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Abstract: Under-Water Sensor Networks (UWSNs) are important for applications like oceanographic data collection, 

environmental protection, monitoring, and disaster response. These UWSN networks face challenges in energy efficiency and 

protocol convergence because of dynamic underwater ecosystems limited in number and low channel capacity. This paper covers 

and finds real-world solutions for these challenges by proposing an adaptive Q-Learning Medium Access Control (MAC) 

protocol for UWSNs. The methodology used in this paper involves utilizing Q-Learning, a reinforcement learning technique, to 

make sensor nodes autonomously refine their transmission strategies in real-time, enhancing energy consumption and improving 

protocol convergence. The protocol was implemented using the NS 3 network simulator, which offers a detailed and real-world 

environment for analyzing the protocol’s performance. Extensive simulations were conducted, and experiments were used to 

analyze the performance of the proposed protocol. The results showcase significant improvements over other and traditional 

MAC protocols, with a 13% to 19% increase in energy efficiency and channel utilization enhancement in static and mobile 

network scenarios. The adaptive Q-Learning MAC protocol provides a robust solution for the challenges of UWSNs, offering 

energy efficiency and faster convergence times. This research significantly contributes to the advancement of efficient and 

adaptive underwater communication protocols, paving the way for future development in the field. 
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1. Introduction 

Under-Water Sensor Networks (UWSNs) are 

significant for advancing Medium Access Control 

(MAC) protocols and illustrating key concepts within 

sensor and underwater network technology. They play a 

vital role in communication efficiency and addressing 

challenges related to underwater environments. 

Ramakrishnan and Radhakrishnan [13] discussed 

UWSNs applications in terms of oceanographic data 

collection, environmental monitoring, and disaster 

management [1, 4]. Furthermore, utilizing UWSNs in 

disaster monitoring and avoidance play a vital role in 

early warnings and provide us valuable information in 

case of tsunamis. These networks consist of multiple 

sensor nodes installed in underwater environments to 

collect underwater crucial information about 

oceanographic changes [7]. Figure 1 presents the 

general structure of UWSNs. However, UWSNs 

encounter unique challenges in underwater conditions 

like sea waves, the changing characteristics of the  

 
ocean, and interactions with marine species. These 

challenges also include long propagation delays, limited 

energy resources, and difficulties in deploying Global 

Positioning Systems (GPS) [5]. A significant issue that 

new researchers and experts face in ocean data 

collection is the design of MAC protocols which need 

to be capable of effectively managing data 

transmissions. These mentioned challenges are further 

exacerbated by the constraints of the underwater 

environment [11]. 

 

Figure 1. WSSN network. 
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1.1. Objectives 

The primary objective of this research is to Maximize 

Channel Utilization (MCU) while considering energy 

efficiency and convergence time [9]. UWSNs are 

important for oceanographic data collection, 

environmental protection, monitoring, and disaster 

response. These UWSN networks face challenges in 

energy efficiency and protocol convergence because of 

dynamic underwater ecosystems limited in number and 

low channel capacity. In addition to that, this paper 

studied real-world solutions and overcame these 

challenges by proposing an adaptive Q-Learning MAC 

protocol for UWSN. The study objective is the 

following.  

 To design an adaptive Q-Learning MAC protocol for 

WSSNs that overcomes the challenges of the 

underwater network. 

 To enhance and improve the channel while ensuring 

energy efficiency and decreasing convergence time 

in the UWSNs. 

 To analyze the performance of the protocol through 

simulations under different scenarios. 

 To compare MAC protocol with others and 

emphasize their energy efficiency, utilization of 

channel, and convergence time. 

The optimization problem involves balancing the trade-

offs between energy consumption [10], channel 

utilization [2], and convergence time [12]. To achieve 

the optimization objective, the research employed the 

Q-Learning framework. Q-Learning is a model-free, 

reinforcement learning technique [3] that allows the 

sensor nodes to learn optimal transmission strategies 

through interaction with the underwater environment 

[15, 18]. The Q-value, denoted as Q (s, a), represents the 

expected reward when acting in different states. The 

problem formulation includes the Q-Learning process, 

which adapts the Q-values through the Bellman 

equation [17]. 

Q(s, a)←(1−α) Q(s, a)+α(r+γa′max Q (s′, a′)) 

In Equation (1) α is the learning rate finding the 

information on the Q-value update, γ is the discount 

factor quantifying the significance of future rewards, r 

is the reward providing feedback on the action 

effectiveness, and s’ represents the next state. The 

subsequent section delves into the proposed adaptive Q-

Learning MAC protocol, addressing the key challenges 

and how the algorithm learns to enhance decision-

making, providing empirical evidence of its 

effectiveness. The Q-value for a sensor node shows the 

expected cumulative reward when the node is in state 

beta and takes action alpha, guiding the node’s decision-

making for energy-efficient communication. 

𝑄𝑖(𝑠, 𝑎) 

The identifiers “i” “s” and “a” are key components in a 

Q-Learning MAC protocol: “i” denotes the sensor node, 

“s” shows the system’s current state, and “a” represents 

the action of the sensor node to optimize communication 

efficiency. The Q-value is updated during the learning 

process based on the observed rewards and the potential 

future rewards. At the same time during the learning 

process, sensor nodes are found to take different actions, 

and states adjust their Q-values accordingly. The Q-

values guide the nodes in decisions where an action is 

taken in different states to enhance the expected 

cumulative reward over time. While, in a multi-agent 

system, a sensor node maintains its own set of Q-value, 

and the learning is decentralized. Each node learns from 

experiences and updates its Q-value independently 

based on its interactions with the existing environment. 

1.2. Mathematical Formulas 

Here are some of the key mathematical formulas used in 

the study: 

𝑚𝑎𝑥𝑎′𝑄(𝑠′, 𝑎′) 

Maximum Q-value for the next state s’. Bellman 

equation 

𝑉(𝑠)  =  𝑚𝑎𝑥_𝑎 [ 𝑟 +  𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) 𝑉(𝑠′) ] 

Where V(s) is the value of state s, r represents the 

immediate reward, and γ indicates the discount factor. 

P(s’|s, a) indicates the probability of moving to state s’ 

from state s after action a. State action value function 

𝑄(𝑠, 𝑎)  =  𝑟 +  𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎) 𝑚𝑎𝑥_𝑎′ 𝑄(𝑠′, 𝑎′) 

This equation provides a cumulative expected reward 

for taking action. This updates the Q-value for a given 

state-action pair utilizing the current Q-value, 

immediate reward, and discounted future reward. While 

the Q(s, a) shows the expected cumulative reward when 

the agent is in state s and takes action a. At the same 

time equation maxa’ Q(s’, a’) represents the highest Q-

value for all possible actions in the next state, s′, which 

further used to estimate future reward. 

Discount reward equation 

𝑅 =  ∑ 𝛾^𝑡 𝑟_𝑡 

Where γ indicates the discount factor, and r_t represents 

the reward received at time t. 

Loss function for Q-Learning 

𝐿(𝜃)  =  [ 𝑄_𝜃(𝑠, 𝑎)  − ( 𝑟 +  𝛾 𝑚𝑎𝑥_𝑎′ 𝑄_𝜃′(𝑠′, 𝑎′) ) ]^2 

In this equation, θ represents the parameters of the Q-

value function, and θ’ is the target Q-value function. 

The mathematical basis of Q-Learning depends on 

optimized state-action value functions using iterative 

updates by the Bellman equation. This framework lets 

agents design decisions that increase long-term rewards, 

even in uncertain environments. The study used the Q-

Learning framework for sensor nodes to adapt their 

transmission strategies. Q(s, a) shows the expected 

reward when taking action ‘a’ in states s. To maximize 

(1) 

(3) 

(4) 

(5) 

(6) 

(2) 

(7) 
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channel utilization while considering energy efficiency 

and convergence time difference equation incorporated 

above to update the Q-value based on the immediate 

reward r and the maximum Q-value for the next state s’. 

The study contributed to the field of UWSNs in terms 

of the development of an adaptive network and the 

creation of Q-Learning MAC protocol that helps in 

transmitting sensor nodes and provides strategies in 

real-time, by enhancing performances where the 

efficiency of UWSNs [6]. Besides that, empirical 

evidence of the protocol proved very effective in terms 

of efficiency and channel utilization through simulation. 

A comprehensive evaluation and analysis of existing 

MAC protocols and the superior performance of the 

proposed protocol are highlighted. In terms of practical 

implications for UWSNs in benefits such as 

environmental monitoring of underwater, and 

oceanographic data collection with communication. 

2. Methodology 

This study’s main purpose is to design and evaluate an 

adaptive Q-Learning MAC protocol for UWSNs and 

analyze the challenges related to energy efficiency, 

protocol convergence time, and adoption. The study 

also focuses on maximizing channel utilization by 

considering energy and convergence time rates as vital 

performance indicators. The methodology used in this 

paper involves utilizing Q-Learning, a reinforcement 

learning technique, to make sensor nodes autonomously 

refine their transmission strategies in real-time, 

enhancing energy consumption and improving protocol 

convergence. The protocol was implemented using the 

NS-3 network simulator, which offers a detailed and 

real-world environment for analyzing the protocol’s 

performance. Extensive simulations were conducted, 

and experiments were used to analyse the performance 

of the proposed protocol. This method is important and 

results-oriented because of its applications in disaster 

conditions, particularly ocean environment monitoring. 

UWSNs play a key role in collecting underwater 

oceanographic data and providing information like early 

warning regarding disaster management and tsunamis. 

The research paper uses quantitative and qualitative 

assessments to synthesize in-depth details on the 

protocol’s performance and insights into optimized 

UWSNs. 

2.1. Research Design 

This research involves a systematic approach to design 

the proposed adaptive Q-Learning protocol for UWSNs 

and perform simulation studies and experiments. For 

this purpose, the research is conducted to analyze the 

protocol’s performance in depth seawater environments 

and within dynamic water conditions. Figure 2 provides 

the methodology for the proposed Q-learning for 

UWSN. The research is divided and structured into 

phases of development, simulations, and 

implementation. This most important initial phase is the 

development of the adaptive Q-Learning MAC protocol 

where its key steps are the following. To define the 

architecture of protocol and transmission strategies. By 

implementing the Q-Learning for adaptive decision and 

integrating the protocol into tools NS-3, and MATLAB 

for testing at the initial stage. In addition, the protocol 

was implemented using the NS-3 network simulators 

which offer a detailed and real-world environment for 

analyzing the protocol’s performance. Extensive 

simulations were performed to evaluate and check the 

performance of the protocol. The results showcase a 

significant improvement over other MAC protocols, 

with a 13% to 19% increase in energy efficiency and 

improved channel utilization in both scenarios of static 

and mobile networks. 

 
Figure 2. Proposed Q-Learning model for UWSN. 

The simulations aim to evaluate the protocol’s 

performance within a controlled environment. These are 

the following. Simulation configuration to mimic real 

underwater conditions. Implementing scenarios with 

different node densities, depths, and mobility patterns. 

Evaluating key performance metrics like energy 

efficiency, convergence time, and channel utilization. 

2.2. Population and Sampling 

The population consisted of underwater sensor nodes 

deployed within various UWSN scenarios, both static 

and mobile configurations. For this purpose, in 

simulation, a sample of sensor nodes was selected 

carefully for simulation studies, and make ensure the 

diversity in depth, location, and mobility patterns. Real-

world scenarios and experiments were conducted to 

validate the protocol’s performance under actual 

underwater conditions. In addition to that, the strategy 

was made to collect data and the diversity of 

environmental conditions like variations in depth, 

location geographically, and mobility patterns of the 

nodes.  

To achieve a real-time result, we used in this research 

used scenarios that mimic real underwater conditions, in 

terms of fluctuating currents, variable acoustic 

propagation characteristics, and communications with 

marine life. Additionally, practical experiments were 

conducted to authenticate the proposed protocol’s 

outcome. These experiments measured energy 
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efficiency, data transmission consistency, and 

adaptableness to the dynamic underwater environment, 

offering robust evidence of the protocol’s efficacy and 

versatility in real-world deployment situations. 

2.3. Data Collection 

For simulation, we used some tools, and some factors 

were considered such as acoustic signal propagation, 

node mobility, and environmental parameters. Key 

performance metrics, including energy efficiency, 

channel utilization, and convergence time, were 

measured. The research involves deploying the 

developed adaptive Q-Learning MAC protocol in the 

underwater environment to assess its performance under 

authentic conditions. Identify a suitable underwater 

environment for conducting the experiments, such as an 

underwater tank, a controlled section of a lake, or 

another controlled water body. In terms of node 

deployment several underwater nodes a sensor in the 

given environment and make sure that the deployment 

covers different depths and locations, and important is 

the mobility scenarios to simulate UWSNs challenges. 

The study establishes the communication infrastructure, 

like an acoustic modem, to overcome Challenges and 

use data transmission among the deployed nodes. 

2.4. Tools 

This research utilized simulation tools like NS-3 and 

MATLAB while a Python environment was used for the 

implementation of an adaptive Q-Learning protocol and 

MAC protocol simulation studies. Data collection tools 

and underwater sensors were used for scenarios and 

experimental work.  

To define the architecture of protocol and 

transmission strategies Q-Learning for adaptive 

decision and integrating the protocol into tools NS-3, 

and MATLAB for testing. In addition to that, the 

protocol was at the initial stage implemented and 

evaluated within the NS-3 and MATLAB tools used to 

determine its effectiveness in a controlled and computer 

simulation environment. These tests at early times 

helped improve the protocol and transmission 

approaches before accompanying further experiments 

under real-time situations to validate its practical 

applicability. The second most important aspect was the 

network configuration data that shows us the network 

setup, how many nodes are used their distance from 

each other, and communication range between the 

sensor and main hub or receiving node, and 

transmission schedules. Besides that, environmental 

data was included in the dataset like data on underwater 

conditions, what sort of waves and problems there, the 

propagation speed of waves, and communication tools 

and noise levels [3, 14]. Interference patterns are 

considered during the data collection so that efficiency 

and outcome can be improved. The research proposed 

model design’s main purpose is to evaluate the 

challenges of MAC in UWSNs. The model is based on 

reinforcement learning and leverages the unique 

characteristics of the underwater environment. It 

consists of the following components. 

 
Figure 3. Proposed model. 

Sensor nodes are considered learning agents. They 

make decisions based on their interactions with the 

environment and feedback from the sink node. As 

mention in Figure 3 agents are allowed to choose, and 

makes decisions. Because an agent's transmission 

strategies are based on the feedback received from the 

actions received previous or past actions. In addition to 

that the given strategies show us the time slots, 

transmission offsets learning, etc. So, therefore, it’s 

useful. This model is implemented to use Q-Learning, 

as a reinforcement learning algorithm as mentioned in 

Q-tables, and utilized to store state-action pairs and 

expected rewards can be estimated. 

2.5. Mathematical Model 

In addition to the above details, our study uses a 

mathematical model so that the model updates and 

performs accordingly.  

 

Figure 4. The Q-Learning framework. 

Moreover, in this part of the study, a robust Q-

Learning framework for this scheme is presented and 

focused on the Q-learning algorithm that is 

implemented in underwater wireless sensor networks as 
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mention in Figure 4. To provide details and elaborate on 

the working patterns of Q-Learning in UWSNs 

networks to introduce the relevant equations as 

mentioned in Table 1. Q-Learning is a reinforcement 

learning, that is utilized and plays a key role in 

enhancing MAC protocol. 

Table 1. Q-Learning flow for UWSNs. 

Step Description Action 

1. Initialization 

Initialize Q-values for all state-
action pairs, usually with 

arbitrary values or zeros 

Set Q(s, a) = 0 for all s, a 

2. Action 

selection 

The agent (sensor node) selects 

an action based on the current 
state (e.g., transmission strategy) 

Choose an action based 
on the exploration-

exploitation strategy 

(e.g., ε-greedy) 

3. Interaction 

with 

environment 

The sensor node transmits data 
and receives feedback 

(environmental response), 

transitioning to a new state 

Send data, receive 
environmental feedback, 

and observe the next 

state s’ 

4. Reward 

evaluation 

The reward r is evaluated based 
on the immediate outcome of the 

action taken 

Evaluate the reward 

based on transmission 

efficiency and energy 
cost 

5. Q-Value 

update 

The Q-value for the state-action 

pair Q (s, a) is updated using the 
standard Q-Learning equation 

Update the Q-value as: 

Q(s, a)←(1-α) Q(s, a)+α 
(r+γ max a’ Q(s’, a’)) 

6. Repeat 

Repeat the process for each time 

step. The agent iteratively 
improves its policy based on 

feedback 

The cycle repeats until 

convergence or a 

stopping criterion is met 

In the given proposed model, sensor nodes work as 

learning agents while agents make decisions because 

they interact with the environment and their interactions 

and feedback from the sink node are incorporated. The 

Q-Learning algorithm is used to make these agents learn 

and make an optimal transmission strategy in a manner 

that is fully distributed. 

2.6. State Observation 

In each time slot, an agent working as observed and the 

current state of the environment are observed, besides 

that to include factors such as channel conditions and 

neighboring node activities these factors are the main 

agents observed and working with. In addition to 

observing and based on their state, the agent can also 

select an action using the available information. Such 

actions show various transmission strategies. The next 

step is taking the selected action and the reward, the 

agent gets or collects reward data based on the outcome. 

Reward shows us the effectiveness of the chosen action 

in enhancing channel utilization and decreasing 

collisions. After the reward value evaluation, the next 

step is to agent update the Q-value so that the value is 

associated with the state action pair chosen before. 

Besides this Q-value shows us in this case expected 

future rewards when the Q-value is collaborative in that 

action in the mentioned state. The agent’s policy is 

adjusted over time using updated Q-values and this 

policy becomes efficient and improved in choosing 

actions that can lead to good or high rewards. All these 

steps are followed iteratively to allow the agents to 

know and improve their transmission strategies 

continuously by learning about these steps.  

2.7.  Evaluation 

The performance of our proposed model passed through 

the evaluation state as mentioned and the conduction of 

key simulations by utilizing the data collected or the 

dataset. So that it is possible to measure different 

metrics, like channel utilization. As the processes of 

evaluation are easy the evaluation aimed to implement 

and enhance the model’s efficiency and adaptability in 

UWSNs. For this purpose, a channel is used to analyze 

the channel in both static and mobile network cases. The 

results indicate that there are significant improvements 

in channel usage and utilization, with an increase of 

approximately 13% to 126% compared to existing 

protocols. The convergence rate of the model was 

assessed in an UWSNs with varying numbers of nodes. 

Additionally, it was observed that the model 

demonstrated faster convergence compared to 

traditional methods used in this scenario. 

2.8. Ethical-Considerations 

This study has some ethical considerations that occur or 

can be overcome to ensure the accuracy and responsible 

use of data. Proper attribution was given to algorithms 

utilized in simulations by recognizing key limitations, 

like simplifications in the simulation environment and 

requirements for further testing. These ethical 

considerations were important in implementing and 

interpreting the study’s findings. The following section 

discusses how data is gathered, performed analyzed, and 

simulated. Besides that, data was collected from real-

world UWSNs. The data collected was about the node 

behaviors, network configurations, and environmental 

parameters of the water network. Several attributes were 

associated with water including key attributes like Node 

information and details about each sensor, like the 

location of each sensor as location is a mandatory part, 

energy levels, and transmission capabilities of 

underwater sensors. 

3. Results and Discussions 

For results discussion and conclusion this present output 

of our research on the energy-efficient MAC protocol 

for underwater wireless sensor networks. The research 

also offered an in-depth analysis of the performance 

metrics and results of the model and proposed protocol. 

Besides that, for evaluation and analysis, some 

performance metrics are used like evaluation of the 

performance of the proposed protocol. 

Table 2 provides the parameters of the study which 

include number of nodes, channel conditions, 

transmission strategies, learning rate, initial Q-value, 

length of the underwater environment and delay 

tolerance for data transmission. In this study, we 
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considered different key performance metrics like 

utilizing the channel and these metrics measure how 

effectively the channel is utilized, and data are 

transmitted. After the performance metrics of channel 

utilization, we also assessed the data transfer rate 

achieved by the network. Moreover, the model is also 

conducted, handling congestion and the protocol’s 

ability to manage the congestion of a network for 

analysis purposes. 

Table 2. Study parameters and description. 

Parameters Description 

Number of nodes 10 USSN node 

Channel 

conditions 

In channel utilization, ranging from 13 

percent to 126 percent 

Transmission 

strategies 

Agents choose transmission strategies in 

each time frame based on the feedback 
received for their past actions. These 

strategies determine the time slots and 

transmission offsets. 

Learning rate 

Q(s, a)←(1−α) Q(s, a)+α r+γ max Q(s’, 
a’), (2) where α is the learning rate, γ is 

the discount factor, r is the reward and s’ 

represent the next state. 

Notation  

 N: the total number of sensor nodes in 

the UWSN. 

 S: the number of time slots in each 

frame. 

 P: the propagation speed of acoustic 

signals in water (in meters per second). 

 R: the transmission rate of the sensor 

nodes (in bits per second). 

 L: the length of the underwater 
environment (in meters). 

 D: the maximum delay tolerance for 
data transmissions (in seconds). 

 E: the energy budget for each sensor 
node (in joules). 

 Tp: the data packet transmission time 
(in seconds). 

 Ta: the acknowledgment (ACK) packet 

transmission time (in seconds). 

Initial Q-Values 

 Q(s, a)-Q-value for state-action pair (s, 

a)α-Learning rate 

 r-Reward received for the action 

 γ-Discount factor 

 s′-Next state after taking action a a′ - 

Best action in the next state 

Simulation 

environment 

characteristics 

 L: the length of the underwater 
environment (in meters). 

 D: the maximum delay tolerance for 
data transmissions (in seconds). 

3.1. Energy Efficiency 

For this purpose, the energy consumption of the 

network, like convergence time, is the time needed for 

the network to reach a stable state and measure 

performance. The results are conducted for the model’s 

performance, and extensive simulations are done to get 

realistic results from experiments. Some of the key 

findings are the following. 

Table 3. Channel utilization in A static UWSN (10 Nodes). 

Slot size (ms) Channel utilization (%) 

50 70 

100 85 

150 92 

Table 3 illustrates the channel utilization in a static 

UWSN comprising 10 nodes with varying slot sizes. 

 
Figure 5. Convergence rate of Q in UWSN (10 nodes). 

Figure 5 is the convergence rate of Q in UWSN 

where time and Convergence is given.  

Table 4. Convergence rate of Q in UWSN (10 nodes). 

Time (s) Convergence rate (%) 

0 0 

10 45 

20 75 

30 90 

Table 4 is about the convergence rate of the Q-

Learning algorithm in a UWSN with 10 nodes.  

Table 5. Channel utilization. 

Scenario 
Proposed 

protocol 

Existing 

protocol A 

Existing 

protocol B 

Static network 85% 70% 72% 

Mobile network 91% 78% 80% 

Large network (static) 83% 69% 71% 

Large network (mobile) 89% 76% 78% 

As shown in Table 5 the proposed protocol 

consistently outperforms existing protocols in terms of 

energy efficiency. 

In static and mobile network scenarios, our protocol 

achieves 15 percent to 19 percent higher energy 

efficiency compared to the existing protocols as 

mention in Table 3 and demonstrated graphically in 

Figure 5. 

 

Figure 6. Convergence time analysis. 
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Figure 6 is the comparison of convergence times and 

analysis of the proposed protocol with existing 

protocols of static, large networks, and mobile 

networks. 

Table 6. Channel utilization comparison. 

Scenario 
Proposed 

protocol 

Existing 

protocol A 

Existing 

protocol B 

Static network 106% 90% 92% 

Mobile network 126% 110% 112% 

Large network (static) 104% 88% 90% 

Large network (mobile) 122% 106% 108% 

The results in Table 6 demonstrate that the proposed 

protocol leads to significant channel utilization gains, 

ranging from 13 percent to 26 percent, compared to 

existing protocols in various network scenarios. This 

improvement showcases the protocol’s ability to make 

more efficient use of the available channel resources. 

Table 7. Convergence time analysis. 

Scenario 
Proposed 

protocol 

Existing 

protocol A 
Existing protocol B 

Static network 36 seconds 62 seconds 45 seconds 

Mobile network 45 seconds 70 seconds 51 seconds 

Large network (static) 43 seconds 67 seconds 49 seconds 

Large network (mobile) 48 seconds 74 seconds 53 seconds 

Table 7 shows a comparison of convergence times 

and analysis of the proposed protocol with two existing 

protocols in different network scenarios of static, mobile 

networks, and large networks. In terms of convergence 

time the proposed protocol outperforms the existing 

protocols. 

Algorithm (1) provides Q-Learning mechanism that 

covers action, state’s Q-value function, move to next 

stage action selection Q-value, and initialization. This 

research also presents the throughput performance of 

the network in different scenarios, with the highest 

throughput shown in the static network as mentioned 

above in Table 8. 

In addition to that, throughput decreases as mobility 

increases with an increase in network size. 

Algorithm 1: Q-Learning Algorithm for UWSNs. 

# Adaptive Q-Learning MAC Protocol Algorithm for UWSNs 

# Initialization 

Initialize Q-table with random values for all state-action pairs 

Set learning rate (α), discount factor (γ), exploration rate (ε) 

Set maximum episodes, maximum steps per episode 

# Q-Learning Algorithm 

for episode in range(max_episodes): 

    # Reset the environment and get the initial state 

    current_state=reset_environment () 

    for step in range(max_steps_per_episode): 

        # Exploration-exploitation trade-off 

        exploration_rate_threshold=random.uniform (0, 1) 

        if exploration_rate_threshold>ε: 

            # Exploitation: Select the action with the highest Q-

value for the current state 

            action = select_best_action(current_state) 

        Else: 

            # Exploration: Select a random action 

            action=select_random_action () 

        # Perform the selected action and observe the new state, 

reward, and termination status 

        new_state, reward, done=perform_action(action) 

        # Update the Q-value for the current state-action pair 

using the Q-Learning formula 

        update_q_value (current_state, action, reward, new_state) 

        # Move to the next stage 

        current_state=new_state 

        # Break the loop if the episode is terminated 

        if done: 

            Break 

# Q-Value Update Function 

def update_q_value (state, action, reward, new_state): 

    current_q_value=q_table[state][action] 

    best_future_q_value=max(q_table[new_state]) 

    new_q_value= 

(1-α)current_q_value+α*(reward+γ*best_future_q_value) 

    q_table[state][action]=new_q_value 

# Action Selection Functions 

def select_best_action(state): 

    return np.argmax (q_table[state]) 

def select_random_action (): 

    return random.choice (actions) 

Table 8. Throughput performance evaluation. 

Scenario Throughput (bps) 

Static network 100,000 bps 

Mobile network 85,000 bps 

Large network (static) 95,000 bps 

Large network (mobile) 80,000 bps 

3.2. Discussion  

In this section, we analyze the results presented in the 

previous section and provide a detailed discussion of the 

findings. 

 

Figure 7. Energy efficiency comparison. 

Figure 7 illustrates energy efficiency comparison 

between the proposed protocol and existing protocols A 

and B in different scenarios. In the static network, the 

proposed protocol achieves an energy efficiency of 85 

percent, while existing protocols A and B achieve 70 

percent and 72 percent, respectively Tables 5, 6, and 7. 

This demonstrates that the proposed protocol 

outperforms existing protocols by 15. In the mobile 

network scenario, the energy efficiency of the proposed 

protocol is 91 percent, compared to 78 percent for 
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existing protocol A and 80 percent for existing protocol 

B. The proposed protocol exhibits 13 percent and 11 

percent higher energy efficiency in the mobile network 

compared to existing protocols A and B, respectively. 

The proposed protocol achieves faster convergence 

times in various scenarios, which are essential for real-

time applications. It consistently outperforms existing 

protocols, reducing convergence time by an average of 

16 seconds. The results of the throughput performance 

evaluation are presented in Table 8 and graphically 

demonstrated in Figure 8. 

 

Figure 8. Throughput performance comparison. 

Algorithm (2) initializes a Q-table with zeros for all 

state-action pairs with the utilization of an epsilon 

greedy strategy for action selection. The Q-values are 

updated incorporating the Q-Learning updated rule, 

adjusted the table to optimize decision-making for 

actions in the future. In addition to that, every sensor 

node observes the environment, selects an action, and 

receives a reward according to the outcome.  

Algorithm 2: For Initializing the Q-Table. 

Initialize Q-table with zeros for all state-action pairs 

# Hyperparameters 

learning_rate=0.1 

discount_factor=0.9 

exploration_rate=0.1 

# For each time slot 

for time_slot in range(total_time_slots): 

# For each sensor node 

For node in sensor_nodes: 

# State observation 

current_state=observe_environment(node) 

# Action selection (epsilon-greedy strategy) 

if random_uniform () exploration_rate: 

selected_action=explore_random_action () 

Else: 

selected_action=exploit_best_action(current_state) 

# Take the selected action 

transmit_packet (node, selected_action) 

# Observe the result and receive the reward 

reward = observe_environment_and_get_reward(node) 

# Update the Q-value for the chosen state-action pair 

update_q_value (current_state, selected_action, reward) 

# Function to update Q-values using the Q-Learning update rule 

def update_q_value (state, action, reward): 

current_q_value=q_table[state][action] 

max_future_q_value=max(q_table[next_state]) 

# Assuming the next state is the state after taking ‘action’ 

new_q_value=(1-

learning_rate)*current_q_value+learning_rate*(reward+disco

unt_factor*max_future_q_value) 

q_table[state][action]=new_q_value 

# Function to observe the environment and get the reward 

def observe_environment_and_get_reward(node): 

# Implement logic to observe the environment, check for 

successful transmission, 

# collisions, and other relevant factors to calculate the reward 

# Return the calculated reward pass 

3.3. Channel Utilization and Comparison 

Channel utilization is compared as mentioned in the 

table channel utilization comparison above in Table 6. 

This shows that the available and proposed protocol is 

very effective and results-oriented if available resources 

of the channel are used. Besides this in the static 

network, the given protocol resulted or achieving 106% 

channel utilization, and the given and existing protocols 

A and B achieved 90 percent and 92 percent. These 

results and channel utilization depict that the proposed 

protocol utilizes the channel better and achieves better 

outcomes. Aside from this, the proposed model achieves 

a 16 percent higher value regarding channel utilization. 

 
Figure 9. Channel utilization in a static UWSN (10 Nodes). 

Moreover, the mobile network proposed protocol in 

channel utilization achieved 126%, which is 

outperforming existing protocols A and B, which 

resulted in only 110 percent and 112 percent utilization 

of channel. In addition to large static and mobile 

network scenarios, the given and proposed protocol 

exhibits superior channel utilization as demonstrated in 

Figure 9. This reflects that it can make more efficient 

use of the available channel resources [16]. One of the 

most important aspects of channel utilization is 

convergence time and analysis. Table 7 shows the 

convergence time analysis for various scenarios, such as 
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the proposed protocol and existing protocols A and B. 

In contrast to that, the static network scenario of the 

proposed protocol achieved a convergence time of 36 

seconds, on the other hand, the existing protocols A and 

B took 45 seconds and 62 seconds. These results and 

time intervals in the proposed protocol converge at a 

rapid speed in the static network. This means it 

decreases the convergence time by an average of 26 

seconds if we compare it with the existing protocols. On 

the other hand, in the mobile network scenario, the 

protocol achieves a convergence time of 45 seconds, 

which is better and better results than existing protocols 

A and B, which need convergence times of 70 seconds 

and 51 seconds. In huge and static mobile network 

scenarios the given and proposed protocol constantly 

exhibits faster convergence times, improving its 

suitability for real-time applications.  

3.4. Assessment 

The research outcome depicts that the proposed protocol 

continually results in existing protocols in terms of 

energy efficiency channel utilization, and convergence 

time [8]. This makes it a promising solution for 

UWSNs, especially in scenarios where real-time data 

gathering and decision-making are crucial. 

3.5. Limitations and Future Work 

The proposed protocol shows good and acceptable 

results, but it is essential to acknowledge its limitations. 

Future work focuses on pinpointing these limitations to 

leverage them and further optimize the protocol for 

various underwater network scenarios. These results are 

promising to acknowledge the limitations of this 

research. Future research focuses on overcoming these 

limitations and enhancing the protocol in underwater 

network scenarios. Moreover, in terms of field-based 

tests, it is important to validate the protocol's 

performance under real underwater conditions. The 

protocol’s improvement in energy efficiency, channel 

utilization, and convergence time is valuable in 

oceanographic environments.  

4. Conclusions 

In this research, our proposed protocol was better in 

performance in terms of energy-efficient Medium 

Access (MA) protocol. This protocol also provides an 

efficient solution in underwater wireless sensor 

networks because it belongs to a family of 

reinforcement learning, particularly Q-Learning. This 

proposed protocol’s purpose is to elaborate on the 

energy consumption challenges and overcome the issue 

and latency in underwater wireless sensor networks to 

improve network performance. This research also 

conducted simulations and analysis to evaluate the 

proposed protocol’s performance in different scenarios. 

In conclusion of this study, we investigated the 

proposed adaptive Q-Learning MAC protocol for 

underwater wireless sensor networks through 

simulation studies and practical experiments. In 

addition to that this research also offers valuable 

insights into the protocol’s effectiveness. The UWSNs 

protocol is an adaptive Q-Learning MAC protocol that 

offers a promising solution to the challenges of the 

dynamic aquatic environment. This experiment 

investigation with the use of extensive simulations and 

experiments has remarkable efficiency in underwater 

wireless sensor networks. 

The quantitative analyses make improvements in key 

performance metrics in channel utilization, and 

enhanced network throughput. Besides that, it handles 

effective congestion and energy efficiency. This 

exhibited remarkable performance in converging to 

stable transmission strategies swiftly, even in the face of 

different scenarios and environmental complexities. 

Qualitatively, this assessment showcases the 

protocol’s adaptability to adoption and changes in node 

density, mobility patterns, and challenges unforeseen 

that are encountered during the real-world scenario. The 

protocol demonstrated effectiveness in addressing the 

critical issues of energy efficiency and convergence 

time in underwater wireless sensor networks. By using 

both quantitative and qualitative, the approach offers a 

key outcome in the protocol’s performance in 

comparison to existing MAC protocols in real-world 

scenarios. The results derived from analyses contribute 

to the protocol’s efficiency and strengthen potential 

areas for further improvement. As underwater wireless 

sensor networks become highly vital in terms of 

environmental and disaster monitoring. Besides that, 

our proposed protocol, an adaptive Q-Learning MAC 

protocol proved to be more reliable and offers an 

adaptive solution. In addition to that, autonomously 

adjusting transmission strategies in real-time positions 

and transformative technology enhance the efficiency of 

underwater data collection. The study concluded that the 

research provides valuable insight into the present 

challenges. Also, a robust protocol for underwater 

wireless sensor networks established a framework for 

future advancements in underwater communication 

protocols. Energy-efficient underwater network usage is 

incredibly important in water environments specifically, 

the adaptive Q-Learning MAC protocol.  

4.1. Key Findings 

This research has different key findings and outcomes 

including energy efficiency. The proposed protocol 

consistently works well compared to existing protocols 

A and B in terms of energy efficiency. In addition to 

existing scenarios both static and mobile networks, this 

proposed protocol has significantly higher energy 

efficiency between 13 to 19 percent. This enhancement 

shows the protocol’s ability to demonstrate and 

outperform energy usage and prolong network life. The 
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traditional use of protocol impacts channel utilization 

data rates and efficiency. Our protocol employed an 

adaptive Q-Learning to make sensor nodes adjust 

dynamically to their transmission strategies. Using 

several in-depth simulations and empirical evaluation of 

the protocol demonstrates enhancement in energy 

efficiency, channel utilization, and convergence time 

than traditional MAC protocols. This research also 

contributes to developing and comparing a novel 

protocol with existing protocols. Also, the study 

provides empirical evidence and implications for 

critical conditions in underwater wireless sensor 

environments. The new adaptive Q-Learning protocol, 

MAC protocol, offers us a transformative solution 

because of its potential to revolutionize underwater 

wireless sensor networks. In addition to that, a novel 

approach and adaptive MAC protocol make them more 

efficient and adaptable for different applications in a 

water environment. 

4.2. Channel Utilization 

To achieve better results and efficient high data rates to 

control congestion in underwater wireless sensor 

networks for channel utilization this proposed protocol 

outcome is significant in terms of channel utilization. 

 

Figure 10. Channel utilization and comparison. 

Figure 10 shed lights on the channel utilization and 

comparison. An important improvement showcases the 

protocol's ability to make more reliable and better use of 

available channel resources. Besides that, convergence 

time is a key aspect and metric for real-time data 

collection and decision-making in underwater wireless 

sensor networks. This given protocol decreases the 

average convergence time by 16 seconds than existing 

protocols. 

This improves network responsiveness in real-time 

and this study has significant implications for the field 

UWSNs. Other than this the above-mentioned protocol 

provides a promising solution to the energy 

consumption and network performance challenges in 

underwater wireless sensor networks. It also offers 

services in a wide range of applications like 

oceanographic data gathering monitoring of the 

environment, and early warning in disaster 

management. Future research must focus on 

overcoming these limitations and enhancing the 

protocol in underwater network scenarios. Moreover, 

experiments and field-based tests are important to 

validate the protocol’s performance under real 

underwater conditions. In conclusion, the research 

contributes to the advancements of UWSNs wireless 

sensor networks by offering an energy-efficient MAC 

protocol based on Q-Learning and reinforcement 

learning. The protocol improves energy efficiency, 

channel utilization, and convergence time in underwater 

wireless sensor environments. 
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