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Abstract: Software-Defined Networking (SDN) is a dynamic, programmable approach that enables centralized control and has 

become essential in modern networking environments such as data centers, Internet Service Providers (ISPs), and emerging 5G 

applications. A critical challenge within SDN environments is detecting and managing “heavy hitters” high-traffic flows often 

associated with malicious activities like Distributed Denial of Service (DDoS) attacks or real-time data-intensive applications. 

Identifying these flows across multiple network switches is complex due to constraints like memory limitations and processing 

accuracy. This paper proposes a novel, network-wide solution for detecting Heavy Hitters (HH), moving beyond the single-

switch approaches found in previous research. In contrast, the new strategy introduces two algorithms to enhance detection. 

The first algorithm leverages the P4 programming language to identify the local Top-k heavy flows at individual P4-enabled 

switches. The second algorithm employs dynamic thresholding to efficiently combine the Top-k lists from multiple switches, 

creating a centralized, coordinated network-wide detection system. The proposed system was rigorously tested in an SDN 

environment utilizing P4 switches. The results show that it achieves a high detection accuracy (95%-100%) while using only 

10KB of memory per programmable switch. Furthermore, the approach outperforms existing state-of-the-art methods, providing 

higher accuracy and lower error rates with minimal memory usage. 
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1. Introduction 

Traffic monitoring in networks is critical to maintaining 

acceptable network Quality-Of-Service (QOS) [21, 32, 

54]. Monitoring abnormal and deviated flow patterns is 

crucial to support various applications such as load 

balancing [33, 37], flow anomaly detection [25], and 

traffic engineering [5]. Two basic types of suspicious 

flows were focused on: The first type is elephant flows, 

more accurately called heavy flows, which are 

summarized as those in which the number of packets 

exceeds a specific limit or consumes a more significant 

amount of essential resources in the network. The 

second type is a heavy changer, summarized inflows 

that change significantly in volume or speed over a short 

time interval. The previous two types are generally 

referred to as Heavy Hitters (HH). Detecting HH helps 

mitigate the effects of attacks such as superspreader [19, 

46] and Distributed Denial of Service (DDoS) attacks 

[1, 2, 40, 52]. Recent advancements in Software-

Defined Networking (SDN) networks utilizing 

programmable switches [23] enable the execution of 

simple mathematical operations and the application of 

various algorithms to detect HH efficiently [4, 24, 45, 

 
51]. 

With ever-increasing data packet size and flow 

speed, current flow measurement and monitoring 

approaches face the same three general challenges [18, 

26]. Firstly, the switch memory is limited. Secondly, 

processing large volumes of flows is difficult according 

to the line rate. Thirdly, it is impossible to obtain 

accurate measurements based on a single switch, so 

Network-Wide Heavy-Hitters (NWHH) detection must 

be supported [14, 15, 17, 30, 50]. In recent years, many 

researchers have tried to study sketch-based streaming 

solutions with the emergence of programmable switches 

[6, 23]. Sketch is a data structure that uses limited 

persistent memory to collect statistics about network 

flows based on using several independent hash tables 

and mathematical operations to estimate the size of 

these flows. Sketch balances accuracy and resources 

compared to previous sampling solutions [10, 47]. 

However, sketches can be burdened for tracking all 

network flows, and it may be more efficient to focus on 

the Top-k volume flows or Top-heavy flows instead [43, 

28]. While previous research has primarily focused on 

identifying prominent data streams within individual 

switches, there is a growing imperative for network 
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administrators to extend their monitoring efforts to 

encompass the broader network landscape. This need 

becomes apparent in scenarios such as detecting port 

scanners [22] and super-spreaders [52, 55], where their 

activities could easily slip under the radar if traffic 

surveillance remains confined to a single location. 

Merely collecting the results from the nodes is 

insufficient because huge data flows can easily result in 

missed detections from multiple viewpoints. For 

example, one can reduce the detection thresholds at each 

switch. This will increase communication overheads. 

Additionally, sampling techniques are very often used, 

but accuracy is reduced, especially in high-traffic 

networks [36, 38]. 

This research paper introduces a novel method to 

deal with the NWHH problem in SDN based on two 

basic algorithms. The first is the Space-Efficient 

Algorithm (SEA), which uses the Top-k principle in the 

switch to collect local statistics, and the second works 

on the controller to merge local Top-k lists. Our 

approach leverages the capabilities of P4-based 

switches, which employ a programmable language 

meticulously tailored to define the operational 

characteristics of packet-forwarding devices. This 

unique attribute of P4 empowers us with precise control 

over the data plane. Building upon P4’s 

programmability, we have developed an optimized and 

highly efficient algorithm to identify the most 

prominent HH within the network. Our innovative SEA 

algorithm extends the HashPipe framework [28, 43], 

enhancing memory efficiency and packet processing 

capabilities. The SEA achieves this by introducing an 

additional stage to the HashPipe structure. The initial 

stage utilizes Filtering to verify the presence of a pre-

flow container to which an incoming data packet 

belongs. This modified algorithm ensures improved 

memory utilization by minimizing the duplicates and 

the ability to process packets quickly, thus optimizing 

overall performance. 

 

Figure 1. Proposed strategy for detecting NWHH. 

Furthermore, we introduce another algorithm that 

facilitates the aggregation of Top-k HH lists from 

multiple switches. This algorithm operates at the 

coordinator level and dynamically adjusts the HH 

threshold in proportion to the sizes of the most critical 

flows within the network. Doing so effectively identifies 

the general HH, enhancing the network’s visibility and 

adaptability. Our research significantly advances HH 

detection in SDN environments, improving memory 

efficiency, multi-switch coordination, and real-time 

responsiveness. These innovations pave the way for 

more efficient network management and the timely 

mitigation of network anomalies. Figure 1 illustrates a 

general scenario of the full proposed system. It 

implements the SEA algorithm on distributed 

programmable switches that act as monitors throughout 

the network. Each switch collects a local Top-k HH list 

and sends it to the central coordinator (SDN controller). 

The central coordinator uses a proposed merge 

algorithm for aggregating and determining the threshold 

value dynamically and derives a global HH list NWHH. 

The previous research gaps can be summarized as 

follows:  

1. The inability to detect NWHH effectively. 

2. Inefficient utilization of limited programmable 

switch memory for accurate HH detection. 

3. The need to manually determine the HH detection 

threshold. In contrast to existing state-of-the-art 

solutions, our approach excels with its ease of 

implementation, improved memory efficiency, and 

the ability to achieve higher accuracy with reduced 

memory usage. 
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The key contributions of research in this paper are as 

follows: 

• SEA for programmable switches: we have devised an 

innovative algorithm tailored to programmable 

switches, an extension of the HashPipe algorithm. 

This advancement involves incorporating an 

additional stage within the HashPipe structure [43]. 

These additions serve to significantly enhance 

memory efficiency while effectively addressing the 

issue of data duplication. 

• Multi-switch heavy flow collection and dynamic 

detection: we have introduced a sophisticated 

mechanism to collect heavy flows, representing the 

Top-k lists, from all switches within the network. 

Furthermore, we have implemented a dynamic 

detection threshold that aids in identifying flows that 

constitute the NWHH. This dynamic threshold 

adjustment enhances the adaptability and precision of 

our approach. 

• Experimental validation and comparative analysis: 

our research is substantiated through a 

comprehensive implementation of P4 switches. 

Furthermore, we have conducted a thorough 

comparative analysis, benchmarking our solution 

against the most recent and relevant research in the 

field. This validation process underscores the 

effectiveness and competitiveness of our proposed 

methodology. 

1.1. Background 

In this section, we have defined the fundamental 

research problem, which we can divide into two primary 

areas: one related to determining the HH problem 

(within one network switch) and another associated with 

detecting the HH throughout the entire network NWHH. 

1.1.1. Heavy Hitter in a Single Switch 

Within the realm of data streams and the Top-k problem, 

a HH denotes an element that exhibits the highest 

occurrence within a specified stream window (interval 

time). The Top-k problem involves identifying K 

elements with the greatest frequencies or counts in a 

dataset. 

• Formal Definitions 

• HH (threshold’s version): within a data stream, let 

S represent the sequential arrival of 

elements(packets), and fi denote the frequency 

(flow size) of element i in the stream. An element 

i qualifies as a HH if its flow size surpasses a 

specified threshold, represented as ϕ · n, with n 

being the total number of packets. Mathematically 

fi≥ϕ n, here, ϕ determines the threshold for HH 

[14]. 

• HH (Top-k version): identifying the Top-k flows 

with the utmost flow size in the stream 

characterizes the Top-k HH problem. This 

challenge is commonly employed to pinpoint the 

most noteworthy or recurrent items within a 

defined context [29, 43]. The problem can be 

formulated as: 

• Given 

• n: the total number of elements in the dataset. 

• fi: the frequency of occurrence of element i in the 

dataset. 

• Objective 

Identifying the Top-k flows by size (number of packets) 

passing on the link. Let H be the set of Top-k flows: 

H={f1, f2, . . . , fk} where f1≥f2≥ . . . ≥fK. 

The challenge of Top-k revolves around pinpointing 

K elements with the greatest frequency or count, and a 

HH is characterized as a noteworthy element based on 

its frequency within the specified context. Our objective 

is to devise an algorithm that addresses the Top-k 

problem by identifying HH or the K elements with the 

highest frequencies. 

1.1.2. Network-Wide Heavy Hitters 

NWHH is a networking and traffic analysis term that 

identifies the most notable or frequently occurring 

elements throughout the entire network. In the realm of 

network traffic, HH are commonly employed to denote 

sources, destinations, or communication patterns that 

substantially contribute to the overall traffic load on the 

network. 

• Formal Definitions 

• Network traffics: pertains to the movement of data 

packets or messages within a computer network. 

It encompasses all digital communication and 

interactions between devices within a specified 

network, including computers, servers, routers, 

and other network-enabled devices. 

• NWHH: within the network, an element, be it a 

source, destination, or communication pattern, 

qualifies as a HH if its occurrence frequency in the 

network traffic surpasses a specific threshold [14, 

45]. The problem can be formulated as: 

• Given 

• Tint: Time interval. 

• θH: A HH fraction related to the network size. 

• P: The number of programmable switches 

distributed at several monitoring points in the 

network. 

• SLi: A Top-k list collected from programmable 

switch i. where 0<i<P. 

• Objective 

Merge all local HH lists SLi to get a global NWHH list. 

The HH can be detected at the network level when the 
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size of this flow exceeds a general threshold that is 

calculated dynamically. The grouping of similar flows 

that pass through more than one switch is considered, 

and these sizes will be combined. So, for each element 

(flow) i in the network denoted as fi, it is regarded as a 

NWHH if its frequency of occurrence exceeds the 

threshold ϕ∗N. Mathematically: fi≥ϕ∗N. 

The goal of identifying NWHH is to identify sources, 

destinations, or communication patterns that 

substantially impact the overall traffic within a network. 

This data holds value for network administrators and 

analysts as it aids in optimizing network performance, 

detecting anomalies, and making well-informed 

decisions regarding network resource allocation. 

1.2. Organization of the Paper 

The remaining parts of this paper are organized as 

follows: Section 2 includes relevant research and the 

state-of-the-art. Section 3 talks about the research 

methodology, where the first part discusses the switch 

algorithm, and the second part addresses the coordinator 

(controller) algorithm. Section 4 includes the 

implementation of the switch algorithm, the coordinator 

algorithm, and our experiments with discussion. The 

last section, 5, consists of the conclusion and the most 

critical future proposals. 

2. Related Work 

In recent years, work has been done to find practical 

solutions for detecting heavy flows HH. Some primitive 

solutions relied on collecting statistics (samples of flows 

at a specific frequency rate), as in NetFlow [10] and 

sFlow [47], where the focus was on using limited 

resources to obtain somewhat acceptable accuracy. 

Numerous endeavors have been exerted to enhance the 

efficiency of network measurement by refining sketch 

algorithms [13, 16, 39]. In pursuing this objective, [12] 

introduced the Count-Min-Sketch (CMS), a technique 

to summarize data streams. The CMS mitigates hash 

collisions by selecting the smallest value among 

multiple counters to represent flow size. Regrettably, 

when an elephant flow and a mouse flow are mapped to 

the same bucket, the mouse flow tends to be 

significantly overestimated. Several algorithms have 

been devised to alleviate this issue by segregating 

elephant flows from mouse flows [20, 57]. Some 

research has focused on solutions to detect the HH 

within a single switch only locally, without taking into 

account the NWHH detection, as in algorithms based on 

Sketch alike [9, 49, 50, 53]. These sketch algorithms 

provide high accuracy using data structures with limited 

memory. Still, the problem with these sketch-based 

solutions is that they collect statistics on network flows. 

Still, we need additional cache memory for reverse 

recall and identifying the IDs (srcIP, dstIP) of flows that 

are likely to be HH. The problem increases with the 

possibility of duplicating and storing data of more than 

one flow in one entry or register, and this is what we 

solved by our structure, which maintains one entry for 

each flow with direct storage of the flow ID and its 

counter. 

Other literature also focused on NWHH detection, 

such as MV-Sketch [45], which works on the Majority 

Vote Algorithm (MJRTY) principle to detect local 

heavy flows. MV-Sketch algorithm optimizes memory 

consumption by retaining heavy flows and evicting 

mouse flows. Additionally, it solved the sketch’s lack of 

reversibility. In cases where one elephant flow’s ID is 

dropped from the sketch (because of collision), they 

won’t be re-evaluated, resulting in underestimation 

issues. MV-Sketch supports a NWHH detection 

mechanism based on collecting many local MV-sketch 

instances from several monitoring points. Then, form a 

final list that can be considered a global MV-Sketch of 

the NWHH. Research such as [19, 20, 50] and the 

Count-Min-Sketch Network-Wide Heavy-Hitters 

(CMS-NWHH) approach [14] proposed a solution to 

detect distributed HH using the CMS+cache algorithm 

to collect local flows in programmable switches. Here, 

we may need additional memory for backward retrieval 

but may lose some accuracy due to collision in the CMS 

structure. This CMS-NWHH research uses a NWHH 

detection mechanism by integrating several local HH 

lists and estimating a dynamic general threshold for 

wide-HH detection.  

Our SEA algorithm architecture, which uses specific 

memory and maintains a lower collision rate, has 

addressed Sketch problems (collisions, backward 

retrieval). Inter-Packet Gap (IPG) [50] tried thinking out 

of the box using the IPG principle to detect heavy flows. 

IPG follows Heavy-Keeper’s [51] strategy for detecting 

NWHH by using the mechanism of merging local heavy 

flow lists by the controller. Still, it depends on the type 

of stream flows used to obtain acceptable accuracy. Liu 

et al. [29], Li et al. [27], Zhou and Qian and [56] have 

tried to develop multi-tasking architectures, which store 

statistics about total flows in the network to be used at a 

later time to detect HH, DDoS, and super-spreader 

attacks. 

3. Proposed Methodology 

This section is separated into two main parts. The first 

deals with the programmable switch and the proposed 

algorithm for the switch, which solves the duplicate 

problem and uses the space-saving principle. The 

second part deals with the coordinator algorithm and the 

mechanism for collecting Top-k lists from all 

programmable switches. The coordinator uses a 

dynamic threshold mechanism to combine and show the 

final global HH list. 

3.1. Single Switch Algorithm for Detecting HH 

This part introduces an innovative real-time algorithm 

designed to gather the Top-k flows traversing a one P4-
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switch. Our approach leverages the foundation of 

principles of the space-saving algorithm [11]. We 

extend the HashPipe [43] algorithm by incorporating a 

streamlined filtering mechanism to enhance its efficacy. 

This augmentation addresses issues related to duplicate 

data and significantly optimizes memory utilization. 

3.1.1. Space Saving Technique 

Space-saving entails an algorithm rooted in counter-

based techniques, wherein merely k counters are 

deployed to monitor k-heavy flows. This innovative 

approach achieves the utmost economy in memory 

utilization while preserving a predetermined level of 

accuracy. This holds true in theoretical considerations 

[31], practical and real-world evaluations [11]. The 

space-saving algorithm, noteworthy for its ability to 

update just one counter per incoming packet, introduces 

the challenge of efficiently locating the item with the 

minimum counter value within the table. Regrettably, 

conventional methods such as exhaustive table scanning 

with each packet arrival or the swift identification of the 

minimum value in the table are not inherently supported 

by emerging programmable hardware. Furthermore, 

maintaining data structures like sorted linked lists [31] 

or priority queues [42] necessitates multiple memory 

accesses. This constraint must be managed within the 

confines of per-packet time constraints. 

3.1.2. Multistage Hashpipe Algorithm 

The algorithm offers a solution to minimize redundant 

packet processing within the switch pipeline, employing 

two fundamental concepts. Firstly, it employs a strategy 

of tracking a continuous minimum value. Packets 

progress by multi-pipeline; we keep tabs on the smallest 

counter value encountered thus far, along with its 

corresponding key. This information is seamlessly 

transmitted as packet metadata as it travels through the 

pipeline. Modern programmable switches permit the 

utilization of such metadata to convey processing 

outcomes between distinct pipeline stages. This 

metadata can be recorded at any given stage and 

subsequently employed for packet matching at a later 

point [43]. During the packet’s journey through the 

pipeline, the switch performs hashing operations based 

on the carried key (metadata key) at each stage rather 

than hashing based on the key corresponding to the 

incoming packet. If a match occurs in the table or the 

matched stage slot is unoccupied, the slot or the slot’s 

counter is updated directly, and the algorithm stops at 

this point. Conversely, if there is no match, the keys and 

count associated with the larger between the carried 

counter (metadata counter) and the one in the slot (stage 

input) are written back into the stage input, and the 

smaller is retained in the metadata. The algorithm 

leverages arithmetic and logical operations accessible in 

the match-action tables of emerging switches to execute 

the counter comparison. Depending on the packet’s 

progress through the stages, the key may continue to the 

next stage or be entirely removed from the tables when 

it reaches the final stage. 

Secondly, a consistent practice is adopted wherein 

new flows are invariably inserted in the first stage. If the 

incoming key is not found within the initial pipeline 

stage, there is no associated counter value for 

comparison with the key in that particular table. 

Consequently, the decision is made to consistently insert 

the new flow into the initial stage while simultaneously 

relocating the existing key and counter stored in the 

initial stage to the metadata. Following this stage, the 

packet can effectively monitor the rolling minimum 

value across subsequent stages using the above-

mentioned conventional method. 

 

Figure 2. Multi-stages Hashpipe algorithm. 

Figure 2 presents a straightforward illustration of the 

algorithm, featuring three stages (d=3). At each stage, 

an individual and autonomous hash function is applied, 

with each hash table containing a list of paired entries in 

the form of (key, count), each linked to a specific data 

flow. In this example: 

1. Upon the arrival of a new packet denoted as Q, the 

H1 hash function is invoked. 

2. This operation yields the retrieval of a record indexed 

at (2). The presence of a conflict in this record 

triggers the replacement of C with the incoming 

packet (Q, 1). 

3. Flow C and its associated count are subsequently 

moved to the second stage, which is not empty in 

index 1. Consequently, a comparison ensues between 

C and G counters. The counter with the greater 

magnitude, C, is retained within the second stage’s 

hash table. At the same time, the data flow with the 

smaller count is forwarded to the final stage. 

4. This iterative process is reiterated in the third stage. 

5. Finally, data flow L is purged from the data structure. 

3.1.3. Space-Efficient Algorithm (SEA) 

In reference to the Hashpipe algorithm, a significant 

result of consistently assigning incoming keys to the 

initial stage is the possibility of duplicate keys being 

spread across multiple tables in the pipeline. This 

situation arises because the key could reappear at the 

last stage within the pipeline. Acknowledging that such 

duplication is inevitable when packets follow a one-time 

passage through the pipeline is essential. Consequently, 

these duplicates might consume table space, reducing 

the available slots for high-volume flows. This could, in 
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turn, lead to the eviction of these high-volume flows, 

with their counts distributed among the duplicate 

entries. Figure 3 explains the problem better, with the 

arrival of a packet belonging to flow L. 1-It will be 

inserted in the first stage in place of flow D. 2-then flow 

D will be transferred with the same algorithm mentioned 

previously. In the last stage, the flow will be divided into 

an empty space, and the algorithm will stop. The 

problem is that we will have two entries for the flow L 

in the first and third stages, thus wasting memory 

resources. 

 

Figure 3. Multi-stages Hashpipe duplicates issue. 

To address the persistent issue of duplicate data 

within the context of our research, we propose 

incorporating an additional stage, a filtering stage. This 

filtering stage draws inspiration from the Bloom-Filter 

algorithm [8, 44]. The filtering stage serves as the initial 

point of evaluation, where the primary objective is to 

ascertain whether an incoming packet corresponds to a 

flow already present within the multi-stage data 

structure. This process involves two distinct scenarios: 

Firstly, the verification process returns (exist=1) when a 

packet is linked with a flow already recorded at any 

stage. If we get (exist=1), an exhaustive search ensues 

within the following stages to pinpoint the entry of this 

particular flow, subsequently incrementing its 

respective counter. Secondly, if the incoming packet 

corresponds to a new flow not stored previously in the 

subsequent stages, the verification process returns 

(exist=0). In these instances, we implement the same 

Hashpipe algorithm previously outlined in section 3.1.2. 

The main goal of our proposed space-efficient-

algorithm is to store the identifiers of the Top-k heaviest 

flows and solve duplicates by ensuring one slot for each 

flow. The algorithm works in two different scenarios. 

The first scenario (exist=0) is shown in Figure 4: 

1. When a packet with key L arrives. The filtering 

process is applied by applying the hash tables 

corresponding to each stage in our example (h1, h2, 

h3) for the flow key to which the incoming packet 

belongs, and upon detecting that there is no entry for 

this flow in 

2. The multistage data structure (where each stage is 

linked to a separate register). Since this flow has no 

entry at any stage, the value exist=0 will be returned. 

3. If the value exist=0, The first hash function will be 

calculated to give the value 3 in the first stage. 

Therefore, if record 3 is not empty, the current input 

[D, 8] will be replaced by the new flow input [L, 1] 

(The value of the corresponding entry in the first 

stage will always be replaced if exist=0). 

4. The input [D, 8] will be moved to the second stage. 

The h2 function will be applied but obtain “non-

empty” input. By comparing the “flow-D” counter 

and “flow-H” counter, we will keep the flow with the 

highest counter “flow-H” and move the smallest 

counter flow-D to stage 3. 

5. By repeating the previous step 3 and getting an empty 

input, we will insert [D, 8] into this input. 

 

Figure 4. SEA when incoming packet doesn’t belong to any existing 

flow. 

 

Figure 5. SEA when the incoming packet belongs to an existing 

flow. 

The second scenario is shown in Figure 5: 

1. We obtain the value exist=1 in the filtering stage, and 

therefore, the packet belongs to a flow previously 

stored in the multi-stage data structure. 

2. In our example, we find one input for flow M in stage 

3. The counter is updated only by adding a value of 1 

to the counter. 

3. The algorithm stops when an entry for the flow is 

found. 

• Proposed Algorithm for Programmable Switch 

Algorithm (1) shows the proposed syntax within the 

programmable switch. For each incoming packet, the 

flow key to which the packet belongs is calculated using 

a 5-tuple, and the counter is initialized with 1 (lines 3-

4). After that, check whether the key was previously 

stored in the multi-stage data structure (line 5). For each 
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stage in a multi-stage data structure, if exist=1, then the 

identifier has a previously stored input. This input will 

be searched in a stage, and the counter is incremented 

directly using the SEAFilter function, which will return 

the value 1 if there is a prior entry for the flow to which 

the incoming packet belongs and 0 if no entry for the 

flow is found in the multistage data structure (lines39-

48). If exist=0, input will be added to the new flow using 

the insertToStage method (lines 7-13). The main 

function MultiStage returns the Top-k list where K is the 

size of the multi-stage data structure (stages.number 

∗stage.length). The method insertToStage works for 

each stage in a multi-stage data structure. If this input is 

empty, the key for this flow with count=1 will be 

inserted directly into this input (lines 20-24). If the input 

is not empty, but the value of the following key equals 

the key in the input “S[index].key=m.key,” then the 

counter will be incremented by 1 directly (lines 25-28). 

If the stage is the first stage and the corresponding input 

is not empty and does not contain the same flow key. 

The flow key will be inserted directly with the count=1 

in the first stage (lines 29-32). If the input is not empty, 

it is not the first stage, and the key value does not match. 

The count for the portable flow will be compared with 

the count at the input, the flow with the larger count will 

be preserved, and the other flow Key will be transferred 

to the next stage (lines 33-36). 

Algorithm 1: Space Efficient Algorithm. 

Input: [p1, p2, .., pr]-Packet stream within one interval time; Si-

Stage i  Register; N-Number of stages; H[1..N]-List of hash 

functions 

Output: List of the local Top-k flows 

 

m[key, count] ← [0, 0]   ▷ Metadata carried values 

Function MultiStage(): 

   for p in [p1, p2, ..pT ] do 

      m.key ← 5− tuple(p); m.count ← 1 

      exist ← SEAFilter(m.key) 

        if !(exist) then 

        for i ← 1 to N do 

          index ← Hi(m.key) 

           if insertToStage(Si, index, i) then 

          Break;   ▷ End Process 

       end 

      i + + 

    end 

  end 

end 

 Top−k−list ← [S1, S2, ...SN] 

 return Top−k−list 

end 

 

Function InsertToStage(S, index, num): 

  if S[index] is empty then 

     S[index].key ← m.key 

     S[index].count ← m.count 

     return 1;   ▷ successfully insert 

   end 

   else if S[index].key = m.key then 

      S[index].count ← S[index].count + m.count 

     return 1: ▷ successfully insert 

   end 

   else if (num = 1) then 

      Swap(m, S[index]) 

      return 0;   ▷ move to next stage 

  end 

   else if S[index].count < m.count then 

     Swap(m, S[index]) 

     return 0;    ▷ move to next stage 

   end 

 return 0 ▷ End process 

end 

 

Function SEAFilter(): 

     for i ← 1 to N do 

        index ← Hi(m.key) 

        if S[index].key = m.key then 

           S[index].count ← S[index].count + m.count 

         return 1     ▷ End process 

      end 

   end 

 return 0    ▷ End process 

end 

• Time Complexity 

We can analyze the time complexity as follows: 

• Function multistage: the loop iterates T times (once 

for each packet). Inside another loop that iterates N 

times (number of stages). Inside nested loops, the 

function InsertToStage is called, which has a time 

complexity of O(1) since hash table operations are 

constant time. The time complexity of the loop is 

O(T.N). 

• Function InsertToStage: the hash table operations 

(insertion, lookup, update) take constant time, O(1). 

• Function SEAFilter: the function’s time complexity 

is O(N) because iterates through the stages. 

The algorithm’s overall time complexity is O(T.N), 

Where N is the number of stages, and T is the number 

of incoming packets within one interval. 

• Space Complexity 

The primary data structure that contributes to the space 

complexity is the Multi-stage data structure, so the 

overall space complexity of the algorithm is O(N · L), 

where L is the length of the stage register (Si) and N is 

the total number of stages. 

3.2. Algorithm for Detecting Network-Wide HH 

This section introduces an innovative algorithm 

designed to aggregate Top-k lists from all 

programmable switches within the network over a 

designated time interval. Subsequently, these lists are 

merged using a dynamic threshold mechanism to derive 

the ultimate global HH flow list. This approach 

addresses a problem previously outlined in section 3.2. 

Each Top-k list can be viewed as a local HH list, 

representing significant flows within individual 

switches. The amalgamation of these lists, facilitated by 

our proposed algorithm, yields a comprehensive global 

HH list. The summation algorithm dynamically adjusts 
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the global threshold based on the aggregate flow sizes 

within the local HH’s lists. Collecting local HH lists 

from all programmable switches provides a holistic 

perspective of critical flows consuming network 

resources. 

 

Figure 6. Interaction between P4-switches and coordinator for 

NWHH’ detection. 

In Figure 6, we illustrate the interaction between the 

central coordinator, also referred to as the controller, 

and network programmable switches distributed across 

multiple locations in the network. The time dimension 

is pivotal in this communication framework, with time 

being discretized into specific intervals. At the 

culmination of these time intervals, the controller 

initiates a poll signal, prompting all programmable 

switches to furnish their respective Top-k lists as in 

Equation (1). 

𝑆𝑈𝑀𝑡𝑜𝑡𝑎𝑙  = ∑  

𝐶𝐿.𝑠𝑖𝑧𝑒

𝑖=1

𝑓𝑖 

Where, Cl.size: global HH list Size, fi: flow i count 

which collected in Global HH list CL. 

The algorithm will consider flows whose size will be 

estimated in more than one switch. A single flow can 

pass through more than one programmable switch. The 

controller estimates the global HH threshold ThGlobal, 

after collecting all the local HH lists using in Equation 

(2): 

𝑇ℎ𝐺𝑙𝑜𝑏𝑎𝑙 = 𝑆𝑈𝑀𝑡𝑜𝑡𝑎𝑙 ∗ 𝜃𝐻 

Where, θH: heavy hitter fraction. 

After that, the controller will collect flows whose size 

exceeds the previous global threshold into the final 

HH’s list and send this list as a report to the user (IT 

manager). After that, a new time period will be started, 

and all switch registers will be initialized. 

3.2.1. Proposed Algorithm for Coordinator 

(Controller) 

Algorithm (2) presents the syntax proposed for the 

coordinator. In this algorithm, the function 

getCollectionFlowList is responsible for gathering the 

Top-k lists from all programmable switches, assuming 

there are P programmable switches. If a prior entry 

exists for a flow, denoted as ‘f’ in the global HH list 

‘CL,’ the new size will be aggregated with the 

previously stored count for ‘f’ as illustrated in lines (6-

8). Should no prior entry be found for flow ‘f,’ a new 

entry is generated for that specific flow, as outlined in 

lines (9-12). The getFullSize method, detailed in lines 

(15-19), estimates the network size, which is defined as 

the sum of sizes for all local HH flows. The GetNHH 

function relies on the size of the Network SUMtotal to 

determine the threshold value dynamically. This method 

iterates through all the flows collected using the 

getCollectionFlowList function and adds flows whose 

sizes surpass the threshold to the final HH list, as 

depicted in lines (20-28). 

Algorithm 2: Multi-Switch Heavy Flow Collection (Coordinator 

Algorithm). 

Input: P - Number of p4-switches, θH: Heavy Hitter fraction 

  SLi : i(1..P ) - p4-switch Top-k list 

Output: HHL-Final NWHH list 

 

CL ← [0, 0, ...0]    ▷ List for collecting all SL 

SUMtotal ← 0       ▷ To save the total traffic count. 

 

Function getCollectionFlowList(): 

    for i ← 1 to P do 

       for f in SLi do 

         if f in CL then 

           CL[f].count = Cl[f].count + f.count 

        end 

        else 

         CL.add(f) 

       end 

     end 

  end 

end 

 

Function getFullSize(): 

    for f in CL do 

     SUMtotal + = f.count 

   end 

end 

 

Function GetNHH(): 

  for f in CL do 

      if f.count >= θH ∗ |SUMtotal | then 

        HHL.add(f) 

     end 

  end 

       ▷ return final NWHH 

 return HHL; 

end 

The ultimate outcome of this algorithm is the 

comprehensive NWHH list. It is imperative to highlight 

that this algorithm operates at the end of each time 

interval, delivering a report on the identified heavy-

hitter flows. This report serves as a crucial indicator, 

allowing network administrators to take requisite 

measures to mitigate the impact of these heavy flows on 

the network’s overall performance. The potential 

actions may encompass load-balancing strategies or the 

selective dropping of suspicious flows designed to 

(1) 

(2) 
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safeguard network resources from anticipated or 

ongoing attacks. By employing such a proactive 

approach, this algorithm effectively fortifies the 

network against potential threats, ensuring the robust 

management of network resources and the overall 

reliability of network operations. 

• Time Complexity 

We can assess the time complexity in the following 

manner: 

• Function getCollectionFlowList: the nested loop runs 

P times for the outer loop and processes each flow in 

SLi once. The operations inside the loop have 

constant time (addition and updating counts in the 

list). Therefore, the time complexity is 

O(P.sizeof(SLi)). 

• Function getFullSize: the loop runs over the 

Collecting List (CL), and the operations inside the 

loop are constant time. Therefore, the time 

complexity is O(sizeof(CL)). 

• Function GetNHH: the loop runs over CL, and the 

operations inside the loop have constant time. 

Therefore, the time complexity is O(sizeof(CL)). 

• The function getCollectionFlowList dominates the 

overall time complexity, so the algorithm’s time 

complexity is O(P.size of SLi). The size of SLi (Top-

k list) is K, so the final complexity is O(P.K). 

• Space Complexity 

The CL is the primary data structure contributing to 

space complexity. The space complexity is 

O(sizeof(CL)) for storing the CL. Hence, the overall 

space complexity of the algorithm is O(sizeof(CL)). 

Note that the maximum size of CL is the switch number 

multiplied by the length of SLi(Top-k list length). 

4. Implementation and Evaluation 

This section explains embedding our algorithm onto 

programmable switches and controllers (coordinator). 

Subsequently, we comprehensively elucidate the work 

environment and dataset utilized. Finally, we 

substantiate the efficacy of our algorithm by conducting 

a series of empirical experiments, comparing its 

performance with cutting-edge mechanisms in the field. 

4.1. P4-Switch 

Programmable switches in the data plane have been 

employed to implement our algorithm. We utilized P4 

and harnessed the capabilities of the P4 behavioural 

model [34] to specify the functionality of P4 switches, 

encompassing aspects like parsers, tables, actions, 

ingress, and egress stages within the P4 pipeline. In P4-

enabled switches, registers serve as stateful memory 

elements, allowing both read and write operations [58]. 

Broadly, our algorithm operates by implementing a 

match-action stage within the switch pipeline for each 

hash table. Within our algorithm, every match-action 

stage includes a default action representing the 

algorithm execution, which applies to every incoming 

packet. Each stage employs unique P4 register arrays 

tailored to the respective hash table. The register arrays 

preserve flow identifiers and associated counts for 

multi-stage data structures. Regarding hashing to 

sample locations, the P4 behavioural model [34] allows 

for the definition of custom hash functions. In our 

approach, we utilize hash functions CRC32 [3] of the 

form hi=(ai.x+bi)%p, where the selected ai and bi are 

chosen to be co-prime, ensuring the independence of 

hash functions across different stages. P is a large prime 

number sufficient to minimize collisions and ensure the 

effectiveness of the hi. To handle packet metadata for 

tracking the current minimum, we store the values 

retrieved from the registers within packet metadata. This 

is necessary because direct condition testing on register 

values isn’t feasible in P4. This approach enables us to 

compute the minimum value between the carried key 

and the key in the table before writing it back into the 

registers. Additionally, packet metadata is vital in 

conveying state information, such as exist value (0 or 1) 

and the current minimum flow identifier and count, 

from one stage to another. 

4.2. Coordinator Implementation 

We developed an initial version of the centralized 

controller using Python. This controller can retrieve 

register data from switches through the straightforward 

switch CLI provided by the P4 behavioural model. The 

controller receives Top-k lists from P4 switches at the 

end of the time interval Tint. Subsequently, these Top-k 

lists from all p4-switches are consolidated into a 

comprehensive global CL. Ultimately, the controller 

can detect the NWHH’s final list by applying the global 

threshold ThGlobal. In order to prepare for a fresh round 

of heavy-hitter detection, the controller resets all 

registers in P4 switches. 

4.3. Experiments Setup 

In this part, we provided a detailed explanation of the 

work environment, dataset, and benchmark. 

4.3.1. Test-Bed and Environment 

To carry out all experiments, we used a server with the 

specifications: Intel Core i5-8300H, 4GB NVIDIA 

GeForce GTX 1650, 8GB RAM, and (2Tera HDD-

512GB SSD). This PC runs Ubuntu 22.04. We opted for 

Mininet [48] as our emulated network environment to 

implement P4 switches that execute NWHH strategies. 

To compile P4 code, we used the P4c tool [35], so the 

compiling result is a JavaScript Object Notation (JSON) 

document specifying the P4 switch’s behaviour, 

including its parser, tables, and actions in the P4 

pipeline. Subsequently, any P4 switch generated 
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following the behavioural model [34] loads this JSON 

file. A Mininet topology is established to complete the 

setup, interconnecting the P4 switches defined by their 

behaviour. In our comparison, we used topology, which 

consists of three interconnected switches, each linked to 

a host, like the topology used by Ding et al. [15]. 

4.3.2. Datasets 

Packet captures: We employ Center for Applied Internet 

Data Analysis (CAIDA)’s anonymous internet captures 

recorded on a 10-gigabit Ethernet link monitoring a 

USA city in January 2019 [7]. Each minute of this 

recorded data comprises roughly 64 million network 

packets. What concerns us about these flows is only the 

first minutes, as these flows will be divided according 

to different windows time in proportion to the applied 

experiments, as explained later. For example, windows 

time will be chosen to take different packet numbers 

(500, 10K, 100K, 150K, 300K, 400K, 500K...) within 

one interval. 

4.3.3. Metrics 

• Precision (PR): the ratio of correctly identified heavy 

flows to the total number of reported flows as in 

Equation (3). 

𝑃𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Where True-Positive (TP) represents correctly 

identified HH flows. False-Positive (FP): refers to non-

HH flows incorrectly detected as HH. 

• Recall (R): the proportion of correctly identified 

heavy flows in relation to the total number of actual 

heavy flows as in Equation (4). 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Where FN (False Negative) indicates HH flows that are 

incorrectly identified as non-HH. 

• F1-score: the F1-score represents the harmonic 

average of precision and recall. A higher F1-score, 

closer to 1, indicates a better overall result as 

Equation (5). 

𝐹1 − 𝑆𝐶𝑂𝑅𝐸 =
2 ∗ 𝑅 ∗ 𝑃𝑅

𝑅 + 𝑃𝑅
 

• Throughput: is defined as the rate at which packets 

are processed per second as Equation (6) measured in 

packets per second (pkts/s). 

𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑇𝑜𝑡𝑎𝑙_𝑁

𝑇𝑖𝑚𝑒
 

Where Total_N: total number of packets. Time: 

progressing time. 

4.3.4. Benchmark 

This paper compares our solution SEA-NWHH with 

several state-of-the-art solutions for detecting NWHH, 

such as CMS-NWHH [15], which uses a structure for 

switches. MV-Sketch [45] uses a new structure for 

switches based on (majority vote algorithm). IPG [41] 

is based on the principle of (inter-packet-gap). 

Hashpipe-NWHH, we merged the standard Hashplipe 

[43] algorithm with our coordinator algorithm. Table 1 

shows our SEA algorithm’s main simulation parameters 

and mechanisms compared to the state-of-the-art. 

Table 1. The main simulation parameters and mechanisms for our 

SEA lgorit and the state-of-the-art. 

Mechanism SEA-NWHH CMS-NWHH MV-Sketch IPG 

Switch 

algorithm 

SEA (multi 

stage hashpipe 
+filtering)  

Count-min-
sketch+cash 

for local 

sample list 

MV-Sketch-

invertible 

sketch use 
(majority vote 

algorithm) 

Heavy-

Keepr+IPG 
mechanism 

Memory 
Rows∗column

s∗96 

CMS (Ns∗Nh∗ 

32)+(sample 

list size*32) 

MV-Sketch 

size 

(R∗W∗(32+64

+32)) 

(M∗72), M: 

Memory slots 

number 

Coordinator 

mechanism 

Merge multi-

Top-k lists 
using dynamic 

threshold 

Merge multi-

sample lists 
using dynamic 

threshold 

Merge muti 

MV-Sketches 
to large one 

(global list) 

Using Heavy-

Keeper 
mechanism 

[51] 

4.4. Experiments and Results 

In this subsection, we completed a number of 

experiments, which first demonstrated the importance 

of our algorithm for minimizing duplicates. We then 

discussed the ability of our algorithm to detect the 

NWHH with high accuracy. The last experiments 

demonstrate the accuracy and effectiveness of our 

algorithm and how to improve this accuracy using 

different parameters. 

4.4.1. Experiment 1 (Reduce Duplication Analysis) 

Figure 7 illustrates the enhanced performance of our 

SEA algorithm in mitigating duplicate occurrences 

compared to the foundational HashPipe algorithm. As 

depicted in Figure 7-a), augmenting the flow count over 

time demonstrates minimal impact on the prevalence of 

duplicates within the multi-stage data structure. 

Notably, duplicates in HashPipe fluctuate between 50 

and 70. In scenarios where the total memory allocation 

for the multi-stage data structure is 10KB, the duplicate-

related overhead approaches 10% of the full memory 

capacity. Conversely, our refined SEA algorithm 

ensures that the memory loss attributable to duplicate 

occurrences remains below 1%. Furthermore, Figure 7-

b) examines the ramifications of memory expansion, 

whereby an increase in memory entails augmenting the 

number of entries within each stage while maintaining a 

constant number of stages (i.e., 4). Such memory 

expansion substantially amplifies the incidence of 

duplicates within the HashPipe algorithm. Conversely, 

our SEA algorithm exhibits minimal susceptibility to 

this effect by increasing the number of entries allocated 

to statistics within each stage. This augmentation 

enhances accuracy and mitigates the occurrence of false 

negatives, as elaborated in the subsequent experiment. 

(3) 

(4) 

(5) 

(6) 
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a) Illustrates the impact of using fixed memory size on varying concurrent flow numbers 

(using multi-window values). 

 
b) Examines the effect of a fixed number of flows (400k) with varying memory volumes. 

Figure 7. Comparison of duplicate occurrences between the standard 

Hashpipe algorithm and our SEA algorithm. 

4.4.2. Experiment 2 (SEA Algorithm Efficiency-

Comparing with Standard Hashpipe) 

Figure 8 illustrates the efficacy of our SEA algorithm in 

reducing false negatives and improving the F1-Score 

compared to the HashPipe algorithm. As the memory 

allocation for both algorithms increases, the number of 

counters assigned to detect heavy flows also rises. In our 

experimental setup, we aimed to identify the top 300 

heavy flows (k=300). Figure 8-a) demonstrates that 

increasing the memory allocation for our SEA algorithm 

reduces false negatives by less than 5% when the 

memory does not exceed 20K. Notably, our algorithm 

exhibits significant improvement over the HashPipe 

algorithm, which requires approximately 30K of 

memory to achieve a false negative rate of less than 5%. 

Furthermore, Figure 8-b) depicts the impact of memory 

expansion on the F1-Score. To attain F1-Score 

exceeding 95% with our SEA algorithm, a memory 

allocation between 15K and 20K is required, whereas 

the HashPipe algorithm necessitates over 25K of 

memory to achieve a comparable F1-Score exceeding 

95%. 

 

  

a) Compare false-negative using (k=300, trace contains 400k flows) with increasing memory. b) F1-score using (k=300, trace contains 400k flows) with increasing memory. 

Figure 8. Compare accuracy between (our SEA, standard Hashpipe). 

4.4.3. Experiment 3 (Accuracy for Network-Wide-

HH Detection) 

Figure 9 presents a comparative analysis of the accuracy 

achieved by five NWHH strategies: Our SEA-NWHH, 

Hashpipe-NWHH, IPG, CMS-NWHH, and MV-

Sketch. The study considers various flow sizes while 

maintaining a fixed memory allocation of 10KB and a 

suitable threshold to detect 80 to 90 HH. The results 

depicted in Figure 9-a) indicate a consistent decline in 

accuracy across all five algorithms as the flow size 

increases within a given network interval. Specifically, 

Figure 9-a) illustrates that our algorithm achieves 

superior F1-score values compared to its counterparts, 

with scores ranging between (95%-100%). Notably, the 

discrepancy between our algorithm and the closest 

competitor, “HashPipe,” is evident. HashPipe 

demonstrates commendable F1-score values, remaining 

relatively unaffected by an increase in the number of 

flows. Conversely, other algorithms exhibit accuracy 

levels below 90% under the same memory constraint. 

This discrepancy can be attributed to the unique 

approach of our algorithm, which prioritizes the 

retention of high-size flows while disregarding smaller 

flows. Incorporating a filtering stage enhances memory 

utilization efficiency. In contrast, algorithms such as 

CMS and MV-Sketch maintain comprehensive network 

statistics, necessitating additional memory to 

accommodate sample lists. IPG, relying on probabilistic 

principles grounded in flow packet gap calculations, 

exhibits varying accuracy levels contingent upon traffic 

type. Further analysis reveals that our proposed 

network-wide strategy outperforms alternative 

algorithms in terms of Recall and Precision values, as 

evidenced in Figure 9-b) and (c). Our algorithm 

consistently achieves Recall values ranging between 

94% and 100%. Noteworthy improvements are also 

observed in the modified HashPipe algorithm. By 

implementing a Top-k strategy within the switch, this 

algorithm effectively collects statistical data for local 

heavy flows while discarding less significant 

microflows. This is evident from the Precision values, 

which closely approach ideal levels for our strategy. 



46                                                         The International Arab Journal of Information Technology, Vol. 22, No. 1, January 2025 

 

a) F1-score comparison. 

 

b) Recall comparison. 

 

c) Precision comparison. 

Figure 9. Accuracy comparison between (our Top-k NHH, MV-

Sketch, IPG, CMS-NWHH) using multi concurrent traffic and fix-

memory (10KB). 

4.4.4. Experiment 4 (Memory Efficiency for 

Network-Wide HH Detection) 

Figure 10 illustrates the impact of allocated memory on 

each switch for five algorithms, where increased 

memory size generally correlates with enhanced 

accuracy. Specifically, Figure 10-a) highlights the 

augmentation of F1-Score values with escalating 

memory allocation, underscoring the supremacy of our 

SEA-NWHH algorithm, particularly evident with 

memory exceeding 5KB. Notably, F1-Score values 

surpass the 98%-100% threshold following a memory 

allocation of 10KB. This enhancement is attributed to 

the augmented number of records per stage facilitated 

by increased memory, thereby bolstering the accuracy 

of hash tables and augmenting the capacity to 

accommodate additional flows. Consequently, the 

probability of retaining heavy flows within a multi-stage 

data structure is heightened. It is noteworthy that as 

mem-ory allocation surpasses 20KB, the accuracy of all 

five algorithms converges towards exceeding 95%. 

Figure 10-b) and (c) show the same results with slight 

differences for the Recall and Precision values, which 

approach 99% as memory increases. Our algorithm has 

some superiority over the CMS-NWHH algorithm with 

the value of Recall when the reserved memory size 

exceeds 15KB. The IPG algorithm is close to the results 

of our algorithm for Precision. 

 

 

a) F1-score comparison. 

 

b) Recall comparison. 

 

c) Precision comparison. 

Figure 10. Accuracy comparison between (our Top-k NHH, MV-

Sketch, IPG, CMS- NWHH) using fix traffic size and multi memory 

size. 

4.4.5. Experiment 5 (SEA Performance and 

Accuracy Analysis) 

Figure 11-a) depicts the variation in false-negative rates 

concerning the number of heavier flows to be detected 

(K). We explored three K values (100, 200, 300) across 

incremental total memory allocations. It is evident that 

false negatives diminish with augmented memory size. 

However, to achieve high accuracy and maintain a false-

negative rate below 5% for detecting the top 100 heavy 

flows, a total memory allocation of 10K proves 

sufficient. Detecting the top 200 or 300 HH necessitates 

a total memory allocation ranging between (30KB-

35KB). Figure 11-b) elucidates how the negative rate is 

influenced by the number of inputs at each stage within 

a multistage data structure, with varying numbers of 

Top-k heavy flows targeted for detection. We examined 

four values for the number of inputs associated with 

each stage (m): 500, 750, 1000, and 1250. Notably, 

augmenting the number of inputs at each stage augments 

the accuracy of heavy flow detection. Therefore, the 
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desired increase in heavy flows to be detected must 

align with the number of inputs at each stage to ensure 

high accuracy and a reduced false-negative rate. 

Figure 12 presents the impact of augmenting the 

number of stages and the number of inputs in each stage 

on switch performance. Notably, it is observed that 

augmenting the number of inputs (m) exerts minimal 

influence on switch performance, evidenced by a 

convergence in values across a range of 10 to 1000 

inputs per stage. Conversely, increasing the number of 

stages notably impacts switch performance and speed. 

As the number of stages increases, throughput values 

decrease, consequently reducing the number of packets 

processed within a specific interval. Furthermore, it is 

noted that maintaining high accuracy is achievable by 

augmenting the number of entries in each stage and 

adding a fixed, albeit small, number of stages. This 

approach ensures acceptable accuracy levels while 

adhering to memory constraints. 

 

 

a) Compare false-negative using multi k value (k=100, k=200, k=300). 

 

b) Compare false-negative using multi number of inputs per {500, 750, 1000, 1250}. 

Figure 11. The effect of changing the number of detected HH (k) and 

the capacity of each stage (m). 

 

Figure 12. The effect of changing the number of stages [d] and the 

number of inputs per stages [m] on programmable switches 

throughput when applied SEA. 

5. Conclusions and Future Work 

This research proposes a new paradigm for NWHH 

detection in SDN environments. By leveraging P4-

based switches, the proposed switch algorithm extends 

from the HashPipe framework, greatly enhancing 

memory efficiency and packet processing speed. This 

enhancement optimizes network performance while 

enabling real-time responsiveness in detecting Top-k 

HH. 

Furthermore, this research developed a novel 

algorithm for coordinators that used a dynamic 

threshold to collect NWHH and achieve high network 

visibility and adaptiveness. The proposed approach 

differs in the ease of its deployment, much enhanced 

memory efficiency, and higher accuracy with lower 

requirements on memory resources compared to state-

of-the-art solutions. This research contributes 

summarized in three key areas: developing a SEA for 

programmable switches, introducing a dynamic multi-

switch coordination mechanism for heavy flow 

detection, and providing comprehensive experimental 

validation and comparative analysis. These 

advancements offer a more efficient and scalable 

approach to managing network traffic and mitigating 

potential anomalies in real time. 

In future research, work can be done to suggest 

mechanisms to mitigate the communication overhead 

between switches and the central coordinator. Future 

work can also study programmable switch deployment 

at only strategic positions within the network instead of 

a full-scale deployment used in this work, further 

optimizing performance by doing better resource usage. 
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