential in the application of transformer-

based models in medical image analysis. Therefore, the 

proposed parallel Swin-Ts workflow shows promise for 

accurate and efficient classification of ovarian 

carcinoma subtypes. Future studies can extend this by 

integrating more data sources and applying the same 

methodology to other cancer types to make it more 

applicable and valuable in computational pathology. 
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