
The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025 35

A Novel Space-Efficient Method for Detecting

Network-Wide Heavy Hitters in Software-Defined

Networking Using P4-Switch

Ali Alhaj

School of Computer and Information

Sciences, University of Hyderabad

India

21mcpc16@uohyd.ac.in

Wilson Bhukya

School of Computer and Information

Sciences, University of Hyderabad

India

rathore@uohyd.ac.in

Rajendra Lal

School of Computer and Information

Sciences, University of Hyderabad

India

rajendraprasd@uohyd.ac.in

Abstract: Software-Defined Networking (SDN) is a dynamic, programmable approach that enables centralized control and has

become essential in modern networking environments such as data centers, Internet Service Providers (ISPs), and emerging 5G

applications. A critical challenge within SDN environments is detecting and managing “heavy hitters” high-traffic flows often

associated with malicious activities like Distributed Denial of Service (DDoS) attacks or real-time data-intensive applications.

Identifying these flows across multiple network switches is complex due to constraints like memory limitations and processing

accuracy. This paper proposes a novel, network-wide solution for detecting Heavy Hitters (HH), moving beyond the single-

switch approaches found in previous research. In contrast, the new strategy introduces two algorithms to enhance detection.

The first algorithm leverages the P4 programming language to identify the local Top-k heavy flows at individual P4-enabled

switches. The second algorithm employs dynamic thresholding to efficiently combine the Top-k lists from multiple switches,

creating a centralized, coordinated network-wide detection system. The proposed system was rigorously tested in an SDN

environment utilizing P4 switches. The results show that it achieves a high detection accuracy (95%-100%) while using only

10KB of memory per programmable switch. Furthermore, the approach outperforms existing state-of-the-art methods, providing

higher accuracy and lower error rates with minimal memory usage.

Keywords: Software-defined networking security, heavy-hitter detection, P4 switch, network monitoring, space-saving,

sketches.

Received June 14, 2024; accepted October 14, 2024

https://doi.org/10.34028/iajit/22/1/4

1. Introduction

Traffic monitoring in networks is critical to maintaining

acceptable network Quality-Of-Service (QOS) [21, 32,

54]. Monitoring abnormal and deviated flow patterns is

crucial to support various applications such as load

balancing [33, 37], flow anomaly detection [25], and

traffic engineering [5]. Two basic types of suspicious

flows were focused on: The first type is elephant flows,

more accurately called heavy flows, which are

summarized as those in which the number of packets

exceeds a specific limit or consumes a more significant

amount of essential resources in the network. The

second type is a heavy changer, summarized inflows

that change significantly in volume or speed over a short

time interval. The previous two types are generally

referred to as Heavy Hitters (HH). Detecting HH helps

mitigate the effects of attacks such as superspreader [19,

46] and Distributed Denial of Service (DDoS) attacks

[1, 2, 40, 52]. Recent advancements in Software-

Defined Networking (SDN) networks utilizing

programmable switches [23] enable the execution of

simple mathematical operations and the application of

various algorithms to detect HH efficiently [4, 24, 45,

51].

With ever-increasing data packet size and flow

speed, current flow measurement and monitoring

approaches face the same three general challenges [18,

26]. Firstly, the switch memory is limited. Secondly,

processing large volumes of flows is difficult according

to the line rate. Thirdly, it is impossible to obtain

accurate measurements based on a single switch, so

Network-Wide Heavy-Hitters (NWHH) detection must

be supported [14, 15, 17, 30, 50]. In recent years, many

researchers have tried to study sketch-based streaming

solutions with the emergence of programmable switches

[6, 23]. Sketch is a data structure that uses limited

persistent memory to collect statistics about network

flows based on using several independent hash tables

and mathematical operations to estimate the size of

these flows. Sketch balances accuracy and resources

compared to previous sampling solutions [10, 47].

However, sketches can be burdened for tracking all

network flows, and it may be more efficient to focus on

the Top-k volume flows or Top-heavy flows instead [43,

28]. While previous research has primarily focused on

identifying prominent data streams within individual

switches, there is a growing imperative for network

https://doi.org/10.34028/iajit/22/1/4

36 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

administrators to extend their monitoring efforts to

encompass the broader network landscape. This need

becomes apparent in scenarios such as detecting port

scanners [22] and super-spreaders [52, 55], where their

activities could easily slip under the radar if traffic

surveillance remains confined to a single location.

Merely collecting the results from the nodes is

insufficient because huge data flows can easily result in

missed detections from multiple viewpoints. For

example, one can reduce the detection thresholds at each

switch. This will increase communication overheads.

Additionally, sampling techniques are very often used,

but accuracy is reduced, especially in high-traffic

networks [36, 38].

This research paper introduces a novel method to

deal with the NWHH problem in SDN based on two

basic algorithms. The first is the Space-Efficient

Algorithm (SEA), which uses the Top-k principle in the

switch to collect local statistics, and the second works

on the controller to merge local Top-k lists. Our

approach leverages the capabilities of P4-based

switches, which employ a programmable language

meticulously tailored to define the operational

characteristics of packet-forwarding devices. This

unique attribute of P4 empowers us with precise control

over the data plane. Building upon P4’s

programmability, we have developed an optimized and

highly efficient algorithm to identify the most

prominent HH within the network. Our innovative SEA

algorithm extends the HashPipe framework [28, 43],

enhancing memory efficiency and packet processing

capabilities. The SEA achieves this by introducing an

additional stage to the HashPipe structure. The initial

stage utilizes Filtering to verify the presence of a pre-

flow container to which an incoming data packet

belongs. This modified algorithm ensures improved

memory utilization by minimizing the duplicates and

the ability to process packets quickly, thus optimizing

overall performance.

Figure 1. Proposed strategy for detecting NWHH.

Furthermore, we introduce another algorithm that

facilitates the aggregation of Top-k HH lists from

multiple switches. This algorithm operates at the

coordinator level and dynamically adjusts the HH

threshold in proportion to the sizes of the most critical

flows within the network. Doing so effectively identifies

the general HH, enhancing the network’s visibility and

adaptability. Our research significantly advances HH

detection in SDN environments, improving memory

efficiency, multi-switch coordination, and real-time

responsiveness. These innovations pave the way for

more efficient network management and the timely

mitigation of network anomalies. Figure 1 illustrates a

general scenario of the full proposed system. It

implements the SEA algorithm on distributed

programmable switches that act as monitors throughout

the network. Each switch collects a local Top-k HH list

and sends it to the central coordinator (SDN controller).

The central coordinator uses a proposed merge

algorithm for aggregating and determining the threshold

value dynamically and derives a global HH list NWHH.

The previous research gaps can be summarized as

follows:

1. The inability to detect NWHH effectively.

2. Inefficient utilization of limited programmable

switch memory for accurate HH detection.

3. The need to manually determine the HH detection

threshold. In contrast to existing state-of-the-art

solutions, our approach excels with its ease of

implementation, improved memory efficiency, and

the ability to achieve higher accuracy with reduced

memory usage.

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 37

The key contributions of research in this paper are as

follows:

• SEA for programmable switches: we have devised an

innovative algorithm tailored to programmable

switches, an extension of the HashPipe algorithm.

This advancement involves incorporating an

additional stage within the HashPipe structure [43].

These additions serve to significantly enhance

memory efficiency while effectively addressing the

issue of data duplication.

• Multi-switch heavy flow collection and dynamic

detection: we have introduced a sophisticated

mechanism to collect heavy flows, representing the

Top-k lists, from all switches within the network.

Furthermore, we have implemented a dynamic

detection threshold that aids in identifying flows that

constitute the NWHH. This dynamic threshold

adjustment enhances the adaptability and precision of

our approach.

• Experimental validation and comparative analysis:

our research is substantiated through a

comprehensive implementation of P4 switches.

Furthermore, we have conducted a thorough

comparative analysis, benchmarking our solution

against the most recent and relevant research in the

field. This validation process underscores the

effectiveness and competitiveness of our proposed

methodology.

1.1. Background

In this section, we have defined the fundamental

research problem, which we can divide into two primary

areas: one related to determining the HH problem

(within one network switch) and another associated with

detecting the HH throughout the entire network NWHH.

1.1.1. Heavy Hitter in a Single Switch

Within the realm of data streams and the Top-k problem,

a HH denotes an element that exhibits the highest

occurrence within a specified stream window (interval

time). The Top-k problem involves identifying K

elements with the greatest frequencies or counts in a

dataset.

• Formal Definitions

• HH (threshold’s version): within a data stream, let

S represent the sequential arrival of

elements(packets), and fi denote the frequency

(flow size) of element i in the stream. An element

i qualifies as a HH if its flow size surpasses a

specified threshold, represented as ϕ · n, with n

being the total number of packets. Mathematically

fi≥ϕ n, here, ϕ determines the threshold for HH

[14].

• HH (Top-k version): identifying the Top-k flows

with the utmost flow size in the stream

characterizes the Top-k HH problem. This

challenge is commonly employed to pinpoint the

most noteworthy or recurrent items within a

defined context [29, 43]. The problem can be

formulated as:

• Given

• n: the total number of elements in the dataset.

• fi: the frequency of occurrence of element i in the

dataset.

• Objective

Identifying the Top-k flows by size (number of packets)

passing on the link. Let H be the set of Top-k flows:

H={f1, f2, . . . , fk} where f1≥f2≥ . . . ≥fK.

The challenge of Top-k revolves around pinpointing

K elements with the greatest frequency or count, and a

HH is characterized as a noteworthy element based on

its frequency within the specified context. Our objective

is to devise an algorithm that addresses the Top-k

problem by identifying HH or the K elements with the

highest frequencies.

1.1.2. Network-Wide Heavy Hitters

NWHH is a networking and traffic analysis term that

identifies the most notable or frequently occurring

elements throughout the entire network. In the realm of

network traffic, HH are commonly employed to denote

sources, destinations, or communication patterns that

substantially contribute to the overall traffic load on the

network.

• Formal Definitions

• Network traffics: pertains to the movement of data

packets or messages within a computer network.

It encompasses all digital communication and

interactions between devices within a specified

network, including computers, servers, routers,

and other network-enabled devices.

• NWHH: within the network, an element, be it a

source, destination, or communication pattern,

qualifies as a HH if its occurrence frequency in the

network traffic surpasses a specific threshold [14,

45]. The problem can be formulated as:

• Given

• Tint: Time interval.

• θH: A HH fraction related to the network size.

• P: The number of programmable switches

distributed at several monitoring points in the

network.

• SLi: A Top-k list collected from programmable

switch i. where 0<i<P.

• Objective

Merge all local HH lists SLi to get a global NWHH list.

The HH can be detected at the network level when the

38 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

size of this flow exceeds a general threshold that is

calculated dynamically. The grouping of similar flows

that pass through more than one switch is considered,

and these sizes will be combined. So, for each element

(flow) i in the network denoted as fi, it is regarded as a

NWHH if its frequency of occurrence exceeds the

threshold ϕ∗N. Mathematically: fi≥ϕ∗N.

The goal of identifying NWHH is to identify sources,

destinations, or communication patterns that

substantially impact the overall traffic within a network.

This data holds value for network administrators and

analysts as it aids in optimizing network performance,

detecting anomalies, and making well-informed

decisions regarding network resource allocation.

1.2. Organization of the Paper

The remaining parts of this paper are organized as

follows: Section 2 includes relevant research and the

state-of-the-art. Section 3 talks about the research

methodology, where the first part discusses the switch

algorithm, and the second part addresses the coordinator

(controller) algorithm. Section 4 includes the

implementation of the switch algorithm, the coordinator

algorithm, and our experiments with discussion. The

last section, 5, consists of the conclusion and the most

critical future proposals.

2. Related Work

In recent years, work has been done to find practical

solutions for detecting heavy flows HH. Some primitive

solutions relied on collecting statistics (samples of flows

at a specific frequency rate), as in NetFlow [10] and

sFlow [47], where the focus was on using limited

resources to obtain somewhat acceptable accuracy.

Numerous endeavors have been exerted to enhance the

efficiency of network measurement by refining sketch

algorithms [13, 16, 39]. In pursuing this objective, [12]

introduced the Count-Min-Sketch (CMS), a technique

to summarize data streams. The CMS mitigates hash

collisions by selecting the smallest value among

multiple counters to represent flow size. Regrettably,

when an elephant flow and a mouse flow are mapped to

the same bucket, the mouse flow tends to be

significantly overestimated. Several algorithms have

been devised to alleviate this issue by segregating

elephant flows from mouse flows [20, 57]. Some

research has focused on solutions to detect the HH

within a single switch only locally, without taking into

account the NWHH detection, as in algorithms based on

Sketch alike [9, 49, 50, 53]. These sketch algorithms

provide high accuracy using data structures with limited

memory. Still, the problem with these sketch-based

solutions is that they collect statistics on network flows.

Still, we need additional cache memory for reverse

recall and identifying the IDs (srcIP, dstIP) of flows that

are likely to be HH. The problem increases with the

possibility of duplicating and storing data of more than

one flow in one entry or register, and this is what we

solved by our structure, which maintains one entry for

each flow with direct storage of the flow ID and its

counter.

Other literature also focused on NWHH detection,

such as MV-Sketch [45], which works on the Majority

Vote Algorithm (MJRTY) principle to detect local

heavy flows. MV-Sketch algorithm optimizes memory

consumption by retaining heavy flows and evicting

mouse flows. Additionally, it solved the sketch’s lack of

reversibility. In cases where one elephant flow’s ID is

dropped from the sketch (because of collision), they

won’t be re-evaluated, resulting in underestimation

issues. MV-Sketch supports a NWHH detection

mechanism based on collecting many local MV-sketch

instances from several monitoring points. Then, form a

final list that can be considered a global MV-Sketch of

the NWHH. Research such as [19, 20, 50] and the

Count-Min-Sketch Network-Wide Heavy-Hitters

(CMS-NWHH) approach [14] proposed a solution to

detect distributed HH using the CMS+cache algorithm

to collect local flows in programmable switches. Here,

we may need additional memory for backward retrieval

but may lose some accuracy due to collision in the CMS

structure. This CMS-NWHH research uses a NWHH

detection mechanism by integrating several local HH

lists and estimating a dynamic general threshold for

wide-HH detection.

Our SEA algorithm architecture, which uses specific

memory and maintains a lower collision rate, has

addressed Sketch problems (collisions, backward

retrieval). Inter-Packet Gap (IPG) [50] tried thinking out

of the box using the IPG principle to detect heavy flows.

IPG follows Heavy-Keeper’s [51] strategy for detecting

NWHH by using the mechanism of merging local heavy

flow lists by the controller. Still, it depends on the type

of stream flows used to obtain acceptable accuracy. Liu

et al. [29], Li et al. [27], Zhou and Qian and [56] have

tried to develop multi-tasking architectures, which store

statistics about total flows in the network to be used at a

later time to detect HH, DDoS, and super-spreader

attacks.

3. Proposed Methodology

This section is separated into two main parts. The first

deals with the programmable switch and the proposed

algorithm for the switch, which solves the duplicate

problem and uses the space-saving principle. The

second part deals with the coordinator algorithm and the

mechanism for collecting Top-k lists from all

programmable switches. The coordinator uses a

dynamic threshold mechanism to combine and show the

final global HH list.

3.1. Single Switch Algorithm for Detecting HH

This part introduces an innovative real-time algorithm

designed to gather the Top-k flows traversing a one P4-

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 39

switch. Our approach leverages the foundation of

principles of the space-saving algorithm [11]. We

extend the HashPipe [43] algorithm by incorporating a

streamlined filtering mechanism to enhance its efficacy.

This augmentation addresses issues related to duplicate

data and significantly optimizes memory utilization.

3.1.1. Space Saving Technique

Space-saving entails an algorithm rooted in counter-

based techniques, wherein merely k counters are

deployed to monitor k-heavy flows. This innovative

approach achieves the utmost economy in memory

utilization while preserving a predetermined level of

accuracy. This holds true in theoretical considerations

[31], practical and real-world evaluations [11]. The

space-saving algorithm, noteworthy for its ability to

update just one counter per incoming packet, introduces

the challenge of efficiently locating the item with the

minimum counter value within the table. Regrettably,

conventional methods such as exhaustive table scanning

with each packet arrival or the swift identification of the

minimum value in the table are not inherently supported

by emerging programmable hardware. Furthermore,

maintaining data structures like sorted linked lists [31]

or priority queues [42] necessitates multiple memory

accesses. This constraint must be managed within the

confines of per-packet time constraints.

3.1.2. Multistage Hashpipe Algorithm

The algorithm offers a solution to minimize redundant

packet processing within the switch pipeline, employing

two fundamental concepts. Firstly, it employs a strategy

of tracking a continuous minimum value. Packets

progress by multi-pipeline; we keep tabs on the smallest

counter value encountered thus far, along with its

corresponding key. This information is seamlessly

transmitted as packet metadata as it travels through the

pipeline. Modern programmable switches permit the

utilization of such metadata to convey processing

outcomes between distinct pipeline stages. This

metadata can be recorded at any given stage and

subsequently employed for packet matching at a later

point [43]. During the packet’s journey through the

pipeline, the switch performs hashing operations based

on the carried key (metadata key) at each stage rather

than hashing based on the key corresponding to the

incoming packet. If a match occurs in the table or the

matched stage slot is unoccupied, the slot or the slot’s

counter is updated directly, and the algorithm stops at

this point. Conversely, if there is no match, the keys and

count associated with the larger between the carried

counter (metadata counter) and the one in the slot (stage

input) are written back into the stage input, and the

smaller is retained in the metadata. The algorithm

leverages arithmetic and logical operations accessible in

the match-action tables of emerging switches to execute

the counter comparison. Depending on the packet’s

progress through the stages, the key may continue to the

next stage or be entirely removed from the tables when

it reaches the final stage.

Secondly, a consistent practice is adopted wherein

new flows are invariably inserted in the first stage. If the

incoming key is not found within the initial pipeline

stage, there is no associated counter value for

comparison with the key in that particular table.

Consequently, the decision is made to consistently insert

the new flow into the initial stage while simultaneously

relocating the existing key and counter stored in the

initial stage to the metadata. Following this stage, the

packet can effectively monitor the rolling minimum

value across subsequent stages using the above-

mentioned conventional method.

Figure 2. Multi-stages Hashpipe algorithm.

Figure 2 presents a straightforward illustration of the

algorithm, featuring three stages (d=3). At each stage,

an individual and autonomous hash function is applied,

with each hash table containing a list of paired entries in

the form of (key, count), each linked to a specific data

flow. In this example:

1. Upon the arrival of a new packet denoted as Q, the

H1 hash function is invoked.

2. This operation yields the retrieval of a record indexed

at (2). The presence of a conflict in this record

triggers the replacement of C with the incoming

packet (Q, 1).

3. Flow C and its associated count are subsequently

moved to the second stage, which is not empty in

index 1. Consequently, a comparison ensues between

C and G counters. The counter with the greater

magnitude, C, is retained within the second stage’s

hash table. At the same time, the data flow with the

smaller count is forwarded to the final stage.

4. This iterative process is reiterated in the third stage.

5. Finally, data flow L is purged from the data structure.

3.1.3. Space-Efficient Algorithm (SEA)

In reference to the Hashpipe algorithm, a significant

result of consistently assigning incoming keys to the

initial stage is the possibility of duplicate keys being

spread across multiple tables in the pipeline. This

situation arises because the key could reappear at the

last stage within the pipeline. Acknowledging that such

duplication is inevitable when packets follow a one-time

passage through the pipeline is essential. Consequently,

these duplicates might consume table space, reducing

the available slots for high-volume flows. This could, in

40 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

turn, lead to the eviction of these high-volume flows,

with their counts distributed among the duplicate

entries. Figure 3 explains the problem better, with the

arrival of a packet belonging to flow L. 1-It will be

inserted in the first stage in place of flow D. 2-then flow

D will be transferred with the same algorithm mentioned

previously. In the last stage, the flow will be divided into

an empty space, and the algorithm will stop. The

problem is that we will have two entries for the flow L

in the first and third stages, thus wasting memory

resources.

Figure 3. Multi-stages Hashpipe duplicates issue.

To address the persistent issue of duplicate data

within the context of our research, we propose

incorporating an additional stage, a filtering stage. This

filtering stage draws inspiration from the Bloom-Filter

algorithm [8, 44]. The filtering stage serves as the initial

point of evaluation, where the primary objective is to

ascertain whether an incoming packet corresponds to a

flow already present within the multi-stage data

structure. This process involves two distinct scenarios:

Firstly, the verification process returns (exist=1) when a

packet is linked with a flow already recorded at any

stage. If we get (exist=1), an exhaustive search ensues

within the following stages to pinpoint the entry of this

particular flow, subsequently incrementing its

respective counter. Secondly, if the incoming packet

corresponds to a new flow not stored previously in the

subsequent stages, the verification process returns

(exist=0). In these instances, we implement the same

Hashpipe algorithm previously outlined in section 3.1.2.

The main goal of our proposed space-efficient-

algorithm is to store the identifiers of the Top-k heaviest

flows and solve duplicates by ensuring one slot for each

flow. The algorithm works in two different scenarios.

The first scenario (exist=0) is shown in Figure 4:

1. When a packet with key L arrives. The filtering

process is applied by applying the hash tables

corresponding to each stage in our example (h1, h2,

h3) for the flow key to which the incoming packet

belongs, and upon detecting that there is no entry for

this flow in

2. The multistage data structure (where each stage is

linked to a separate register). Since this flow has no

entry at any stage, the value exist=0 will be returned.

3. If the value exist=0, The first hash function will be

calculated to give the value 3 in the first stage.

Therefore, if record 3 is not empty, the current input

[D, 8] will be replaced by the new flow input [L, 1]

(The value of the corresponding entry in the first

stage will always be replaced if exist=0).

4. The input [D, 8] will be moved to the second stage.

The h2 function will be applied but obtain “non-

empty” input. By comparing the “flow-D” counter

and “flow-H” counter, we will keep the flow with the

highest counter “flow-H” and move the smallest

counter flow-D to stage 3.

5. By repeating the previous step 3 and getting an empty

input, we will insert [D, 8] into this input.

Figure 4. SEA when incoming packet doesn’t belong to any existing

flow.

Figure 5. SEA when the incoming packet belongs to an existing

flow.

The second scenario is shown in Figure 5:

1. We obtain the value exist=1 in the filtering stage, and

therefore, the packet belongs to a flow previously

stored in the multi-stage data structure.

2. In our example, we find one input for flow M in stage

3. The counter is updated only by adding a value of 1

to the counter.

3. The algorithm stops when an entry for the flow is

found.

• Proposed Algorithm for Programmable Switch

Algorithm (1) shows the proposed syntax within the

programmable switch. For each incoming packet, the

flow key to which the packet belongs is calculated using

a 5-tuple, and the counter is initialized with 1 (lines 3-

4). After that, check whether the key was previously

stored in the multi-stage data structure (line 5). For each

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 41

stage in a multi-stage data structure, if exist=1, then the

identifier has a previously stored input. This input will

be searched in a stage, and the counter is incremented

directly using the SEAFilter function, which will return

the value 1 if there is a prior entry for the flow to which

the incoming packet belongs and 0 if no entry for the

flow is found in the multistage data structure (lines39-

48). If exist=0, input will be added to the new flow using

the insertToStage method (lines 7-13). The main

function MultiStage returns the Top-k list where K is the

size of the multi-stage data structure (stages.number

∗stage.length). The method insertToStage works for

each stage in a multi-stage data structure. If this input is

empty, the key for this flow with count=1 will be

inserted directly into this input (lines 20-24). If the input

is not empty, but the value of the following key equals

the key in the input “S[index].key=m.key,” then the

counter will be incremented by 1 directly (lines 25-28).

If the stage is the first stage and the corresponding input

is not empty and does not contain the same flow key.

The flow key will be inserted directly with the count=1

in the first stage (lines 29-32). If the input is not empty,

it is not the first stage, and the key value does not match.

The count for the portable flow will be compared with

the count at the input, the flow with the larger count will

be preserved, and the other flow Key will be transferred

to the next stage (lines 33-36).

Algorithm 1: Space Efficient Algorithm.

Input: [p1, p2, .., pr]-Packet stream within one interval time; Si-

Stage i Register; N-Number of stages; H[1..N]-List of hash

functions

Output: List of the local Top-k flows

m[key, count] ← [0, 0] ▷ Metadata carried values

Function MultiStage():

 for p in [p1, p2, ..pT] do

 m.key ← 5− tuple(p); m.count ← 1

 exist ← SEAFilter(m.key)

 if !(exist) then

 for i ← 1 to N do

 index ← Hi(m.key)

 if insertToStage(Si, index, i) then

 Break; ▷ End Process

 end

 i + +

 end

 end

end

 Top−k−list ← [S1, S2, ...SN]

 return Top−k−list

end

Function InsertToStage(S, index, num):

 if S[index] is empty then

 S[index].key ← m.key

 S[index].count ← m.count

 return 1; ▷ successfully insert

 end

 else if S[index].key = m.key then

 S[index].count ← S[index].count + m.count

 return 1: ▷ successfully insert

 end

 else if (num = 1) then

 Swap(m, S[index])

 return 0; ▷ move to next stage

 end

 else if S[index].count < m.count then

 Swap(m, S[index])

 return 0; ▷ move to next stage

 end

 return 0 ▷ End process

end

Function SEAFilter():

 for i ← 1 to N do

 index ← Hi(m.key)

 if S[index].key = m.key then

 S[index].count ← S[index].count + m.count

 return 1 ▷ End process

 end

 end

 return 0 ▷ End process

end

• Time Complexity

We can analyze the time complexity as follows:

• Function multistage: the loop iterates T times (once

for each packet). Inside another loop that iterates N

times (number of stages). Inside nested loops, the

function InsertToStage is called, which has a time

complexity of O(1) since hash table operations are

constant time. The time complexity of the loop is

O(T.N).

• Function InsertToStage: the hash table operations

(insertion, lookup, update) take constant time, O(1).

• Function SEAFilter: the function’s time complexity

is O(N) because iterates through the stages.

The algorithm’s overall time complexity is O(T.N),

Where N is the number of stages, and T is the number

of incoming packets within one interval.

• Space Complexity

The primary data structure that contributes to the space

complexity is the Multi-stage data structure, so the

overall space complexity of the algorithm is O(N · L),

where L is the length of the stage register (Si) and N is

the total number of stages.

3.2. Algorithm for Detecting Network-Wide HH

This section introduces an innovative algorithm

designed to aggregate Top-k lists from all

programmable switches within the network over a

designated time interval. Subsequently, these lists are

merged using a dynamic threshold mechanism to derive

the ultimate global HH flow list. This approach

addresses a problem previously outlined in section 3.2.

Each Top-k list can be viewed as a local HH list,

representing significant flows within individual

switches. The amalgamation of these lists, facilitated by

our proposed algorithm, yields a comprehensive global

HH list. The summation algorithm dynamically adjusts

42 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

the global threshold based on the aggregate flow sizes

within the local HH’s lists. Collecting local HH lists

from all programmable switches provides a holistic

perspective of critical flows consuming network

resources.

Figure 6. Interaction between P4-switches and coordinator for

NWHH’ detection.

In Figure 6, we illustrate the interaction between the

central coordinator, also referred to as the controller,

and network programmable switches distributed across

multiple locations in the network. The time dimension

is pivotal in this communication framework, with time

being discretized into specific intervals. At the

culmination of these time intervals, the controller

initiates a poll signal, prompting all programmable

switches to furnish their respective Top-k lists as in

Equation (1).

𝑆𝑈𝑀𝑡𝑜𝑡𝑎𝑙 = ∑

𝐶𝐿.𝑠𝑖𝑧𝑒

𝑖=1

𝑓𝑖

Where, Cl.size: global HH list Size, fi: flow i count

which collected in Global HH list CL.

The algorithm will consider flows whose size will be

estimated in more than one switch. A single flow can

pass through more than one programmable switch. The

controller estimates the global HH threshold ThGlobal,

after collecting all the local HH lists using in Equation

(2):

𝑇ℎ𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑆𝑈𝑀𝑡𝑜𝑡𝑎𝑙 ∗ 𝜃𝐻

Where, θH: heavy hitter fraction.

After that, the controller will collect flows whose size

exceeds the previous global threshold into the final

HH’s list and send this list as a report to the user (IT

manager). After that, a new time period will be started,

and all switch registers will be initialized.

3.2.1. Proposed Algorithm for Coordinator

(Controller)

Algorithm (2) presents the syntax proposed for the

coordinator. In this algorithm, the function

getCollectionFlowList is responsible for gathering the

Top-k lists from all programmable switches, assuming

there are P programmable switches. If a prior entry

exists for a flow, denoted as ‘f’ in the global HH list

‘CL,’ the new size will be aggregated with the

previously stored count for ‘f’ as illustrated in lines (6-

8). Should no prior entry be found for flow ‘f,’ a new

entry is generated for that specific flow, as outlined in

lines (9-12). The getFullSize method, detailed in lines

(15-19), estimates the network size, which is defined as

the sum of sizes for all local HH flows. The GetNHH

function relies on the size of the Network SUMtotal to

determine the threshold value dynamically. This method

iterates through all the flows collected using the

getCollectionFlowList function and adds flows whose

sizes surpass the threshold to the final HH list, as

depicted in lines (20-28).

Algorithm 2: Multi-Switch Heavy Flow Collection (Coordinator

Algorithm).

Input: P - Number of p4-switches, θH: Heavy Hitter fraction

 SLi : i(1..P) - p4-switch Top-k list

Output: HHL-Final NWHH list

CL ← [0, 0, ...0] ▷ List for collecting all SL

SUMtotal ← 0 ▷ To save the total traffic count.

Function getCollectionFlowList():

 for i ← 1 to P do

 for f in SLi do

 if f in CL then

 CL[f].count = Cl[f].count + f.count

 end

 else

 CL.add(f)

 end

 end

 end

end

Function getFullSize():

 for f in CL do

 SUMtotal + = f.count

 end

end

Function GetNHH():

 for f in CL do

 if f.count >= θH ∗ |SUMtotal | then

 HHL.add(f)

 end

 end

 ▷ return final NWHH

 return HHL;

end

The ultimate outcome of this algorithm is the

comprehensive NWHH list. It is imperative to highlight

that this algorithm operates at the end of each time

interval, delivering a report on the identified heavy-

hitter flows. This report serves as a crucial indicator,

allowing network administrators to take requisite

measures to mitigate the impact of these heavy flows on

the network’s overall performance. The potential

actions may encompass load-balancing strategies or the

selective dropping of suspicious flows designed to

(1)

(2)

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 43

safeguard network resources from anticipated or

ongoing attacks. By employing such a proactive

approach, this algorithm effectively fortifies the

network against potential threats, ensuring the robust

management of network resources and the overall

reliability of network operations.

• Time Complexity

We can assess the time complexity in the following

manner:

• Function getCollectionFlowList: the nested loop runs

P times for the outer loop and processes each flow in

SLi once. The operations inside the loop have

constant time (addition and updating counts in the

list). Therefore, the time complexity is

O(P.sizeof(SLi)).

• Function getFullSize: the loop runs over the

Collecting List (CL), and the operations inside the

loop are constant time. Therefore, the time

complexity is O(sizeof(CL)).

• Function GetNHH: the loop runs over CL, and the

operations inside the loop have constant time.

Therefore, the time complexity is O(sizeof(CL)).

• The function getCollectionFlowList dominates the

overall time complexity, so the algorithm’s time

complexity is O(P.size of SLi). The size of SLi (Top-

k list) is K, so the final complexity is O(P.K).

• Space Complexity

The CL is the primary data structure contributing to

space complexity. The space complexity is

O(sizeof(CL)) for storing the CL. Hence, the overall

space complexity of the algorithm is O(sizeof(CL)).

Note that the maximum size of CL is the switch number

multiplied by the length of SLi(Top-k list length).

4. Implementation and Evaluation

This section explains embedding our algorithm onto

programmable switches and controllers (coordinator).

Subsequently, we comprehensively elucidate the work

environment and dataset utilized. Finally, we

substantiate the efficacy of our algorithm by conducting

a series of empirical experiments, comparing its

performance with cutting-edge mechanisms in the field.

4.1. P4-Switch

Programmable switches in the data plane have been

employed to implement our algorithm. We utilized P4

and harnessed the capabilities of the P4 behavioural

model [34] to specify the functionality of P4 switches,

encompassing aspects like parsers, tables, actions,

ingress, and egress stages within the P4 pipeline. In P4-

enabled switches, registers serve as stateful memory

elements, allowing both read and write operations [58].

Broadly, our algorithm operates by implementing a

match-action stage within the switch pipeline for each

hash table. Within our algorithm, every match-action

stage includes a default action representing the

algorithm execution, which applies to every incoming

packet. Each stage employs unique P4 register arrays

tailored to the respective hash table. The register arrays

preserve flow identifiers and associated counts for

multi-stage data structures. Regarding hashing to

sample locations, the P4 behavioural model [34] allows

for the definition of custom hash functions. In our

approach, we utilize hash functions CRC32 [3] of the

form hi=(ai.x+bi)%p, where the selected ai and bi are

chosen to be co-prime, ensuring the independence of

hash functions across different stages. P is a large prime

number sufficient to minimize collisions and ensure the

effectiveness of the hi. To handle packet metadata for

tracking the current minimum, we store the values

retrieved from the registers within packet metadata. This

is necessary because direct condition testing on register

values isn’t feasible in P4. This approach enables us to

compute the minimum value between the carried key

and the key in the table before writing it back into the

registers. Additionally, packet metadata is vital in

conveying state information, such as exist value (0 or 1)

and the current minimum flow identifier and count,

from one stage to another.

4.2. Coordinator Implementation

We developed an initial version of the centralized

controller using Python. This controller can retrieve

register data from switches through the straightforward

switch CLI provided by the P4 behavioural model. The

controller receives Top-k lists from P4 switches at the

end of the time interval Tint. Subsequently, these Top-k

lists from all p4-switches are consolidated into a

comprehensive global CL. Ultimately, the controller

can detect the NWHH’s final list by applying the global

threshold ThGlobal. In order to prepare for a fresh round

of heavy-hitter detection, the controller resets all

registers in P4 switches.

4.3. Experiments Setup

In this part, we provided a detailed explanation of the

work environment, dataset, and benchmark.

4.3.1. Test-Bed and Environment

To carry out all experiments, we used a server with the

specifications: Intel Core i5-8300H, 4GB NVIDIA

GeForce GTX 1650, 8GB RAM, and (2Tera HDD-

512GB SSD). This PC runs Ubuntu 22.04. We opted for

Mininet [48] as our emulated network environment to

implement P4 switches that execute NWHH strategies.

To compile P4 code, we used the P4c tool [35], so the

compiling result is a JavaScript Object Notation (JSON)

document specifying the P4 switch’s behaviour,

including its parser, tables, and actions in the P4

pipeline. Subsequently, any P4 switch generated

44 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

following the behavioural model [34] loads this JSON

file. A Mininet topology is established to complete the

setup, interconnecting the P4 switches defined by their

behaviour. In our comparison, we used topology, which

consists of three interconnected switches, each linked to

a host, like the topology used by Ding et al. [15].

4.3.2. Datasets

Packet captures: We employ Center for Applied Internet

Data Analysis (CAIDA)’s anonymous internet captures

recorded on a 10-gigabit Ethernet link monitoring a

USA city in January 2019 [7]. Each minute of this

recorded data comprises roughly 64 million network

packets. What concerns us about these flows is only the

first minutes, as these flows will be divided according

to different windows time in proportion to the applied

experiments, as explained later. For example, windows

time will be chosen to take different packet numbers

(500, 10K, 100K, 150K, 300K, 400K, 500K...) within

one interval.

4.3.3. Metrics

• Precision (PR): the ratio of correctly identified heavy

flows to the total number of reported flows as in

Equation (3).

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Where True-Positive (TP) represents correctly

identified HH flows. False-Positive (FP): refers to non-

HH flows incorrectly detected as HH.

• Recall (R): the proportion of correctly identified

heavy flows in relation to the total number of actual

heavy flows as in Equation (4).

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Where FN (False Negative) indicates HH flows that are

incorrectly identified as non-HH.

• F1-score: the F1-score represents the harmonic

average of precision and recall. A higher F1-score,

closer to 1, indicates a better overall result as

Equation (5).

𝐹1 − 𝑆𝐶𝑂𝑅𝐸 =
2 ∗ 𝑅 ∗ 𝑃𝑅

𝑅 + 𝑃𝑅

• Throughput: is defined as the rate at which packets

are processed per second as Equation (6) measured in

packets per second (pkts/s).

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙_𝑁

𝑇𝑖𝑚𝑒

Where Total_N: total number of packets. Time:

progressing time.

4.3.4. Benchmark

This paper compares our solution SEA-NWHH with

several state-of-the-art solutions for detecting NWHH,

such as CMS-NWHH [15], which uses a structure for

switches. MV-Sketch [45] uses a new structure for

switches based on (majority vote algorithm). IPG [41]

is based on the principle of (inter-packet-gap).

Hashpipe-NWHH, we merged the standard Hashplipe

[43] algorithm with our coordinator algorithm. Table 1

shows our SEA algorithm’s main simulation parameters

and mechanisms compared to the state-of-the-art.

Table 1. The main simulation parameters and mechanisms for our

SEA lgorit and the state-of-the-art.

Mechanism SEA-NWHH CMS-NWHH MV-Sketch IPG

Switch

algorithm

SEA (multi

stage hashpipe
+filtering)

Count-min-
sketch+cash

for local

sample list

MV-Sketch-

invertible

sketch use
(majority vote

algorithm)

Heavy-

Keepr+IPG
mechanism

Memory
Rows∗column

s∗96

CMS (Ns∗Nh∗

32)+(sample

list size*32)

MV-Sketch

size

(R∗W∗(32+64

+32))

(M∗72), M:

Memory slots

number

Coordinator

mechanism

Merge multi-

Top-k lists
using dynamic

threshold

Merge multi-

sample lists
using dynamic

threshold

Merge muti

MV-Sketches
to large one

(global list)

Using Heavy-

Keeper
mechanism

[51]

4.4. Experiments and Results

In this subsection, we completed a number of

experiments, which first demonstrated the importance

of our algorithm for minimizing duplicates. We then

discussed the ability of our algorithm to detect the

NWHH with high accuracy. The last experiments

demonstrate the accuracy and effectiveness of our

algorithm and how to improve this accuracy using

different parameters.

4.4.1. Experiment 1 (Reduce Duplication Analysis)

Figure 7 illustrates the enhanced performance of our

SEA algorithm in mitigating duplicate occurrences

compared to the foundational HashPipe algorithm. As

depicted in Figure 7-a), augmenting the flow count over

time demonstrates minimal impact on the prevalence of

duplicates within the multi-stage data structure.

Notably, duplicates in HashPipe fluctuate between 50

and 70. In scenarios where the total memory allocation

for the multi-stage data structure is 10KB, the duplicate-

related overhead approaches 10% of the full memory

capacity. Conversely, our refined SEA algorithm

ensures that the memory loss attributable to duplicate

occurrences remains below 1%. Furthermore, Figure 7-

b) examines the ramifications of memory expansion,

whereby an increase in memory entails augmenting the

number of entries within each stage while maintaining a

constant number of stages (i.e., 4). Such memory

expansion substantially amplifies the incidence of

duplicates within the HashPipe algorithm. Conversely,

our SEA algorithm exhibits minimal susceptibility to

this effect by increasing the number of entries allocated

to statistics within each stage. This augmentation

enhances accuracy and mitigates the occurrence of false

negatives, as elaborated in the subsequent experiment.

(3)

(4)

(5)

(6)

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 45

a) Illustrates the impact of using fixed memory size on varying concurrent flow numbers

(using multi-window values).

b) Examines the effect of a fixed number of flows (400k) with varying memory volumes.

Figure 7. Comparison of duplicate occurrences between the standard

Hashpipe algorithm and our SEA algorithm.

4.4.2. Experiment 2 (SEA Algorithm Efficiency-

Comparing with Standard Hashpipe)

Figure 8 illustrates the efficacy of our SEA algorithm in

reducing false negatives and improving the F1-Score

compared to the HashPipe algorithm. As the memory

allocation for both algorithms increases, the number of

counters assigned to detect heavy flows also rises. In our

experimental setup, we aimed to identify the top 300

heavy flows (k=300). Figure 8-a) demonstrates that

increasing the memory allocation for our SEA algorithm

reduces false negatives by less than 5% when the

memory does not exceed 20K. Notably, our algorithm

exhibits significant improvement over the HashPipe

algorithm, which requires approximately 30K of

memory to achieve a false negative rate of less than 5%.

Furthermore, Figure 8-b) depicts the impact of memory

expansion on the F1-Score. To attain F1-Score

exceeding 95% with our SEA algorithm, a memory

allocation between 15K and 20K is required, whereas

the HashPipe algorithm necessitates over 25K of

memory to achieve a comparable F1-Score exceeding

95%.

a) Compare false-negative using (k=300, trace contains 400k flows) with increasing memory. b) F1-score using (k=300, trace contains 400k flows) with increasing memory.

Figure 8. Compare accuracy between (our SEA, standard Hashpipe).

4.4.3. Experiment 3 (Accuracy for Network-Wide-

HH Detection)

Figure 9 presents a comparative analysis of the accuracy

achieved by five NWHH strategies: Our SEA-NWHH,

Hashpipe-NWHH, IPG, CMS-NWHH, and MV-

Sketch. The study considers various flow sizes while

maintaining a fixed memory allocation of 10KB and a

suitable threshold to detect 80 to 90 HH. The results

depicted in Figure 9-a) indicate a consistent decline in

accuracy across all five algorithms as the flow size

increases within a given network interval. Specifically,

Figure 9-a) illustrates that our algorithm achieves

superior F1-score values compared to its counterparts,

with scores ranging between (95%-100%). Notably, the

discrepancy between our algorithm and the closest

competitor, “HashPipe,” is evident. HashPipe

demonstrates commendable F1-score values, remaining

relatively unaffected by an increase in the number of

flows. Conversely, other algorithms exhibit accuracy

levels below 90% under the same memory constraint.

This discrepancy can be attributed to the unique

approach of our algorithm, which prioritizes the

retention of high-size flows while disregarding smaller

flows. Incorporating a filtering stage enhances memory

utilization efficiency. In contrast, algorithms such as

CMS and MV-Sketch maintain comprehensive network

statistics, necessitating additional memory to

accommodate sample lists. IPG, relying on probabilistic

principles grounded in flow packet gap calculations,

exhibits varying accuracy levels contingent upon traffic

type. Further analysis reveals that our proposed

network-wide strategy outperforms alternative

algorithms in terms of Recall and Precision values, as

evidenced in Figure 9-b) and (c). Our algorithm

consistently achieves Recall values ranging between

94% and 100%. Noteworthy improvements are also

observed in the modified HashPipe algorithm. By

implementing a Top-k strategy within the switch, this

algorithm effectively collects statistical data for local

heavy flows while discarding less significant

microflows. This is evident from the Precision values,

which closely approach ideal levels for our strategy.

46 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

a) F1-score comparison.

b) Recall comparison.

c) Precision comparison.

Figure 9. Accuracy comparison between (our Top-k NHH, MV-

Sketch, IPG, CMS-NWHH) using multi concurrent traffic and fix-

memory (10KB).

4.4.4. Experiment 4 (Memory Efficiency for

Network-Wide HH Detection)

Figure 10 illustrates the impact of allocated memory on

each switch for five algorithms, where increased

memory size generally correlates with enhanced

accuracy. Specifically, Figure 10-a) highlights the

augmentation of F1-Score values with escalating

memory allocation, underscoring the supremacy of our

SEA-NWHH algorithm, particularly evident with

memory exceeding 5KB. Notably, F1-Score values

surpass the 98%-100% threshold following a memory

allocation of 10KB. This enhancement is attributed to

the augmented number of records per stage facilitated

by increased memory, thereby bolstering the accuracy

of hash tables and augmenting the capacity to

accommodate additional flows. Consequently, the

probability of retaining heavy flows within a multi-stage

data structure is heightened. It is noteworthy that as

mem-ory allocation surpasses 20KB, the accuracy of all

five algorithms converges towards exceeding 95%.

Figure 10-b) and (c) show the same results with slight

differences for the Recall and Precision values, which

approach 99% as memory increases. Our algorithm has

some superiority over the CMS-NWHH algorithm with

the value of Recall when the reserved memory size

exceeds 15KB. The IPG algorithm is close to the results

of our algorithm for Precision.

a) F1-score comparison.

b) Recall comparison.

c) Precision comparison.

Figure 10. Accuracy comparison between (our Top-k NHH, MV-

Sketch, IPG, CMS- NWHH) using fix traffic size and multi memory

size.

4.4.5. Experiment 5 (SEA Performance and

Accuracy Analysis)

Figure 11-a) depicts the variation in false-negative rates

concerning the number of heavier flows to be detected

(K). We explored three K values (100, 200, 300) across

incremental total memory allocations. It is evident that

false negatives diminish with augmented memory size.

However, to achieve high accuracy and maintain a false-

negative rate below 5% for detecting the top 100 heavy

flows, a total memory allocation of 10K proves

sufficient. Detecting the top 200 or 300 HH necessitates

a total memory allocation ranging between (30KB-

35KB). Figure 11-b) elucidates how the negative rate is

influenced by the number of inputs at each stage within

a multistage data structure, with varying numbers of

Top-k heavy flows targeted for detection. We examined

four values for the number of inputs associated with

each stage (m): 500, 750, 1000, and 1250. Notably,

augmenting the number of inputs at each stage augments

the accuracy of heavy flow detection. Therefore, the

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 47

desired increase in heavy flows to be detected must

align with the number of inputs at each stage to ensure

high accuracy and a reduced false-negative rate.

Figure 12 presents the impact of augmenting the

number of stages and the number of inputs in each stage

on switch performance. Notably, it is observed that

augmenting the number of inputs (m) exerts minimal

influence on switch performance, evidenced by a

convergence in values across a range of 10 to 1000

inputs per stage. Conversely, increasing the number of

stages notably impacts switch performance and speed.

As the number of stages increases, throughput values

decrease, consequently reducing the number of packets

processed within a specific interval. Furthermore, it is

noted that maintaining high accuracy is achievable by

augmenting the number of entries in each stage and

adding a fixed, albeit small, number of stages. This

approach ensures acceptable accuracy levels while

adhering to memory constraints.

a) Compare false-negative using multi k value (k=100, k=200, k=300).

b) Compare false-negative using multi number of inputs per {500, 750, 1000, 1250}.

Figure 11. The effect of changing the number of detected HH (k) and

the capacity of each stage (m).

Figure 12. The effect of changing the number of stages [d] and the

number of inputs per stages [m] on programmable switches

throughput when applied SEA.

5. Conclusions and Future Work

This research proposes a new paradigm for NWHH

detection in SDN environments. By leveraging P4-

based switches, the proposed switch algorithm extends

from the HashPipe framework, greatly enhancing

memory efficiency and packet processing speed. This

enhancement optimizes network performance while

enabling real-time responsiveness in detecting Top-k

HH.

Furthermore, this research developed a novel

algorithm for coordinators that used a dynamic

threshold to collect NWHH and achieve high network

visibility and adaptiveness. The proposed approach

differs in the ease of its deployment, much enhanced

memory efficiency, and higher accuracy with lower

requirements on memory resources compared to state-

of-the-art solutions. This research contributes

summarized in three key areas: developing a SEA for

programmable switches, introducing a dynamic multi-

switch coordination mechanism for heavy flow

detection, and providing comprehensive experimental

validation and comparative analysis. These

advancements offer a more efficient and scalable

approach to managing network traffic and mitigating

potential anomalies in real time.

In future research, work can be done to suggest

mechanisms to mitigate the communication overhead

between switches and the central coordinator. Future

work can also study programmable switch deployment

at only strategic positions within the network instead of

a full-scale deployment used in this work, further

optimizing performance by doing better resource usage.

References

[1] Alhaj A. and Dutta N., Contemporary Issues in

Communication, Cloud and Big Data Analytics,

Springer, 2022.

https://link.springer.com/chapter/10.1007/978-

981-16-4244-9_3

[2] Alhaj A., Patel N., Singh A., Bondugula R., Dar

M., and Ahamed J., “Design and Analysis of a

Robust Security Layer for Software Defined

Network Framework,” International Journal of

Sensor Networks, vol. 46, no. 1, pp. 1-14, 2024.

https://doi.org/10.1504/IJSNET.2024.141613

[3] Bale A., Yadav K., Alam M., Shrivastava A.,

Varma R., Solanki R., and Savadatti M., “An

Intelligent 64-bit Parallel CRC for High-Speed

Communication System Applications,”

International Journal of Intelligent Systems and

Applications in Engineering, vol. 11, no. 10s, pp.

543-551, 2023.

https://www.ijisae.org/index.php/IJISAE/article/v

iew/3310

[4] Basat R., Chen X., Einziger G., and Rottenstreich

O., “Designing Heavy-Hitter Detection

Algorithms for Programmable Switches,”

IEEE/ACM Transactions on Networking, vol. 28,

no. 3, pp. 1172-1185, 2020.

https://link.springer.com/chapter/10.1007/978-981-16-4244-9_3
https://link.springer.com/chapter/10.1007/978-981-16-4244-9_3
https://doi.org/10.1504/IJSNET.2024.141613
https://www.ijisae.org/index.php/IJISAE/article/view/3310
https://www.ijisae.org/index.php/IJISAE/article/view/3310

48 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

https://doi.org/10.1109/TNET.2020.2982739

[5] Benson T., Anand A., Akella A., and Zhang M.,

“MicroTE: Fine Grained Traffic Engineering for

Data Centers,” in Proceedings of the 7th

Conference on Emerging Networking

Experiments and Technologies, Tokyo, pp. 1-12,

2011. https://doi.org/10.1145/2079296.2079304

[6] Bosshart P., Gibb G., Kim H., Varghese G.,

McKeown N., Izzard M., Mujica F., and Horowitz

M., “Forwarding Metamorphosis: Fast

Programmable Match-Action Processing in

Hardware for SDN,” ACM SIGCOMM Computer

Communication Review, vol. 43, no. 4, pp. 99-110,

2013. https://doi.org/10.1145/2534169.2486011

[7] CAIDA: The CAIDA Anonymized Internet

Traces Dataset,

https://data.caida.org/datasets/passive-2019, Last

Visited, 2024.

[8] Chabchoub Y., Fricker C., and Mohamed H.,

“Analysis of a Bloom Filter Algorithm Via the

Supermarket Model,” in Proceedings of the 21st

International Teletraffic Congress, Paris, pp. 1-8,

2009.

https://ieeexplore.ieee.org/document/5300252

[9] Cheng X., Jing X., Yan Z., Li X., Wang P., and

Wu W., “Alsketch: An Adaptive Learning-Based

Sketch for Accurate Network Measurement under

Dynamic Traffic Distribution,” Journal of

Network and Computer Applications, vol. 216, pp.

103659, 2023.

https://doi.org/10.1016/j.jnca.2023.103659

[10] Claise B., “Cisco Systems Netflow Services

Export Version 9,” Technical Report, 2004.

https://www.rfc-

editor.org/rfc/pdfrfc/rfc3954.txt.pdf

[11] Cormode G. and Hadjieleftheriou M., “Finding

Frequent Items in Data Streams,” in Proceedings

of the VLDB Endowment, vol. 1, no. 2, pp. 1530-

1541, 2008.

https://doi.org/10.14778/1454159.1454225

[12] Cormode G. and Muthukrishnan S., “An

Improved Data Stream Summary: The Count-Min

Sketch and its Applications,” Journal of

Algorithms, vol. 55, no. 1, pp. 58-75, 2005.

https://doi.org/10.1016/j.jalgor.2003.12.001

[13] Cormode G. and Muthukrishnan S., “What’s New:

Finding Significant Differences in Network Data

Streams,” IEEE/ACM Transactions on

Networking, vol. 13, no. 6, pp. 1219-1232, 2005.

DOI:10.1109/TNET.2005.860096

[14] Ding D., Savi M., Antichi G., and Siracusa D.,

“An Incrementally-Deployable P4-Enabled

Architecture for Network-Wide Heavy-Hitter

Detection,” IEEE Transactions on Network and

Service Management, vol. 17, no. 1, pp. 75-88,

2020. DOI:10.1109/TNSM.2020.2968979

[15] Ding D., Savi M., Pederzolli F., and Siracusa D.,

“Design and Development of Net-Work

Monitoring Strategies in P4-Enabled

Programmable Switches,” in Proceedings of the

NOMS IEEE/IFIP Network Operations and

Management Symposium, Budapest, pp. 1-6,

2022. DOI:10.1109/NOMS54207.2022.9789848

[16] Fu Y., Li D., Shen S., Zhang Y., and Chen K.,

“Clustering-Preserving Net-Work Flow

Sketching,” in Proceedings of the INFOCOM

IEEE Conference on Computer Communications,

Toronto, pp. 1309-1318, 2020.

DOI:10.1109/INFOCOM41043.2020.9155388

[17] Harrison R., Cai Q., Gupta A., and Rexford J.,

“Network-Wide Heavy Hitter Detection with

Commodity Switches,” in Proceedings of the

Symposium on SDN Research, Los Angeles, pp. 1-

7, 2018. https://doi.org/10.1145/3185467.318547

[18] Hu J., Min G., Jia W., and Woodward M.,

“Comprehensive QoS Analysis of Enhanced

Distributed Channel Access in Wireless Local

Area Networks,” Information Sciences, vol. 214,

pp. 20-34, 2012.

https://doi.org/10.1016/j.ins.2012.05.013

[19] Huang Q., Jin X., Lee P., Li R., Tang L., Chen Y.,

and Zhang G., “Sketchvisor: Robust Network

Measurement for Software Packet Processing,” in

Proceedings of the Conference of the ACM

Special Interest Group on Data Communication,

Los Angeles, pp. 113-126, 2017.

https://doi.org/10.1145/3098822.3098831

[20] Huang Q., Lee P., and Bao Y., “Sketchlearn:

Relieving User Burdens in Approximate

Measurement with Automated Statistical

Inference,” in Proceedings of the Conference of

the ACM Special Interest Group on Data

Communication, Budapest, pp. 576-590, 2018.

https://doi.org/10.1145/3230543.3230559

[21] Islam M., Al-Mukhtar M., Khan M., and Hossain

M., “A Survey on SDN and SDCN Traffic

Measurement: Existing Approaches and Research

Challenges,” Eng, vol. 4, no. 2, pp. 1071-1115,

2023. https://doi.org/10.3390/eng4020063

[22] Jung J., Paxson V., Berger A., and Balakrishnan

H., “Fast Portscan Detection Using Sequential

Hypothesis Testing,” in Proceedings of the IEEE

Symposium on Security and Privacy, Proceedings,

Berkeley, pp. 211-225, 2004.

DOI:10.1109/SECPRI.2004.1301325

[23] Kfoury E., Crichigno J., and Bou-Harb E., “An

Exhaustive Survey on P4 Programmable Data

Plane Switches: Taxonomy, Applications,

Challenges, and Future Trends,” IEEE Access,

vol. 9, pp. 87094-87155, 2021.

DOI:10.1109/ACCESS.2021.3086704

[24] Kucera J., Popescu D., Wang H., Moore A.,

Korenek J., and Antichi G., “Enabling Event-

Triggered Data Plane Monitoring,” in

Proceedings of the Symposium on SDN Research,

San Jose, pp. 14-26, 2020.

https://doi.org/10.1109/TNET.2020.2982739
https://doi.org/10.1145/2079296.2079304
https://doi.org/10.1145/2534169.2486011
https://data.caida.org/datasets/passive-2019
https://ieeexplore.ieee.org/document/5300252
https://doi.org/10.1016/j.jnca.2023.103659
https://www.rfc-editor.org/rfc/pdfrfc/rfc3954.txt.pdf
https://www.rfc-editor.org/rfc/pdfrfc/rfc3954.txt.pdf
https://doi.org/10.14778/1454159.1454225
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1109/TNET.2005.860096
https://doi.org/10.1109/TNSM.2020.2968979
https://doi.org/10.1109/NOMS54207.2022.9789848
https://doi.org/10.1109/INFOCOM41043.2020.9155388
https://doi.org/10.1145/3185467.318547
https://doi.org/10.1016/j.ins.2012.05.013
https://doi.org/10.1145/3098822.3098831
https://doi.org/10.1145/3230543.3230559
https://doi.org/10.3390/eng4020063
https://doi.org/10.1109/SECPRI.2004.1301325
https://doi.org/10.1109/ACCESS.2021.3086704

A Novel Space-Efficient Method for Detecting Network-Wide Heavy Hitters in ... 49

https://doi.org/10.1145/3373360.3380830

[25] Lakhina A., Crovella M., and Diot C.,

“Diagnosing Network-Wide Traffic Anomalies,”

ACM SIGCOMM Computer Communication

Review, vol. 34, no. 4, pp. 219-230, 2004.

https://doi.org/10.1145/1030194.1015492

[26] Li H., Ota K., and Dong M., “LS-SDV: Virtual

Network Management in Large-Scale Software-

Defined IoT,” IEEE Journal on Selected Areas in

Communications, vol. 37, no. 8, pp. 1783-1793,

2019. DOI:10.1109/JSAC.2019.2927099

[27] Li L., Xie K., Pei S., Wen J., Liang W., and Xie

G., “CS-Sketch: Compressive Sensing Enhanced

Sketch for Full Traffic Measurement,” IEEE

Transactions on Network Science and

Engineering, vol. 11, no. 3, pp. 2338-2352, 2024.

DOI:10.1109/TNSE.2023.3305125

[28] Lin Y., Huang C., and Tsai S., “SDN Soft

Computing Application for Detecting Heavy

Hitters,” IEEE Transactions on Industrial

Informatics, vol. 15, no. 10, pp. 5690-5699, 2019.

DOI:10.1109/TII.2019.2909933

[29] Liu L., Ding T., Feng H., Yan Z., and Lu X., “Tree

Sketch: An Accurate and Memory-Efficient

Sketch for Network-Wide Measurement,”

Computer Communications, vol. 194, pp. 148-

155, 2022.

https://doi.org/10.1016/j.comcom.2022.07.009

[30] Liu Z., Manousis A., Vorsanger G., Sekar V., and

Braverman V., “One Sketch to Rule them all:

Rethinking Network Flow Monitoring with

UnivMon,” in Proceedings of the ACM

SIGCOMM Conference, Florianopolis, pp. 101-

114, 2016.

https://doi.org/10.1145/2934872.2934906

[31] Metwally A., Agrawal D., and El Abbadi A.,

“Efficient Computation of Frequent and Top-k

Elements in Data Streams,” in Proceedings of the

10th International Conference on Database

Theory, Edinburgh, pp. 398-412, 2005.

https://link.springer.com/chapter/10.1007/978-3-

540-30570-5_27

[32] Najm M., Patra M., and Tamarapalli V., “Cost-

and-Delay Aware Dynamic Resource Allocation

in Federated Vehicular Clouds,” IEEE

Transactions on Vehicular Technology, vol. 70,

no. 6, pp. 6159-6171, 2021.

DOI:10.1109/TVT.2021.3079912

[33] Najm M., Tripathi R., Alhakeem M., and

Tamarapalli V., “A Cost-Aware Management

Framework for Placement of Data-Intensive

Applications on Federated Cloud,” Journal of

Network and Systems Management, vol. 29, pp. 1-

33, 2021.

https://link.springer.com/article/10.1007/s10922-

021-09594-9

[34] P4 Language Consortium: P4 Switch Behavioral

Model, https://github.com/p4lang/behavioral-

model, Last Visited, 2024.

[35] P4lang Consortium: P4C,

https://github.com/p4lang/p4c, Last Visited, 2024.

[36] Phaal P. and Panchen S., Packet Sampling Basics,

https://sflow.org/, Last Visited, 2024.

[37] Prabakaran S. and Ramar R., “Software Defined

Network: Load Balancing Algorithm Design and

Analysis,” The International Arab Journal of

Information Technology, vol. 18, no. 3, pp. 312-

318, 2021. https://doi.org/10.34028/iajit/18/3/7

[38] Ran D., Chen X., and Song L., “ComPipe: A

Novel Flow Placement and Measurement

Algorithm for Programmable Composite

Pipelines,” Electronics, vol. 13, no. 6, pp. 1-19,

2024.

https://doi.org/10.3390/electronics13061022

[39] Roy P., Khan A., and Alonso G., “Augmented

Sketch: Faster and more Accurate Stream

Processing,” in Proceedings of the International

Conference on Management of Data, San

Francisco, pp. 1449-1463, 2016.

https://doi.org/10.1145/2882903.2882948

[40] Singh A., “Machine Learning in OpenFlow

Network: Comparative Analysis of DDoS

Detection Techniques,” The International Arab

Journal of Information Technology, vol. 18, no. 2,

pp. 221-226, 2021.

https://doi.org/10.34028/iajit/18/2/11

[41] Singh S., Rothenberg C., Luizelli M., Antichi G.,

Gomes P., and Pongracz G., “HH-IPG:

Leveraging Inter-Packet Gap Metrics in P4

Hardware for Heavy Hitter Detection,” IEEE

Transactions on Network and Service

Management, vol. 20, no. 3, pp. 3536-3548, 2023.

DOI:10.1109/TNSM.2022.3227065

[42] Sivaraman A., Subramanian S., Alizadeh M.,

Chole S., Chuang S., Agrawal A., Balakrishnan

H., Edsall T., Katti S., and McKeown N.,

“Programmable Packet Scheduling at Line Rate,”

in Proceedings of the ACM SIGCOMM

Conference, Florianopolis, pp. 44-57, 2016.

https://doi.org/10.1145/2934872.2934899

[43] Sivaraman V., Narayana S., Rottenstreich O.,

Muthukrishnan S., and Rexford J., “Heavy-Hitter

Detection Entirely in the Data Plane,” in

Proceedings of the Symposium on SDN Research,

Santa Clara, pp. 164-176, 2017.

https://doi.org/10.1145/3050220.3063772

[44] Song H., Dharmapurikar S., Turner J., and

Lockwood J., “Fast Hash Table Lookup Using

Extended Bloom Filter: An Aid to Network

Processing,” ACM SIGCOMM Computer

Communication Review, vol. 35, no. 4, pp. 181-

192, 2005.

https://doi.org/10.1145/1090191.1080114

[45] Tang L., Huang Q., and Lee P., “A Fast and

Compact Invertible Sketch for Network-Wide

Heavy Flow Detection,” IEEE/ACM Transactions

https://doi.org/10.1145/3373360.3380830
https://doi.org/10.1145/1030194.1015492
https://doi.org/10.1109/JSAC.2019.2927099
https://doi.org/10.1109/TNSE.2023.3305125
https://doi.org/10.1109/TII.2019.2909933
https://doi.org/10.1016/j.comcom.2022.07.009
https://doi.org/10.1145/2934872.2934906
https://link.springer.com/chapter/10.1007/978-3-540-30570-5_27
https://link.springer.com/chapter/10.1007/978-3-540-30570-5_27
https://doi.org/10.1109/TVT.2021.3079912
https://link.springer.com/article/10.1007/s10922-021-09594-9
https://link.springer.com/article/10.1007/s10922-021-09594-9
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/p4c
https://sflow.org/
https://doi.org/10.34028/iajit/18/3/7
https://doi.org/10.3390/electronics13061022
https://doi.org/10.1145/2882903.2882948
https://doi.org/10.34028/iajit/18/2/11
https://doi.org/10.1109/TNSM.2022.3227065
https://doi.org/10.1145/2934872.2934899
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/1090191.1080114

50 The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025

on Networking, vol. 28, no. 5, pp. 2350-2363,

2020. DOI:10.1109/TNET.2020.3011798

[46] Tang L., Huang Q., and Lee P., “SpreadSketch:

Toward Invertible and Network-Wide Detection

of Superspreaders,” in Proceedings of the IEEE

INFOCOM IEEE Conference on Computer

Communications, Toronto, pp. 1608-1617, 2020.

DOI:10.1109/INFOCOM41043.2020.9155541

[47] Wang M., Li B., and Li Z., “sFlow: Towards

Resource-Efficient and Agile Service Federation

in Service Overlay Networks,” in Proceedings of

the 24th International Conference on Distributed

Computing Systems, Proceedings, Tokyo, pp.

628-635, 2004.

DOI:10.1109/ICDCS.2004.1281630

[48] Xiang Z. and Seeling P., Computing in

Communication Networks, from Theory to

Practice, Elsevier, 2020.

https://doi.org/10.1016/B978-0-12-820488-

7.00025-6

[49] Xiao Q., Cai X., Qin Y., Tang Z., Chen S., and Liu

Y., “Universal and Accurate Sketch for Estimating

Heavy Hitters and Moments in Data Streams,”

IEEE/ACM Transactions on Networking, vol. 31,

no. 5, pp. 1919-1934, 2023.

DOI:10.1109/TNET.2022.3216025

[50] Yang T., Jiang J., Liu P., Huang Q., Gong J., Zhou

Y., Miao R., Li X., and Uhlig S., “Elastic Sketch:

Adaptive and Fast Network-Wide

Measurements,” in Proceedings of the Conference

of the ACM Special Interest Group on Data

Communication, Budapest, pp. 561-575, 2018.

https://doi.org/10.1145/3230543.3230544

[51] Yang T., Zhang H., Li J., Gong J., Uhlig S., Chen

S., and Li X., “HeavyKeeper: An Accurate

Algorithm for Finding Top-k Elephant Flows,”

IEEE/ACM Transactions on Networking, vol. 27,

no. 5, pp. 1845-1858, 2019.

https://doi.org/10.1109/TNET.2019.2933868

[52] Yu M., Jose L., and Miao R., “Software

{Defined}{Traffic} Measurement with

{OpenSketch},” in Proceedings of the 10th

USENIX Symposium on Networked Systems

Design and Implementation, Lombard, pp. 29-42,

2013.

https://dl.acm.org/doi/10.5555/2482626.2482631

[53] Zhang Q., Xiao Q., and Cai Y., “A Generic Sketch

for Estimating Super-Spreaders and Per-Flow

Cardinality Distribution in High-Speed Data

Streams,” Computer Networks, vol. 237, pp.

110059, 2023.

https://doi.org/10.1016/j.comnet.2023.110059

[54] Zhang X., Wang D., Ota K., Dong M., and Li H.,

“Exponential Stability of Mixed Time-Delay

Neural Networks Based on Switching

Approaches,” IEEE Transactions on Cybernetics,

vol. 52, no. 2, pp. 1125-1137, 2020.

DOI:10.1109/TCYB.2020.2985777

[55] Zhang Z., Lu J., Ren Q., Li Z., Hu Y., and Chen

H., “An Accurate and Invertible Sketch for Super

Spread Detection,” Electronics, vol. 13, no. 1, pp.

1-20, 2024.

https://doi.org/10.3390/electronics13010222

[56] Zhou A. and Qian J., “An Adaptive Method for

Identifying Super Nodes from Network-Wide

View,” Journal of Network and Systems

Management, vol. 31, pp. 1-28, 2023.

https://link.springer.com/article/10.1007/s10922-

023-09745-0

[57] Zhou Y., Alipourfard O., Yu M., and Yang T.,

“Accelerating Network Measurement in

Software,” ACM SIGCOMM Computer

Communication Review, vol. 48, no. 3, pp. 2-12,

2018. https://doi.org/10.1145/3276799.327680

[58] Zhu H., Wang T., Hong Y., Ports D., Sivaraman

A., and Jin X., “{NetVRM}: Virtual Register

Memory for Programmable Networks,” in

Proceedings of the 19th USENIX Symposium on

Networked Systems Design and Implementation,

Renton, pp. 155-170, 2022.

https://nyuscholars.nyu.edu/en/publications/netvr

m-virtual-register-memory-for-programmable-

networks

Ali Alhaj is a dedicated PhD scholar

at the University of Hyderabad from

2021. He holds an MTech in Cyber

Security from Marwadi University,

India, awarded in 2021, and a BTech

in Systems and Networks from

Tishreen University, Syria, conferred

in 2018.

Wilson Bhukya is an Associate

Professor at the School of Computer

and Information Sciences, University

of Hyderabad. Qualification: Ph.D.

from University of Hyderabad.

MTech in computer sciences, JNTU.

Rajendra Lal is an Assistant

Professor at the School of Computer

and Information Sciences, University

of Hyderabad. Qualification: 2013

Ph.D. from Utkal University.

https://doi.org/10.1109/TNET.2020.3011798
https://doi.org/10.1109/INFOCOM41043.2020.9155541
https://doi.org/10.1109/ICDCS.2004.1281630
https://doi.org/10.1016/B978-0-12-820488-7.00025-6
https://doi.org/10.1016/B978-0-12-820488-7.00025-6
https://doi.org/10.1109/TNET.2022.3216025
https://doi.org/10.1145/3230543.3230544
https://doi.org/10.1109/TNET.2019.2933868
https://dl.acm.org/doi/10.5555/2482626.2482631
https://doi.org/10.1016/j.comnet.2023.110059
https://doi.org/10.1109/TCYB.2020.2985777
https://doi.org/10.3390/electronics13010222
https://link.springer.com/article/10.1007/s10922-023-09745-0
https://link.springer.com/article/10.1007/s10922-023-09745-0
https://doi.org/10.1145/3276799.327680
https://nyuscholars.nyu.edu/en/publications/netvrm-virtual-register-memory-for-programmable-networks
https://nyuscholars.nyu.edu/en/publications/netvrm-virtual-register-memory-for-programmable-networks
https://nyuscholars.nyu.edu/en/publications/netvrm-virtual-register-memory-for-programmable-networks

