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Abstract: Multicasting in Internet of Things (IoT) includes transfer data from one source to multiple destinations 

instantaneously. One major issue is the lack of standardized procedures leading to interoperability problems and potential 

weaknesses in diverse IoT systems. To consider above mentioned limitation this investigate discovers the application of Artificial 

Intelligence (AI) methods to revolutionize numerous facets of multicast management. Initially, adaptive multicast group 

management influences real-time data on user mobility and scheme settings through sensors and monitoring tools. Using Deep 

Q-Networks (DQN) accomplished with Self Organizing Map and Particle Swarm Optimization (SOM-PSO). Secondly, AI-driven 

resource allocation hires Deep Reinforcement Learning (DRL) to examine traffic patterns and current network loads 

unceasingly. Third, predictive analytics for multicast traffic demand participates historical data and contextual information by 

means of the Dynamic Threshold Algorithm with Multi-Link Communication (DTA-MLC). Enhanced edge caching strategies 

apply Context-aware Long Short-Term Memory models with Graph Neural Networks (C-ALSTM-GNN) to forecast content 

demand at network edges. Finally, AI-based multicast routing procedures develop efficient Quality of Service (QoS) Multicast 

(EQM) trees to enhance routing paths founded on real-time network topology and traffic conditions. The recommended work is 

implemented by means of network simulator 3.26, and the efficiency of the proposed model is addressed utilizing several 

performance metrics such as latency, energy efficiency, throughput, packet delivery ratio, traffic prediction rate. The proposed 

method achieves latency with 32 ms, energy efficiency with 93%, Traffic Prediction rate 96%, throughput with 342 kbps and 

PDR with 96%. 
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1. Introduction 

The essential for bandwidth has grown up rapidly as a 

consequence of the extensive use of 5G requests, which 

are accompanying in a new era of wireless 

communication. Also, effective communication 

methods are dangerous in Internet of Things (IoT) and 

Wireless Sensor Networks (WSN) situations [1, 2]. The 

Third-Generation Partnership Project (3GPP), the most 

important group for mobile communication values. 

Multicast communication, a transmission mechanism 

that enables packets to be delivered from a single sender 

to several recipients simultaneously, is a competitive 

solution for bandwidth conservation and freshness 

maintenance if all receivers want the same information 

[3, 4]. A server multicasts environmental data, such as 

temperature or robot locations, to every robot in a smart 

factory. Based on this information and their 

observations, these robots take action and independently 

update the server [5]. Similar to this, positioning 

algorithms in wildfire detection modify the location of 

sensors in real-time based on variables like wind 

direction and dryness of the vegetation. Sensors are 

more widely distributed in low-risk locations than they 

are in high-risk ones. Location directions are  

 
disseminated by the central controller, which lowers 

overhead and conserves bandwidth. Outdated data 

might have serious effects in both cases, ranging from 

unexpected catastrophes in other applications to 

inefficiencies in robotics [6]. The possibility of 

multicast in WSN and the significance of data freshness 

in real-time applications are demonstrated by these 

instances [7]. The metric Age of Information (AoI), 

which is defined as the amount of time that has passed 

from the creation of a device's most recent received 

update packet, as a way to quantitatively assess how 

fresh a device. The device’s AoI increases with time and 

decreases upon receiving a more current update packet. 

Fresher data is indicated by a lower AoI at the device. 

Observe that performance measurements like latency 

are packet-centric, whereas AoI is destination-centric 

[8]. Prominent for its contributions to mobile 

communication standards, the 3GPP is essential for 

optimizing the use of wireless resources and reducing 

data redundancy, particularly in IoT and video 

streaming applications. The 3GPP paper deliberates a 

multicast usage scenario for mission-critical facilities, 

which proves the possible of multicast transmission in 

extremely real-time. In order to decrease transmission 
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error and upsurge dependability, 3GPP uses rateless 

codes as a Forward Error Correction (FEC) device. A 

source can create an infinite number of packets from 

data using the rateless code, also known as the digital 

fountain code, and a receiver can decode the data 

provided it has enough packets. Numerous studies and 

applications of rateless codes in the 4G Long Term 

Evolution (LTE) Multimedia Broadcast Multicast 

Service (MBMS) have shown how successful they are 

in enhancing the dependability of multicast/broadcast 

transmissions [9]. For this reason, rateless codes have 

also been suggested by 3GPP for use in 5G NR MBS 

systems. Because they enable the transmitter to deliver 

freshly created fountain packets rather than 

retransmitting packets with mistakes, endless codes 

offer a substantial advantage in multicast circumstances 

[10]. Of course, there are additional difficulties in 

providing multimedia services in mobile networks due 

to their increasing demand [11]. Additionally, cloud 

servers may find it challenging to meet the 

computational demands of all connected devices. In this 

situation, mobile edge computing, or MEC, transfers 

computations from distant servers to edge base stations 

that are in closer proximity to users in order to reduce 

service latency [12]. While there are outstanding works 

that concentrate on service caching or resource 

allocation computation, these elements have typically 

only been optimized in one of these areas. Furthermore, 

multicast has not yet received as much attention in 

previous publications that examined computation and 

cache resource allocation in unicast circumstances. 

Multicast technology is an effective means of delivering 

similar content to meet many requests since it makes use 

of the inherent broadcast aspect of BS channels. MEC 

and multicast, which concentrate on same content 

transmission and individualized processing, 

respectively, initially appear to be two opposing study 

paths. Still, we find that multicast can be advantageous 

for a wide range of MEC services [13, 14]. Numerous 

obstacles stand in the way of multicast-aware resource 

allocation with simultaneous computation and cache 

optimization. First, since compute, caching, and 

multicast are closely related and interact with one 

another, they ought to be handled collectively. This 

problem has two variables: the computational allocation 

choice, which is a continuous variable, and the caching 

decision, which is an integer of zero–one type. 

Multicasting is anticipated to be a promising tool that 

makes it simple for mobile terminal users to access the 

ubiquitous multimedia experience. The scalability of 

broadcast and multicast transmissions in mobile 

networks is enhanced by using evolved Multimedia 

Broadcast Multicast Service (eMBMS), a point-to-

multipoint service that permits data transmissions from 

a single source to numerous recipients. Additionally, as 

an improvement to eMBMS, Multicast/Broadcast over 

Single Frequency Network (MBSFN). This keeps 

performance stable as User Equipment (UE) moves 

away from the base station and prevents destructive 

interferences in areas where coverage overlaps. The 

Conventional Multicast Scheme (CMS) [15] for 

resource allocation in multicast transmissions takes a 

conservative stance, limiting data rate based on the user 

with the poorest channel circumstances. This method, of 

course, maximizes the fairness among multicast users; 

but, those with favorable channel conditions do not 

achieve the highest bit rates, and the multicast area's 

throughput performance is extremely inefficient [16]. 

Fixed block-length codes usually require data to be 

supplied at a consistent rate that all receivers can 

tolerate in terms of scalability. Because other receivers 

are being underutilized, inefficiencies result from 

having to set the transmission rate depending on the 

bottleneck device-the receiver with the poorest channel 

conditions [17]. On the other hand, rateless codes 

effectively resolve the bottleneck problem and improve 

network performance by enabling each receiver to 

collect packets at their own speed. It's interesting to note 

that reaching the minimum time-average AoI in a 

multicast network does not always mean that each status 

update that is given is trustworthy [18, 19]. The 

bottleneck device will continue to impact the AoI 

performance of other devices, provided that the source 

transmits a new update once every device has decoded 

the previous one. Consequently, the overall AoI 

performance might be improved by pre-empting the 

current update at the appropriate moment and creating a 

new status update. It is possible to identify a policy that 

reduces the total time-average AoI based on device 

feedback. However, the complex combinations of 

system information make it difficult to find such a 

strategy, especially when the number of devices in the 

network rises. It's still not clear how to use device 

feedback knowledge to create a more effective solution 

[20]. 

1.1. Motivations and Objectives 

In existing methods, we meet the issues such as 

clustering issues, allocating the schedule problem, to 

predict the traffic demand problem, energy efficiency 

problem and finally data transfer problem. They are 

elaborately discussed below: 

a) Issues in clustering: in existing methods the 

clustering techniques frequently result in an uneven 

distribution of users, overburdening cluster leaders, 

and an inability to adjust to changing network 

conditions. 

b) Impacts in allocating the resource: in existing 

methods algorithms begin to decline as the number 

of users reaches a certain value. As a result, the 

suggested course of action for allocating resources 

might not be the optimum one. It does, however, 

depict an alternative method of allocating resources 

among BBUs in centralized radio access networks. 

c) Inaccuracy to predict the traffic demand: since 
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multicast communication forms are difficult and 

system conditions are dynamic, it is trying to exactly 

forecast multicast traffic demand. This can 

consequence in ineffective resource allocation and 

smooth system congestion. 

d) Falls in system energy efficiency: in existing 

methods in high mobility scenarios, the system's 

energy efficiency falls relative the extra time needed 

for the coalition and transmission tree creation 

phases. 

e) Lower in throughput: existing algorithm performs 

compared to the other algorithms which displays how 

the cellular Existing algorithm target affects 

throughput. 

The foremost goal and scope of this research is to 

develop and validate the AI-driven multicast 

approaches for improving the network performance in 

5G systems. This includes the adaptive multicast 

clustering managing, AI created allotting the resources, 

for forecast the multicast congestion demand, upgraded 

edge caching systems, and lastly the multicast routing 

protocols. The key possibility is to influence in AI 

approaches to expand the efficiency, user satisfaction 

and reliability of multicast services in 5G environments. 

In this research objectives to provide a thorough 

understanding of how AI can be leveraged to enhance 

multicasting strategies and, consequently, optimize 

network performance in 5G. Some of the sub-objectives 

of this research are provided as follows: 

a) To create a system that uses real-time data and to 

form optimal multicast groups based on dynamic user 

behavior and network conditions. 

b) To design and evaluate an effective model for real- 

time resource allocation in 5G multicast networks, 

and to develop and refine predictive analytics models 

to forecast multicast traffic demand using historical 

and contextual data. 

c) To combine Hybrid models to predict content 

demand and optimize edge caching strategies for 

improved performance and user satisfaction, and to 

create and test AI-driven routing protocols to 

establish efficient and reliable multicast routes while 

meeting Quality of Service (QoS) requirements. 

1.2. Research Contributions 

Below are some of this research’s main contributions, 

1. A new approach that leverages real-time data and 

reinforcement learning for dynamic and efficient 

multicast group management, enhancing user 

experience and network performance. 

2. An innovative deep reinforcement learning model for 

real-time resource allocation, ensuring optimal 

utilization and responsiveness of 5G networks. 

3. Development of a sophisticated predictive model 

using the Dynamic Threshold Algorithm with Multi-

Link Communication (DTA-MLC) to forecast 

multicast traffic demand accurately. 

4. Introduction of a context-aware LSTM-GNN model 

for predicting content demand and managing cache 

placement and replacement in real-time, significantly 

improving cache hit rates and reducing latency. 

5. Creation of Efficient QoS Multicast (EQM) trees 

using AI, which ensure reliable and cost-effective 

multicast routing with adherence to QoS constraints. 

1.3. Research Organization 

The following parts comprise the remaining portion of 

this document: Section 2 provides an illustration of the 

literature study of the earlier research that is more 

pertinent to our work. Section 3 presents the main 

problem statements addressed in the previous literature. 

Section 4 presents the research methodology for the 

proposed work, which consists of a pseudocode, a 

mathematical representation, and a protocol. In section 

5, the experimental results are presented along with a 

comparison of the recommended and ongoing works. 

Section 6 offers a conclusion to the suggested study as 

well as future work plans for this research. 

2. Literature Survey 

This section deals with the survey of literature on 

Multicasting Strategies for Optimized Network 

Performance in 5G using Artificial Intelligence, Mach 

and Becvar [21], to improve data transmission rate, 

lessen the load of heavy data traffic, and increase system 

efficiency, the leitmotif of this research is to provide an 

architecture for the “Age of Information (AoI)” and 

“cache-assisted hybrid multicast/unicast/Device-to-

Device (D2D)” communication using the promising 

cell-free “Massive Multiple-Input Multiple-Output 

(MIMO)” process. The user-centric transmission 

system is then designed, and the viability of the initial 

keys for D2D, AoI, multigroup multicast, wireless 

caching and signal processing typically for transmission 

mode selection process, cache replacement strategy, and 

signal processing. Here, some interesting new 

difficulties and potential future directions are discussed, 

such as full- band cooperative transmission, RIS, and 

Simultaneous Wireless Information and Power Transfer 

(SWIPT). Mahdi and Taşpınar [22], provides a 

“scalable video multicast” approach “based on user 

demand perception and D2D communication to enhance 

the D2D multicast network transmission performance” 

of scaled movies in “cellular D2D hybrid networks”. 

They first determine the preferences of users by using 

factors such as video popularity and watching history in 

order to improve the number of people who get 

multicast clusters. This enables them to ascertain the 

willingness of consumers to push videos. Second, they 

create a cluster head selection algorithm that takes into 

account the social factors, video quality needs, and 

channel quality of consumers. However, finalizing in a 

series of simulation tests, the suggested model skillfully 
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integrates new users into the multicast group, expands 

the number of cluster members, satisfies a wide range of 

requirements improves video quality and elevates the 

bar for service quality that governs video transmission 

in the past for D2D connection. The Mishra and Tyagi, 

in [23] use knowledge from 3GPP standards to present 

the first thorough system-level evaluation of Ultra 

Reliable Low Latency Communications (mURLLC). It 

highlights two important points: 

1. How mURLLC differs from traditional multicast 

broadband wireless communications.  
2. Which mURLLC-providing technologies necessitate 

paradigm shifts in comparison to current solutions. In 

conclusion, the article offers suggestions for 

effectively fulfilling the stringent mURLLC 

requirements. This is due to the possibility that the 

network operator will require far less channel 

resources to deliver mURLLC service than what is 

advised for baseline solutions for broadband 

multicast or unicast URLLC traffic. 

Mustafa et al. [24] demonstrate that MC significantly 

improves multicast streaming performance, which is 

especially advantageous for cell-edge users who 

frequently encounter unfavorable channel conditions. 

They paid particular attention to how many users multi-

connected multicast systems could service at once. It 

has been discovered that more than 60% of the 

customers who are unsuccessfully served by single-

connectivity multicast may be successfully served by 

employing multi-connectivity in multicast 

transmissions utilizing the same resources. They also 

prove that no other polynomial-time approach can 

provide a better estimate. However, Controller General 

of Accounts (CGA) process answer and the optimum 

key found by brute force analysis for a lower problem 

size match in terms of performance. Additionally, they 

showed “MC multicasting performs better than 

Multicast Broadcase Single Frequency Network 

(MBSFN)”, doing away with the requirement for 

prolonged cycle prefixes and tight synchronization. 

Ouyang et al. [25] provide a brand-new idea in this 

study called “BeamForming-as-a-Service (BFaaS)” for 

broadcast and multicast service delivery in 5G and 6G 

systems. They begin by providing a thorough review 

and analysis of the industrial operations and backdrop 

standards through broadcast initiatives that have been 

implemented across 5G stages. They clarified the 

conditions for offering end users multicast and 

broadcast services, as well as the significance of 

beamforming for multicast and broadcast service 

delivery in 5G and 6G networks. From here, they go on 

to describe the benefits of the suggested BFaaS plan as 

well as the philosophy and vision of BFaaS. 

Nonetheless, this plan solved issues with overlapping 

service regions' real-world deployment. By creating a 

PMI matrix for the overlapped portion and assigning the 

proper data layers, this can be resolved. 

Pupo et al. [26] to tackle and contextualize the 

intricacy of “Multicast Radio Resource Management 

(RRM)” and the consequences of sudden changes in the 

MG members’ reception circumstances. In order to 

prevent the process from lasting too long, they provide 

a multicast-oriented trigger, “K-means clustering for 

group-oriented detection and splitting, a classifier” for 

determining which multicast access method is best, and 

a final resource allocation algorithm. We compare 

heuristic tactics with Machine Learning (ML) 

multiclass classification algorithms to determine which 

multicast access strategy best suits the unique reception 

conditions of the consumers. As access strategies, they 

take into consideration “Subgrouping Based On 

Orthogonal/Non-Orthogonal Multiplex Access 

(OMA/NOMA)” and the traditional multicast scheme 

(MCS). Also addressed the trade-off among 

multicasting gain and multiuser diversity, emphasizing 

the consequences of the connection that currently exists 

between the propagation frequency, the velocity of 

users, and the fluctuations in channel conditions. The 

Tan et al. [27] provide a group-based multicast service 

authentication and data delivery technique based on a 

model of a typical vehicle multicast service in 5G-V2X. 

The plan calls for grouping large cars that are covered 

by the same RAN together and connecting them to the 

content provider so that they may use the dispersed keys 

that the 5G home network securely distributes to access 

a multicast service to make it possible for automobiles 

to safely receive multicast service data in point-to-

multipoint mode. The high rate of aggregation 

verification failure in the suggested approach's group-

based multicast service access authentication process 

would result in the RAN transmitting all signatures 

again, which will incur computational and 

communication overheads. They will continue to look 

for ideal ways to lessen this restriction. 

3. Problem Statement 

This section focuses on the unique issues that current 

works frequently encounter. The suggested remedy is 

also provided. Several of the specific problem 

statements that already exist include, Background of 

existing problems: Tripathi et al. [28] to determine 

which users should receive eNB service, the authors of 

this study employ machine learning methods, 

specifically “support vector machine, random forest, 

and deep neural network.” To enhance the functionality 

of current clustering techniques, they suggest a mixed-

mode content distribution scheme in which the two 

divided user groups are served by the cluster leaders and 

evolved Node B (eNB). A scenario for D2D-enabled 

multicasting has been established in order to conduct a 

thorough simulation research that shows how the 

mixed-mode scheme may greatly increase the 

throughput, energy consumption, and fairness of both 

individual users' performance and the network as a 
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whole. The problems employed from these approaches 

are, nevertheless, clustering techniques frequently result 

in an uneven distribution of users, overburdening cluster 

leaders, and an inability to adjust to changing network 

conditions. 

In this research by Trung and Anh [29], a learning-

based “Resource Segmentation (RS)” technique is 

proposed to efficiently handle the Resource Allocation 

(RA) problem using a modified scheme. To get the 

position coordinates of end users, it modifies the 

“Random Forest Algorithm (RFA)” and adds the 

“Signal Interference and Noise Ratio (SINR) and 

position coordinates”. Additionally, it forecasts the 

Modulation and Coding Schemes (MCS) needed to 

connect the “Remote Radio Head (RRH)” to the end-

user device. The issue employed in this work are: 

1. The performance of both algorithms begins to decline 

as the number of users reaches a certain value. As a 

result, the suggested course of action for allocating 

resources might not be the optimum one. It does, 

however, depict an alternative method of allocating 

resources among BBUs in centralized radio access 

networks. 

This research suggests “Multi-rate Multicast 

Reinforcement Learning based Opportunistic Routing 

(2MRLOR)” as a resolution to these problems. This 

technique adapts the nodes communication rates to 

alteration their communication series. As a 

consequence, here may be additional applicants nearby 

for the packet furtherance and a difference in the 

neighboring nodes. To recognize the optimum 

forwarders for a packet in a multi-rate scenario, 

2MRLOR presents a routing limitation named Expected 

Multicast Delay (EMD). This procedure regulates 

respectively node suitable transmission frequency based 

on the state of the system. Concentrated data 

distribution among system nodes is additional request of 

reinforcement learning [30]. Some of the major 

problems employed in this work are. 

2. Since multicast communication forms are difficult 

and system conditions are dynamic, it is trying to 

exactly forecast multicast traffic demand. This can 

consequence in ineffective resource allocation and 

smooth system congestion. 

Wang et al. [31] the suggested concept, users are 

divided into coalitions. While the other coalition 

members receive service via D2D lines, coalition heads 

receive Non-Orthogonal Multiple Access (NOMA) 

unswervingly from the base stations. Using Monte Carlo 

simulations, they explore the system SE and EE for 

various mobility patterns and talk about the best 

possible system configurations. The acquired data 

demonstrate that, particularly in low mobility scenarios, 

the suggested scheme performs better than traditional 

OMA and NOMA. The problems existed in this 

approach are.  

3. In high mobility scenarios, the system's energy 

efficiency falls relative to NOMA because of the 

extra time needed for the coalition and transmission 

tree creation phases. 

Zhou et al. [32] proposed Shuffled Frog Leaping 

Algorithm (SFLA) was to RA in D2D multicast 

communications. They contrasted the outcomes of the 

SFLA algorithm with those of the “Firefly Algorithm 

(FA), Ant Colony Optimization (ACO), and Particle 

Swarm Optimization (PSO)”; with respect to the target 

Signal Interference Noise Ratio (SINR). 

Another example of how well the SFLA algorithm 

performs compared to the other algorithms which 

displays how the cellular SINR target affects 

throughput. 

Research solutions: They use one of the more 

established unsupervised learning algorithms, Self-

Organizing Map (SOM), for the multicast group creation 

in order to rapidly arrive at a close to ideal solution. SOM 

complexity is quadratical when it comes to the number 

of map units and linear when it comes to the number of 

users. The new SOM including Particle Swarm 

Optimization (PSO) is shown here: After the initial SOM 

training, integrate PSO to adjust the weights and map 

topology, making sure the multicast groups are 

appropriately generated and the clusters are more 

refined. To overcome the resource allocation problem 

using the Deep Reinforcement Learning (DRL) it is a 

best for resource allocation strategy. To adaptively alter 

resource edges founded on existing system situations, 

usage a dynamic threshold procedure. To recover 

network performance and flexibility, usage a multi-link 

communication approach for balancing the load and 

severance. This will enhance traffic dispersal 

transversely numerous relations. Have a judgement on 

effects and regulate the strategies in retort to information 

in real time to assurance actual multicast congestion 

control. Ultimately, the network traffic demand was 

predicted using the innovative DTA-MLC. Long- Short- 

Term Model (LSTM) models with Graph Neural 

Networks (GNNs)- (C-ALSTM-GNN) to manage the 

energy efficiency in the 5G network. EQM (Efficient 

QoS Multicast) trees should be established. When 

queuing size ratio and link stability are combined, an 

EQM tree is a shortest-path multicast tree with the lowest 

End-to-End (E2E) cost. It must adhere to QoS 

restrictions, which include avoiding primary users’ 

licensed channel and queuing size ratio and link stability. 

4. Proposed Method 

In this research objectives to provide a thorough 

understanding of how AI can be leveraged to enhance 

multicasting strategies and, consequently, optimize 

network performance in 5G. Figure 1 indicates the 

overall architecture of this research. 

1. Adaptive multicast group management. 
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2. AI-Driven resource allocation. 

3. Predictive analytics for multicast traffic demand. 

4. Enhanced edge caching strategies. 

5. AI-based multicast routing protocol. 

 

Figure 1. Overall architecture of this research. 

4.1. Adaptive Multicast Group Management 

The method of adaptive multicast group managing 

includes uninterruptedly gathering real-time data on user 

mobility, device usage patterns, and system settings by 

means of sensors and monitoring tools. This information 

is kept in a central repository, allowing for ongoing study 

and model training. Consistent updates to the train the 

dataset, reflecting present system settings and user 

actions, confirm that Deep Q-Networks (DQN), remains 

accurate and adaptive. For handling huge state-space 

Markov Decision Process (MDPs) with complex 

dynamics 𝐷(𝑆𝑡+1|𝑆𝑡, 𝐷𝑡), DQN is a well-liked “Deep 

Reinforcement Learning (DRL)” approach. With the 

DQN, an action-value functional is roughly represented 

by a neural network using a value- iteration technique. 

Despite the fact that this approach can be improved upon 

by a number of subsequent publications, we choose to 

adopt it because of its simplicity. We demonstrate that 

DQN itself can give us the best tracking and solution. 

These enhancements could lead to even better results in 

terms of estimator variance, sample efficacy, etc. Prior 

attempts at integrating nonlinear function 

approximators, like neural networks and RL, failed due 

to instabilities caused by: 

a) Correlated samples for training. 

b) A radical change in policy with a small improvement 

in operate estimation. 

c) Correlation between the function being trained and 

approximated function. 

Experience replay memory (Μ) and the target network 

(𝑄𝜃∗) are the two essential components of the algorithm 

that handle these problems and are responsible for the 

success of DQN. The changeovers of an MDP, namely 

the tuple (𝑆𝑡, 𝐷𝑡, 𝑟𝑡, 𝑆𝑡+1) are stored in the replay memory. 

Next, the program uniformly samples a minibatch of 

randomly selected transitions from memory. In doing so, 

the data correlation is eliminated, and the data 

distribution shift with each iteration is smoothed out. An 

additional neural network in the algorithm approximates 

the value function, 𝑄𝜃. A randomly selected mini batch 

from memory M and the target network make up the 

training set used to train the 𝑄𝜃 at each epoch.  

The following i.i.d samples are provided by this 

random sampling for stochastic gradient descent with 

loss.  

𝑘𝑄
𝜋 = ∑ (𝑥𝑖

𝑛

𝑖=0
− 𝑄𝜃(𝑆𝑖 , 𝐴𝑖)) 2 

Where 𝑥𝑖 =  𝑟𝑗 +  𝜏 𝑚𝑎𝑥𝑎′𝑄𝜃 ∗ (𝑆𝑖, 𝑎′). The iteration 

{𝜃𝑡} are given by the following:  

𝜃𝑡+1 =  𝜃𝑡 − η1(𝑡)∇𝑡𝑘𝑄
𝜋𝜃  

Where 𝜂1(𝑡), the step size, satisfies the following:  

∑ η1(𝑡) =  ∞ , ∑ η1
2

∞

𝑡=0

∞

𝑡=0

(𝑡) < ∞, η1(𝑡) ≥ 0 

For epochs Ttarget, the weights of the target network 𝑄 ∗ 

are maintained constant, limiting any significant policy 

changes and decreasing the correlation between Q and 

𝑄 ∗. In non-parametric regression, this can be viewed as 

(1) 

(2) 

(3) 
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a risk minimization problem with regression function 

𝑄𝜃 ∗ and risk 𝜅𝑄
𝜋𝜃. The trained model is used to forecast 

optimal user groupings for multicast by means of the Self 

Organizing Map with Particle Swarm Optimization 

(SOM-PSO), with constraints accustomed based on 

feedback and new data to enhance prediction accuracy. 

4.1.1. Self-Organizing Map (SOM) 

The clustering algorithm used was Self Organizing Map 

(SOM), an unsupervised machine learning approach. 

SOM can identify a data set's cluster in a competitive 

manner. First, the neuron with the weight closest to the 

data sample is identified as the winner neuron via SOM. 

The updating of neighboring neurons' weights then 

occurs, ensuring the formation of clusters of neurons 

with comparable weights. 

The weight vectors are updated using two functions: 

the neighborhood function [ℎ𝑐𝑗(𝑡)] and the learning rate 

[𝛽(𝑡)] [𝛼(𝑡)]. The learning rate has a value between 0 

and 1. The neighborhood function's Gaussian type is 

expressed as follows:  

ℎ𝑢𝑖(𝑡) = 𝑒𝑥𝑝 (
𝑑𝑢𝑖

2

2𝜎2(𝑡)
) 

where 𝑑𝑢𝑖
2  is the separation between the stimulated neuron 

j and the winner neuron 𝑢. The parameter 𝜎 represents the 

neighborhood’ s radius at iteration 𝑡. 𝑤𝑖(𝑡 + 1) is the 

weight vector. The following is a basic algorithm that 

represents SOM’s algorithm. 

4.1.2. Particle Swarm Optimization (PSO) 

The algorithm is divided into two stages: cluster creation 

and CH selection. PSO is used to determine which CH 

to use. The CH selection procedure using distance and 

residual energy factors. During the CH selection stage, 

each sensor node first transmits its position and 

remaining energy to the base station, which uses this 

information to determine if the node meets the threshold 

energy required to be eligible for a CH. The base station 

next executes the PSO-based CH selection process, 

which is followed by the cluster building phase. We 

calculate the weight function for the cluster formation 

using a number of variables, including the node degree, 

energy, and distance of the CHs. Prior to presenting the 

linear programming formulation for the cluster head 

selection problem, we first outline our suggested PSO 

based strategy for CH selection and give a detailed 

presentation of the cluster formation phase. 

Prior to presenting the Linear Programming (LP) 

formulation and suggested algorithm, we define a few 

terms that are pertinent. 

Terminologies 

In order to facilitate comprehension of the suggested 

algorithm, we first define a few terms as follows: 

1. 𝛿: set of sensor nodes 𝛿 = {𝛿1, 𝛿2, … , 𝛿𝑛} 

2. 𝜍: set of cluster head 𝜍 = {𝜍ℎ1, 𝜍ℎ2, … , 𝜍ℎ𝑚} 
3. Where: 𝑚 < 𝑛 
4. 𝑙𝑗: number of 𝛿 in the cluster 𝑗. 
5. 𝑑𝑚𝑎𝑥: the sensor node's maximum communication 

range. 
6. 𝑅𝑚𝑎𝑥 the maximum 𝜍ℎ can communicate. 
7. 𝑇𝐻: the energy barrier for becoming a 𝜍ℎ 
8. 𝑑0: the threshold distance 
9. 𝜀𝜍ℎ𝑗

: the cluster head 𝜍ℎ𝑗 current energy 

10. 𝜀𝛿𝑖
: The sensor node's initial energy was 𝛿𝑖  

11. 𝐷𝑖𝑠(𝛿𝑖 , 𝛿𝑗): The distance of two sensor nodes, 𝛿𝑖 and 

𝛿𝑗 

12. 𝐶𝑜𝑚𝑚(𝛿𝑖): The group of nodes that are inside the 
(𝛿𝑖) communication range, that is,  

𝐶𝑜𝑚𝑚(𝛿𝑖) = | {𝛿𝑗|∀𝛿𝑗
𝜖𝛿Λ𝐷𝑖𝑠(𝛿𝑖 , 𝛿𝑗) ≤ 𝑑𝑚𝑎𝑥 

The period until the first node dies, the amount of time 

that passes between a node's first deployment and the 

point at which a predetermined percentage of nodes run 

out of energy, and other factors are some examples of 

how the network lifetime is specified. Nevertheless, we 

take into account it as the number of rounds till the last 

node death in the suggested approach, which is 

commonly referred to as Last Node Death (LND). One 

way to express a single node's lifetime is as follows:  

𝐿 =
𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑒𝑡𝑜𝑡𝑎𝑙
 

where 𝑒𝑡𝑜𝑡𝑎𝑙 is the 𝑒𝑡𝑜𝑡𝑎𝑙 used by the sensor to transmit 

and receive data, and einitial is the initial energy of a 

sensor node. This expression 

𝑒𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑇𝑋(𝑙, 𝑑) + 𝐸𝑅𝑋(𝑙) 

𝐸𝑇𝑋 is the total energy consumption for transmitting, 

𝐸𝑅𝑋 is the total energy consumed by the receiver to 

receive. 

4.1.2.1. LP Formulation for 𝛓𝐡 Selection Problem  

The main objective of the proposed algorithm is to select 

ςh from the standard sensor nodes while considering 

energy efficiency to increase the network lifetime. We 

take into account the sensor nodes’ residual energy as 

well as a number of distance characteristics, such as the 

average intra-cluster distance and the sensor nodes’ 

distance from the sink, in order to select the ςh with the 

best energy efficiency. 

Let 𝑓1 be a function of the 𝜍ℎ' sink distance and 

average intra-cluster. For the best 𝜍ℎ selection, 𝑓1 must 

be minimized. Let f2 represent a function that is the 

reciprocal of the total energy of the chosen 𝜍ℎ current. 

Keep in mind that the ideal 𝜍ℎ selection should involve 

maximizing this ratio. This indicates that 𝑓2, or its 

reciprocal, needs to be decreased. We normalize the two 

goal functions between 0 and 1 to effectively reduce the 

resulting linear combinations of both of these functions.  

𝑀𝑖𝑛 𝐹 = 𝛽 × 𝑓1_(1 − 𝛽)𝑓2 

(4) 

(5) 

(6) 

(7) 

(8)
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𝑑𝑖𝑠(𝛿𝑖 , 𝜍ℎ𝑗) ≤ 𝑑𝑚𝑎𝑥, ∀𝛿𝑗
𝜖𝛿 𝑎𝑛𝑑 𝜍ℎ𝑗𝜖𝜍 

𝑑𝑖𝑠(𝜍ℎ𝑗 , 𝐵𝑆) ≤ 𝑅𝑚𝑎𝑥, ∀𝜍ℎ𝑗
𝜍 

𝜀𝜍ℎ𝑗
> 𝑇𝐻 1 ≤ 𝑗 ≤ 𝑚 

0 < 𝛽 < 1 

0 < 𝑓1, 𝑓2 < 1 

Equation (8) state that the sensor nodes are inside the ςh 

nodes’ intra-cluster communication range. Moreover, the 

limitation in Equation (9) indicates that the base station 

will be inside the maximum communication range of 𝜍ℎ. 

Constraint in Equation (10) states that the energy of each 

𝜍ℎ node must exceed the threshold value, and which is the 

average value of all sensor nodes. Constraint Equation in 

(11) ensures that the values of the two objective functions 

are normalized between 0 and 1. The relationship among 

the energy and distance variables is governed by Equation 

(12) which ensures that neither of them has a weight of 

100% or 0. 

4.1.2.2. Particle Representation and Initialization 

In PSO, a particle is the same as a whole solution. It 

shows the optimal CH positions for the ςh selection of 

the suggested method. The ith particle of the population 

is represented by:  

𝑝𝑖 = [Χ𝑖,1(𝑡), Χ𝑖,2(𝑡), Χ𝑖,3(𝑡), … , Χ𝑖,𝐷(𝑡) 

Each component, Χ𝑖,𝑑(𝑡) = (x𝑖𝑑(𝑡), y𝑖𝑑(𝑡)), 1 ≤ 𝑖 ≤

𝑁𝑝, 1 ≤ 𝑑 < −𝐷, shows the sensor nodes’ coordinates 

that should be selected as 𝜍ℎ. Next, the ith particle might 

be displayed as follows:  

𝑃𝑖 = [(x𝑖,1(𝑡), y𝑖,1(𝑡)), (x𝑖,2(𝑡), y𝑖,2(𝑡)), 

(x𝑖,3(𝑡), y𝑖,3(𝑡)), … , x𝑖𝑑(𝑡), y𝑖𝑑(𝑡))] 

Every particle has the same number of dimensions (𝐷), 

which is equal to the number of 𝜍ℎ(𝑚). We use a 

metaphorical example to demonstrate it, where o 

indicates the generated at random coordinates of the 

sensor nodes, s indicates the position of the sensor 

nodes, and ςh indicates the index of the cluster heads. 

4.1.2.3. Derivation of Fitness Function 

The following variables affect how the fitness function 

is derived: 

1. Average intra- cluster distance 

It is defined as 
1

𝑙𝑗

∑ 𝑑𝑖𝑠(𝛿𝑖 , 𝜍ℎ𝑗)
𝑙𝑗

𝑖=1
which is the average of 

the total of the distances of all the sensor nodes from 

their chosen 𝜍ℎ. Every sensor node in an intra-cluster 

communication system uses energy to transmit data to 

its 𝜍ℎ. We need to shorten this average intra-cluster 

communication distance in order to use less energy. 

This indicates that a sensor that is close to each sensor 

node must be chosen to serve as a 𝜍ℎ. 

2. Average sink distance 

It can be expressed as 
1

𝑙𝑗
𝑑𝑖𝑠(𝛿𝑖 , 𝐵𝑆), This is the ratio of the 

quantity of sensor nodes 𝑙𝑗 in the cluster head 𝜍ℎ𝑗 to the 

distance from the cluster head and Base Station (BS). In 

the data route phase, they must transmit their collected 

information to the BS every hour. Therefore, in order to 

use less energy, we must shorten the distance among 

every CH and the BS. Reducing the standard intra-

cluster and sinks length for each 𝜍ℎ is the aim of optimal 

selection.  

𝑀𝑖𝑛𝑓1 = ∑
1

𝑖𝑗

𝑚

𝑗=1

(∑ 𝑑𝑖𝑠(𝛿𝑖 , 𝜍ℎ𝑗)

𝑙𝑗

𝑖=1

+ 𝑑𝑖𝑠(𝛿𝑖 , 𝐵𝑆)) 

3. Energy parameter 

The current energy of every cluster head 𝜍ℎ𝑗1 ≤ 𝑗 ≤ 𝑚, 

selected in a sequence from the normal sensor nodes, is 

denoted by 𝜀𝜍ℎ𝑗
. All selected CHs will have an overall 

current energy of ∑
1

𝑖𝑗

𝑚
𝑗=1  𝜀𝜍ℎ𝑗

. Therefore, it makes sense 

to minimize its reciprocal and maximize the overall 

current energy of all the selected 𝜍ℎ when selecting the 

optimal cluster heads. And so, this is our second 

objective.  

𝑀𝑖𝑛𝑓2 =
1

∑ 𝜀𝜍ℎ𝑗

𝑚
𝑗=1  

 

Since the two aforementioned objective functions do not 

substantially conflict with one another, it is prudent in 

our Instead of minimizing each objective function 

separately, the PSO approach is used to reduce the linear 

relationship between the two. Then, a single, ideal 

answer exists. As a result, we employ the fitness 

function listed below. 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛽 × 𝑓1 + (1 − 𝛽) × 𝑓1 , 0 < 𝛽 < 1 

Reducing the fitness value is our goal. The particle 

position-that is, the 𝜍ℎ selection-is better the lower the 

fitness value. A scheme for real-time monitoring and 

alteration of multicast groups is applied, creation 

immediate changes based on the models’ predictions. 

Continuous performance assessment, directing on 

system of measurement like as latency, bandwidth 

usage, and user satisfaction, allows for fine-tuning of the 

model and modification approaches to continue optimal 

multicast performance. 

4.2. AI-Driven Resource Allocation 

After clustering we perform the resource allocation. To 

enhance network resource allocation by means of the 

DRL for multicast traffic, the procedure initiates with 

the continuous investigation of real-time and historical 

traffic patterns and current network load. DRL includes 

the outside world and an agent. By taking various 

activities, the agent modifies the external environment, 

and the environment returns the favour by rewarding the 

agent. DRL seeks to identify the best course of action 

that maximizes reward. Three types of Deep 

(9)
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Reinforcement learning algorithms exist: policy-based, 

actor-critical, and value-based. DQN, a quality-based 

technique in the family of reinforcement learning 

methods, has not a policy network and only one value 

function model. 

4.2.1. State Space 

If we know the location distribution of users, we assume 

that a specific r serves user traffic demand. 𝐵𝑟 is a 

representation of the standard bandwidth of the unicast 

users that r serves. For the multicast users, we treat the 

bandwidth within the k-th multicast service group as 𝐵𝑟, 

k. Consequently, a vector Br, where Br=[Br,0, Br, 1, Br, 

2, …, Br, k], can be used to represent the bandwidth 

allocation status of r. K is the quantity of multicast 

group services. Note that any two distinct RRHs 

assigned to the same spectrum band for each k {1, …, 

k}. [N1, N2, …, NM] is a representation of the DRL state 

space, where 𝑀 is the total number. 

4.2.2. Action Space 

Every decision epoch, the DRL agent will choose one 

RRH at random to guarantee a clear-cut choice. Here, 

the DRL agent determines what increases or decreases 

a specific service’s bandwidth and satisfies the 

requirement for constraint. Ultimately, the rules that 

determine the reward system are as follows: The greater 

the incentive, the lower the transmission energy 

throughput consumption ratio overall after the action. 

Consequently, we set the reward to equal Emax-E, where 

Emax is the maximum energy throughput used that RRH 

may provide, and E is the energy throughput 

consumption ratio after the action. 

DRL consists of an online deep Q-learning phase and 

an offline Deep Learning (DL) construction phase to 

minimize computing complexity. During the offline 

stage, each state-action pair (s, a) and associated value 

function Q(s, a) are correlated using a DL structure. 

Here is how Q(s, a) is defined:  

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎, 𝑠′) + 𝜆𝑄(𝑠′, 𝑎′) 

Where r(s, a, s’) denotes the reward for carrying out 

action a, 𝜆 stands for the discounted parameter, and p(a’| 

s’) denotes the likelihood of carrying out action 𝑎′ in the 

subsequent state s’. 

During the online phase, the actual and predicted 

action-state value functions are stored in DL named 

Q*(s, a, θ*) and Q(s, a; θ), respectively. The current 

state and action are represented by s and a, respectively, 

while the neural strengths of the estimated and real 

networks are denoted by θ* and θ. 

The DRL agent use the greedy approach of 

probability 𝜀 to select the next action in every training 

epoch. 

Second, the convex optimization problem P1 can be 

solved to determine the ideal beamforming weight 

following the execution of state a. Subsequently, the 

agent will retrieve the subsequent states and the instant 

reward r(s, a, s’) from the cloud RAN. It will then store 

the state transition (s, a, r(s, a, s’) s’) in the experience 

memory D, which has a capacity of 𝑀𝐷. Third, using the 

historical data in D, the small batch gradient descent 

algorithm will update the parameters in Q*(s, a, θ*) DL. 

Q*(s, a, θ*)-Q(s, a, θ) is the loss function. Ultimately, 

after every C step, we transfer the parameters from the 

Q*(s, a, θ*) DL to the Q(s, a, θ) DL. Algorithm (2) 

below illustrates the DRF resource allocation 

framework's flow. The process's “average time 

complexity” is 0(|S|3), where |S| represents the state 

space's size. This information is employed to update and 

improve traffic models frequently. A DRL model is 

established and unceasingly advanced by means of 

updated traffic data, confirming it familiarizes to 

developing network environments and pattern of traffic. 

Numerous network situations are frequently replicated 

to train the model on dynamic resource allocation plans, 

with the simulation environment reorganized to reflect 

existing network states. The AI model is then arranged 

in the live network to achieve resource allocation in 

real-time, with continuous monitoring to confirm ideal 

choices. Real-time feedback and performance system of 

measurement are used to regulate the model parameters 

and approaches, confirming ongoing optimization of 

resource usage. 

4.3. Predictive Analytics for Multicast Traffic 

Demand 

To allocate the resource after analyze the multicast 

traffic demand prediction. Predictive analytics for 

multicast traffic demand includes the incessant gathering 

of historical traffic data and contextual data, such as time 

of day, location, and user behavior. The dataset is 

frequently updated to reflect present situations, are 

advanced and uninterruptedly advanced to forecast 

future multicast traffic demand using the Dynamic 

Threshold Algorithm with Multi-Link Communication 

(DTA-MLC). Forecasts are used to pre-allocate network 

resources to areas and times with anticipated high 

demand, with approaches incessantly updated based on 

the recent forecasts and real traffic data. Real-time 

modifications to resource allocation are finished based 

on efficient forecasts and actual situations, with 

feedback loops in place to improve forecast models and 

allocation approaches. Systematic assessments of the 

predictive model’s efficiency in enlightening Quality of 

Service (QoS) guide additional modifications and 

refinements. 

4.3.1. Dynamic Threshold Algorithm (DTA) 

The chosen network resource in this instance is the 

network's maximum session count per hour, which is 

subject to a maximum value. To lower the number of 

lost sessions in the network, the maximum number of 

permitted sessions must be divided among all slices. 

(19)
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This split can be performed dynamically, where the 

threshold for each slice is changed in real-time based on 

demand, or statically, where a fixed threshold is 

specified for each slice. We will examine three splitting 

methods: a best-possible dynamic thresholds method 

which relies on its choices on predictions made for the 

slices’ next hour; an optimal dynamic threshold method 

that supports its splitting decisions on the potential 

information of all slices' metrics (as if the projections 

were always correct). By applying a fixed threshold for 

each slice, which is determined by an optimization 

searching on the historical values of the asset in question 

for that slice, a fixed-threshold method divides the 

greatest number of sessions among the slices. 

Furthermore, the highest number of sessions the 

network can have in the tests, assuming no sessions are 

lost, varies from 0 to the greatest range of sessions 

needed for the network to support every user. The 

performance parameter that is reduced for this problem 

is the number of sessions within the threshold for that 

slice, as stated in Equation (19) using Iverson bracket 

notation, wherein 𝑛𝑠(𝜕) is the amount of session in a 

slice. ℌ defines the thershold; ð defines the length,  

ℒ(𝑛𝑠(𝜕), ℌ(𝜕), 𝑡) = ∑ 𝑛𝑠(𝜕)[𝑡] − ℌ(𝜕)[𝑡]𝑛𝑠(𝜕)[𝑡]

ð(𝑛𝑠(𝜕)

𝑡=0

> ℌ(𝜕), 𝑡) 

Algorithm 1: Dynamic Threshold Algorithm. 

Procedure 𝐷𝑦𝑛𝑎𝑚𝑖𝑐ℌ(𝜓𝑠, 𝑚𝑖𝑛𝑠𝑁𝑜𝑆, 𝑅𝑚𝑎𝑥) 

    For 𝜕 in 𝑁𝑜𝑆 do 

             If 𝜓𝑠(𝜕) ≤ 𝑚𝑖𝑛𝑠(𝜕) then 

                    𝑛𝑠(𝜕) = 𝑚𝑖𝑛𝑠(𝜕)  

             Else 

                    𝑛𝑠(𝜕) = 𝑚𝑖𝑛𝑠(𝜕) +
𝜓𝑠(𝜕)−𝑚𝑖𝑛𝑠(𝜕)

∑ 𝜓𝜕(𝜕)𝜕
∗ +𝑓𝑟𝑒𝑒𝑟𝑒𝑠 

             End if 

     End for 

     Return 𝑛𝑠 

End Procedure  

The dynamic threshold algorithm adjusts the threshold 

value based on forecasts for the next hour in order to 

better adjust to variations in network traffic and 

maximize the number of sessions that are accessible in 

the network. It is possible to set a minimum number of 

sessions required for a slice, so future sessions cannot 

be added to a slice that is predicted to have few sessions. 

The dynamic threshold algorithm is shown below 

Algorithm (1) to control the resources of each slice. The 

following are the components of this method: mins is 

the minimum number of resources and number of 

sessions provided in each slice 𝜕; 𝑛𝑠(𝜕); represents the 

amount of resources allocated to slice x; NoS is the 

amount of active slices; Rmax is the greatest number of 

actual resources that can be split between each of the 

slices; and 𝜓𝑠(𝜕) is the estimated amount of the 

necessary resources and discussions for slice 𝜕. The 

resources allocated to each slice are determined by the 

dynamic threshold approach using the following two 

criteria: If every forecast for the approaching the period 

are less than the number of assets assigned for that slice, 

it is assigned to that slice's minimum resources; 

Algorithm (2) if otherwise, it is allocated to that slice’s 

minimum resources plus several additional resources, 

depending on the expected needed assets and the 

network’s available resources. In order to establish a 

baseline for the optimal result, we also investigate a 

dynamic threshold method where actual values are 

employed as the forecasts. 

4.3.2. Multi-link Communication 

This architecture makes use of a multi-link approach to 

estimate traffic, analyse user demands, and recommend 

content. It also makes decisions on data transport. This 

solution enables the traffic shaping function in multi-

link methods of the content retrieval service to provide 

further traffic optimization. The highest production rate 

is achieved by users who can serve the greatest number 

of receivers with their required content. Because of the 

features of the Zeta dispersion, devices can transfer 

content to several users at once, and a cluster can include 

multiple IoT pairings. This issue develops when 

numerous users may seek the same information at the 

same time because to Zeta dispersion and the 

widespread use of the material that individuals have 

stored on their computers. Put otherwise, this kind of 

occurrence might occur within the network. Set ϑ has an 

entirely random number of users, determined by the beta 

coefficient and a number of system attributes. The fact 

that they all require consumers to submit the same kind 

of video content is what matters most. Rather than 

activating just one transmitter per cluster, when user 

interference increases and more transmitters become 

active inside every cluster, we engaged more than two 

transmitters in this study. In order to evaluate the 

potential productivity gains inside the system, we have 

accounted for user interference as well as intra- and 

intercluster interference. 

4.3.2.1. Protocols for Users to Submit Requests 

The Zeta distribution is a way to describe a video file's 

popularity, as was previously indicated. We take a 

particularly extreme user request scenario as an 

illustration of the effectiveness of the system. Put 

another way, we believe there is a possibility that all 

network users will make a simultaneous request for a 

video file. If the user is on a device in the cluster that is 

close to them, they will get the files they have requested 

over the IoT communications channel. Users will get the 

files they have requested through the central station, 

unless otherwise noted. Using the Zeta distribution, 

each participant selects a random integer ranging from 

1 and M. The produced number and the requested 

central station file ID can be compared. In this instance, 

the parameter's objective will be ascertained. This 

feature shows the popularity of each video file as well 

(20)
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as the number of requests made for that specific clip. 

The users should indicate their requests before receiving 

the data. Cluster-to-cluster variations in IoT 

communication link quality are caused by the placement 

detachment of the applicants. Consequently, different 

users perceive the communication channel at different 

speeds. Here, the following is how the common path 

loss model is used:  

𝜌𝑟 = 𝜌𝑡𝑑−𝑎 

As a result, the transmission power (pt) metric has 

significance in this situation. The route loss coefficient 

is represented by the parameter a (alpha), while the 

distance between the transmitter and receiver is 

indicated by the parameter 𝑑. The degree of control that 

each user has is represented by this correlation. It makes 

sense that each user would get less power the further 

they were from their source and receiver, even though 

the opposite is also true. We have taken into account the 

reality that there will always be noise on wireless 

networks, nevertheless. The signal-to-noise ratio is 

determined as follows, assuming that the system’s noise 

level and every communication have a ϱ Gaussian 

distribution with a certain variance: 

𝑆𝑁𝑅 =
𝜌𝑟

𝜚
 

Once we are aware of each wireless connection’s signal-

to-noise ratio, we can apply the well-known Shannon 

relation to determine the link speed:  

𝜛 = 𝜏𝑙𝑜𝑔2(1 + 𝑆𝑁𝑅) 

The W value in Hertz above indicates the 

communication's bandwidth. The speed at which data is 

carried via a wireless connection is measured in bits per 

second. Furthermore, the connection in Equation (23) 

between the communication link's introduction and its 

capacity is given. The terms “capacity” and “speed” for 

a communication link will henceforth be used 

interchangeably. The bandwidth of a single user’s 

wireless link can be used to determine the total capacity 

of the network for communicating between a tiny station 

and multiple users.  

𝑇𝑝 = ∑ 𝜛𝑥

𝑁

𝑥=1

 

We discuss the pth user’s access to a entire of N wireless 

communiqué lines for this reason. The 𝜛𝑥 parameter 

represents the communication link capability of the xth 

user. When a cell environment has the same number of 

clusters as nodes, then Q is the entire system capacity 

(including IoT communication).  

𝑇𝑓𝑒𝑚𝑡𝑜 = ∑ 𝑇𝑞

𝑄

𝑞=1

= ∑ 𝜛𝑥

𝑁𝑞

𝑥=1

 

The number of connections between the cluster’s ith and 

qth is represented by the Nq parameter in the calculation 

above. Complex random-process equations must be 

solved in order to calculate Nq The precise value of this 

parameter will be computed using mathematical 

analysis, with simulations being used to ascertain the 

parameter’s value. 

4.3.2.2. Selecting the best Users  

Considering the capacity of the wireless communication 

network that was described in the previous section, we 

now need to turn on the devices that enable the network 

to function at its fastest possible rate (data speed). Stated 

otherwise, we choose and activate users who can create 

the greatest transmission rate in the network, if each 

cluster contains five possible transmitters, all of which 

can serve multiple users. 

4.4. Enhanced Edge Caching Strategies 

Enhanced edge caching approaches initiate with the 

continuous investigation of real-time data on content 

requests and user preferences at the system edge. This 

investigation is frequently modernized with the modern 

usage patterns. DL models are trained to forecast content 

demand at the network edge by means of this 

modernized information and are retrained occasionally 

to adapt to altering user preferences and content trends. 

Combines Context-Aware Long- Short- Term Model 

with Graph Neural Networks (C-ALSTM-GNN) to 

forecast content demand. LSTM detentions temporal 

patterns, while GNNs model the associations among 

users and content across dissimilar contexts that 

algorithms for dynamic cache placement and 

replacement approaches are advanced and incessantly 

polished, then applied in edge servers to optimize 

caching in real-time. Constant monitoring of cache 

performance, with cache hit rates, latency, and system 

load, permits for unvarying assessment and modification 

of the caching approach to recover its success. 

4.4.1. LSTM 

The current study indicates that LTSM is a useful 

technique for temporal prediction. A particular kind of 

neural network called an RNN is designed to mimic 

sequence- or time-dependent behaviour. One type of 

RNN network in particular is an LSTM. The structure 

of the hidden unit is replaced with memory blocks in the 

LSTM network, which sets it apart from the traditional 

RNN. 

1. Input Gates: this gate, which is the network's prior 

output, regulates the activation of input into the cells 

using the input Xt and the preceding input value ht-1. 

The following is a representation of its output. 

𝜅𝑡 = tanh (𝑊𝑘([ℎ𝑡−1, Χ𝑡]) + 𝑏𝑘 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, χ𝑡] + 𝑏𝑖 

Where bk and bi represent the input bias, and Wk and Wi 

are the input and previous cell outputs weights, 

accordingly. 
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2. Forget gates: the output of this gate, which adapts 

resets the cell’s memory, is stated as follows:  

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, Χ𝑡] + 𝑏𝑓) 

Where bf is the input bias and 𝑊𝑓 is the “weight for the 

input cell output”. 

3. Memory gates: The network’s temporal state is 

stored by this gate, and its output is as follows:  

𝐶𝑡 = 𝐶𝑡−1 ⊙ 𝑓𝑡 + 𝑖𝑡 ⊙ 𝜅𝑡 

Where Ct=Ct-1 is, respectively, the previous cell output 

and the gates’ output current. Figure 2 represents the 

structure of LSTM. 

 

Figure 2. Structure of LSTM. 

4. Output Gates: the following is the output of this gate, 

which modifies the cells’ output activation:  

𝑜𝑡 = 𝜎(𝑊𝑜ℎ𝑡−1, Χ𝑡 + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) 

Where Wo represents the relative “weights for the input” 

value and prior cell output, and bo stands for the “input 

bias”. For different multicast services, we might use 

LSTM predictions to estimate the total number of 

consumers and the separation between users and RHs. 

The Unicast-Multicast Allocation of Resources 

System can then be used to proactively address user 

demand by using this data as input. We can predict the 

number of consumers and the greatest distance between 

them for every multicast service in the months to come 

by using the data from the last three to nine days, as 

shown in Figure 3. This prediction classical is derived 

from the sequential forecasting technique. First, we 

transform the base station traffic data into data frames 

in order to offer “an array of data for the LSTM” 

forecasting model. “The dimensional array (N, W, F)” 

that the LSTM prediction model utilizes is made up of 

the quantity of input sequencing (N), “the length of the 

sequences (W),” and the number of features (F) in each 

sequence. In this research, we have chosen to use a slide 

window that has 96 time points (sequence length). It is 

a succession of sliding windows. The “LSTM prediction 

model adopts” the “supervised learning paradigm,” 

which makes use of data for training with “input (X) and 

output (Y) components.” “The observations collected 

during a slide frame that ended in time step t-1” served 

as the input for the forecast of the data in the subsequent 

time step t. Data collected at “time step t is used to 

calculate the prediction errors.” By optimizing 

parameters, the training of an “LSTM prediction model” 

aims to reduce mistakes.  

4.4.2. GNN 

Taking the graph-structured data “g (V, V ,̆E, E ̆ )” as 

input, the GCN conducts two sorts of processes on the 

data: information reduction and message transmission. 

We define the following two functions for the two sorts 

of operations. The message function determines the 

theme that should be transmitted from node v to node u.  

𝑀𝑠𝑔(𝑣, 𝑢) = �̅�, 𝑒,̅ 𝑣, 𝑢𝜖𝑉, 𝑒 = (𝑣, 𝑢)𝜖𝐸, 

where nodes 𝑣 and 𝑢 are linked in ℊ(V, V ̆,E, E ̆ ) by a 

link e=(v, u).The communications that every node in V 

receives from its neighbours are reduced by the 

reduction function.  

𝑟𝑑𝑢(𝑣) = ∑ 𝑚𝑠𝑔 (𝑢, 𝑣), 𝑣 ∈ 𝑉

{𝑢:(𝑢,𝑣)∈𝐸}

 

Next, the new feature vector of v is obtained by passing 

{rdu(v),∀vV} we send through a linear network in the 

GCN, and the transmission purpose from layer-l to 

layer-(l+1) is specified as;  

�̆�𝑙+1 = 𝜎(𝑊. 𝑟𝑑𝑢(𝑙)(𝑣) + 𝑏) 

Where rdu(l)(v) and is the decreased data for node v 

obtained at layer-l of the linear network, Wand b 

indicates the weight matrices and bias of the linear 

network, and 𝜎(.) is the on linear transmission function. 

To be able to collect processed graph-structured 

information and generate a vector for its representation, 

we design a pooling layer after numerous layers of 

GCNs. More specifically, we select the layer for pooling 

that takes the average of the feature vectors for every 

node. 

ℊ̃ =
1

|𝑉|
∑ �̆�(𝑘)

𝑣𝜖𝑉

 

Where |V| is the quantity of nodes in ℊ̃ is the obtained 

vector, and k is the amount of GCN layers. At last, we 

send ℊ̃ forgets the final output and proceeds through 

several linear levels. 

4.5. AI-Based Multicast Routing Protocols 

The advance of EQM trees-based multicast routing 

protocols starts with the incessant gathering of real-time 

data on network topology, traffic patterns, and link 

states, sustaining a modernized dataset for continuing 

examination and model training. AI processes for ideal 

multicast routing results are established and unceasingly 

advanced by means of this efficient network data. 

Dissimilar network scenarios are frequently replicated 

to test and refine the routing procedures, with the 
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simulation environment efficient to replicate current 

network situations. To create EQM trees. An EQM tree 

is a shortest-path multicast tree with minimum E2E cost 

when it comes to QoS restrictions such queue size ratio, 

link stability, number of hops, number of time slots, and 

avoiding the primary users' permitted channel. (a 

combinations of these factors). The routing protocols 

are then arranged in the live network, with incessant 

monitoring to ensure they adapt to real-time variations. 

Continuing performance monitoring and the usage of 

real-time data enable continuous optimization of routing 

results, confirming the procedures continue effective 

and efficient. 

This section introduces the DQN Design for QoS 

Multicast Routing (DQMR) protocol, which constructs 

EQM trees-a shortest-path multicast tree with minimum 

E2E cost-subject to QoS restrictions, avoiding primary 

user areas and reducing interference links. In addition, 

the DQMR protocol offers high PDR, low control 

overhead, minimal routing delay, and good stability. In 

IoT environment can move according to several 

mobility models. Specifically, nodes 1 through 11 can 

move in accordance with the Random WayPoint 

mobility (RWP) model, with the Reference Point Group 

Mobility model (RPGM). 
Figure 3 illustrates the steps of the Dynamic Queue-

based MAC-layer Routing (DQMR) Protocol. 

 

Figure 3. DQMR model. 

The DQMR protocol in Figure 3 is therefore 

designed to function effectively in “both mobility 

models.” The DQMR protocol can be shown as follows 

in the supplied IoT, which has a source node Snode and a 

multicast group 𝒟. 

4.5.1. Initialization  

Routing table’s variables are initialized as follows by 

each node in the specified IoT environment: Set of last 

visit nodes ℒ𝑟𝑡 = ∅, Route cost 𝐶𝑟𝑡 = +∞ 

 Step 1: Step 2 is to be followed if a node has to 

establish the tree to the multicast group D and turns 

into a Snode. If not, proceed to step 3.  

ℒ𝑟𝑟𝑒𝑞 = ℒ(𝑆𝑛𝑜𝑑𝑒), = η𝑟𝑟𝑒𝑞η𝑆𝑛𝑜𝑑𝑒
, ∁𝑟𝑟𝑒𝑞= ∁𝑆𝑛𝑜𝑑𝑒

 

Proceed to step 4. The fields listed below are included 

in the RREQ packet:  

⟨

𝑝𝑎𝑐𝑡𝑦𝑝𝑒 , ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡 , 𝑟𝑟𝑒𝑞𝑖𝑑

𝑀𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠
,

𝑀𝑢𝑡𝑖𝑐𝑎𝑠𝑡𝑠𝑒𝑞𝑛𝑢𝑚𝑏𝑒𝑟
,

𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠
, 𝑆𝑜𝑢𝑟𝑐𝑒𝑠𝑒𝑞𝑛𝑢𝑚𝑏𝑒𝑟

,

𝐿𝑎𝑠𝑡𝑣𝑖𝑠𝑖𝑡, 𝑛𝑒𝑥𝑡𝑣𝑖𝑠𝑖𝑡, 𝑙𝑖𝑛𝑘𝑐𝑜𝑠𝑡 , 𝑟𝑜𝑢𝑡𝑒𝑐𝑜𝑠𝑡

⟩ 

4.5.2. Multicast Tree Discovery Process Sending 

RREQ Process 

 Step 2: Snode needs the position, velocity, way, queue 

size, and frequencies of the Primary Users pU 

information of its neighbors. To predict values 

𝑄𝑖
∗(Snode, w) for each terminus di ∈ D, the Snode uses 

the DQN-MEC perfect to identify the best neighbour 

𝑤𝑖
∗ that has the highest value 𝑄𝑖

∗(𝑆𝑛𝑜𝑑𝑒 , 𝑤𝑖
∗); for 

instance, in Figure 4, the Snode best neighbors are 

nodes 3, d2, 15, and 16, which correspond to 

destinations d1, (d2, d3) d4, and d5. (ℒ(Snode)= (ℒrt=∪{ 

Snode}, the usual of next visit nodes η𝑆𝑛𝑜𝑑𝑒
=

{𝑤𝑗,
∗∀𝑑𝑠𝑡𝑖𝜖𝐷}\𝑆𝑛𝑜𝑑𝑒, the list of costs since the Snode 

to every next visit node ∁𝑆𝑛𝑜𝑑𝑒
=

{𝑐𝑜𝑠𝑡(𝑆𝑛𝑜𝑑𝑒 , 𝑤𝑖
∗), ∀𝑤𝑖

∗𝜖 η, and the route cost (Crt=0) 

are all updated by the Snode. Subsequently, the Snode 

creates a “route request (RREQ)” packet, 

broadcasting it to neighbours, with the contents. 

 

Figure 4. Multicast tree discovery process. 

4.5.3. Receiving RREQ Process 

 Step 3: Proceed to Step 3.1 if the node receives an 
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RREQ. If not, the procedure is terminated. 

 Step 3.1: If at least one of the following scenarios is 

true, the RREQ is dropped: 

The node is not included in the RREQ’s η𝑟𝑟𝑒𝑞 list. 

Route cost Crt in the route table, where cost (w, node) 

is located in the Crreq, is less than or equal to the new 

cost Crreq+C(w, node). 

 Step 3.2: Sender’s ID is stored by the node as the 

preceding node. Return to Step 2 now. 

4.5.4. Route Reply Process 

 Step 4: Proceed to step 5 if the node is the dst. If not, 

proceed to step 6. 

 Step 5: Proceed to step 9 if the 𝑑𝑠𝑡 generates and 

replies an RREP packet via unicast transmission to 

the preceding node after receiving an RREQ packet. 

If not, the procedure is terminated. The fields listed 

below are included in the RREP packet:  

⟨

𝑝𝑎𝑐𝑡𝑦𝑝𝑒 , ℎ𝑜𝑝𝑐𝑜𝑢𝑛𝑡

𝑀𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡𝑖𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠

𝑀𝑢𝑡𝑖𝑐𝑎𝑠𝑡𝑠𝑒𝑞𝑛𝑢𝑚𝑏𝑒𝑟

𝑆𝑜𝑢𝑟𝑐𝑒𝐼𝑝𝑎𝑑𝑑𝑟𝑒𝑠𝑠

⟩ 

 Step 6: In the event that the node gets an RREP 

packet, it proceeds to Step 7 after appending the 

contributor to the list of following hops (𝜂) in the 

route table. If not, the procedure is terminated. 

 Step 7: Proceed to Step 8 if the node is the Snode. In 

the event that “node v unicasts the RREP packet to 

the node” before it, go to Step 8. 

 Step 8: Each node in the resulting EQM tree uses the 

GT-CTA classical to create an ideal “channel-time 

slot” schedule that avoids affecting multiple PUs’ 

affected regions and gives the EQM tree the fewest 

time slots possible for an assumed quantity of 

channels. For instance, the EQM tree avoids the 

impacted PU zones and prevents interference 

linkages by using channels c1, c2, c3 and three time 

slots t1, t2, t3 proceed to step 9. Figure 5 represents the 

route reply process.  

 

Figure 5. Route reply process. 

4.5.5. Data Transmission Process 

 Step 9: Using the best channel-time slot technique 

and the members of the multicast group’s NH, “the 

source and mobile nodes of the obtained EQM tree” 

multicast data to them. In particular, the source uses 

the Poisson process to generate data packets. The 

data packets are then broadcast by the source to the 

subsequent hops via “the channel-time slot” 

technique. When a “node in the EQM tree gets a data 

packet”, it forwards it to the multicast group using the 

same method that the source used. 

4.5.6. Multicast Tree Maintenance Process 

A node will create backup routes locally by employing 

the same technique as the multicast route procedure' 

source if its existing link to the ensuing hops is broken 

during the flow and data transfer operations. In 

particular, the node will need neighbour information in 

order to compute L_rreq, η_rreq, ∁_rreq. if it is unable 

to establish a connection with at least one of the 

subsequent hops. “The node then generates and sends an 

RREQ” message to each of its close neighbours. “If a 

node receives an RREQ” from a different “node and 

knows the routes to the multicast group”, it will reply 

with an RREP to that node with the goal to build further 

routes. Node w will keep using the same method as the 

node to identify alternate “routes to the multicast group” 

in the event that it receives an RREQ from the node and 

is unable to determine a route to the multicast group. As 

a result, this maintenance procedure is limited in nature 

and only creates a few workarounds for the broken 

EQM tree. 

5. Experimental Results 

This section presents the experimentation analysis and 

performance evaluation of the suggested study plan. 

This part is divided into three subsections: research 

overview, comparative analysis, and simulation study. 

5.1. Simulation Study 

To simulate the proposed research method, Network 

Simulator version 3.26 (NS3) is utilized. Figure 11 that 

will be displayed at the end of this paper due to 

formatting purposes-represents the NS-3 simulation 

environment. 

Table 1. System specifications. 

Software specifications 
OS Ubuntu 14.04LTS 

Network simulator NS-3.26 

Hardware specifications 
RAM 4 GB 

Hard Disk 500 GB 

This tool has an efficient network topology and 

provides all specifications for the proposed technique. 

Table 1 indicates the system specifications and Table 2 

represents the simulation parameters. 
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Table 2. Simulation parameters. 

Parameters Descriptions 

Network Parameters 

No. of IoT devices 50 

Base Station 2 

Edge server 1 

Transmission slot 

parameters 

Length of slot 1040 bits 

Duration of slot 8s 

packet length 830 bits 

Parameters of packet 

Packet Size 1024 

No. of. Packets 100 bytes 

Packet interval 0.99s 

Data rate 280kbps 

No. of. Retransmission Max 5 

Parameters of energy 

Initial energy 0.5J 

Receiving power 47J 

Transmission power 47J 

Data aggregation power 5J 

Battery power 3.3V 

Number of. run 1100 

Number of rounds 600 

Probability of node 0.1 

Duration of a single round 18s 

Simulation time 150s 

Table 3 and Figure 6 the latency in milliseconds (ms) 

against the number of devices for three different 

strategies: 2MRLOR, SFLA, and the proposed method. 

At 10 devices, the latencies are 45 ms, 35 ms, and 20 ms 

respectively. As the number of devices increases to 20, 

latencies are 55 ms for 2MRLOR, 45 ms for SFLA, and 

22 ms for the proposed method. At 30 devices, the 

latency for 2MRLOR is 65 ms, SFLA is 55 ms, and the 

proposed method shows 25 ms. For 40 devices, the 

latencies recorded are 75 ms, 65 ms, and 30 ms 

respectively. Finally, with 50 devices, 2MRLOR has a 

latency of 80 ms, SFLA at 70 ms, and the proposed 

method at 32 ms, illustrating the superior performance 

of the proposed method across all scenarios. 

 

Figure 6. Latency. 

5.2. Comparative Analysis 

This subsection compares the suggested technique to 

different existing approaches, including 2MRLOR [30], 

SFLA [32], Radio Resource Management Policy [33] is 

performed to evaluate its performance in order. 

5.2.1. Comparison of Latency 

Latency (€) is well-defined as the amount of delay taken 

to process or complete a particular request/task. 

Generally, low latency system will possess high QoS. 

The mathematical formulation of € is represented as,  

€ = 𝑇𝑜𝑡𝑡 − 𝐶𝑜𝑚𝑡 

Table 3. Numerical results of latency.  

X-axis (number of devices) 
y-axis latency(ms) 

2MRLOR SFLA Proposed 

10 45 35 20 

20 55 45 22 

30 65 55 25 

40 75 65 30 

50 80 70 32 

As shown in Table 3 above. 

5.2.2. Comparison of Energy Efficiency 

The goal of energy efficiency is to use the least amount 

of energy necessary to finish a task or achieve a desired 

result. This is how the energy efficiency e is determined, 

𝜗𝑒 = 𝜗𝑡 − 𝜗𝑜 

Where 𝜗t reflects the energy used to carry out packet 

transmission, which is deducted from the total energy 

available. 

To perform the evaluation, or validation, 

performance metrics like Latency, Energy efficiency, 

Traffic Prediction Rate, Throughput, Packet Delivery 

Ratio (PDR). 

Table 4. Numerical results of energy efficiency  

X-axis (number of devices) 
y-axis energy efficiency (%) 

RRMP SFLA Proposed 

10 68 73 75 

20 70 75 83 

30 73 80 85 

40 75 83 90 

50 80 85 93 

 

Figure 7. Energy efficiency. 

Table 4 and Figure 7 illustrate energy efficiency in 

percentage (%) against the number of devices for three 

different strategies: RRMP, SFLA, and the proposed 

method. With 10 devices, energy efficiencies are 68% 

for RRMP, 73% for SFLA, and 75% for the proposed 

method. As the number of devices increases to 20, 

efficiencies are 70% for RRMP, 75% for SFLA, and 

83% for the proposed method. At 30 devices, energy 

efficiency for RRMP is 73%, SFLA is 80%, and the 

proposed method achieves 85%. For 40 devices, the 

efficiencies recorded are 75% for RRMP, 83% for 

SFLA, and 90% for the proposed method. Lastly, with 
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50 devices, RRMP demonstrates an energy efficiency of 

80%, SFLA at 85%, and the future technique at 93%, 

importance the superior energy efficiency of the future 

method transversely all device situations. 

5.2.3. Comparison of Traffic Prediction Rate 

By utilizing historical network traffic data, network 

traffic prediction seeks to forecast future network 

traffic. This can be used as a proactive strategy for 

planning and network management duties. 

 

Figure 8. Traffic prediction rate. 

At 10 devices, as displayed in Figure 8, the traffic 

prediction rates are 70% for 2MRLOR, 75% for SFLA, 

and 83% for the future technique. With 20 strategies, the 

rates upsurge to 73% for 2MRLOR, 80% for SFLA, and 

85% for the suggested technique. At 30 devices, 

2MRLOR attains 76%, SFLA influences 83%, and the 

suggested technique attains 90%. For 40 devices, the 

prediction rates are 78% for 2MRLOR, 85% for SFLA, 

and 91% for the proposed method. Finally, with 50 

devices, the rates are 80% for 2MRLOR, 87% for 

SFLA, and an impressive 96% for the proposed method, 

demonstrating the superior performance of the proposed 

method in traffic prediction across varying device 

counts in Table 5 and Figure 9. 

Table 5. Numerical results of traffic prediction rate. 

X-axis (number of devices) 
y-axis traffic prediction rate (%) 

2MRLOR SFLA Proposed 

10 70 75 83 

20 73 80 85 

30 76 83 90 

40 78 85 91 

50 80 87 96 

 

Figure 9. Throughput. 

5.2.4. Comparison of Throughput  

Throughput (Ť) is defined as the amount of 

transmission proportion of information from source to 

destination. A well-being system must have high 

throughput. Mathematically, Ť can be formulated as,  

Ť =
𝑇𝑟𝑑

𝑇𝑟𝑑 + 2 × 𝑃𝑟𝑑 × 𝐵𝑊 

Where, Trd and Prd denotes the transmission delay and 

propagation delay respectively, and BW denotes the 

bandwidth. 

Table 6 and Figure 9 represents throughput in kilobits 

per second (kbps) against the number of devices for 

three different strategies: 2MRLOR, SFLA, and the 

proposed method. At 10 devices, throughputs are 281 

kbps for 2MRLOR, 295 kbps for SFLA, and 300 kbps 

for the proposed method. With 20 devices, throughputs 

increase to 286 kbps for 2MRLOR, 300 kbps for SFLA, 

and 316 kbps for the proposed method. At 30 devices, 

the throughput for 2MRLOR is 290 kbps, SFLA 

achieves 310 kbps, and the proposed method reaches 

326 kbps. For 40 devices, the throughputs recorded are 

296 kbps for 2MRLOR, 315 kbps for SFLA, and 335 

kbps for the proposed method. Lastly, with 50 devices, 

2MRLOR has a throughput of 300 kbps, SFLA at 320 

kbps, and the suggested methods peaks at 342 kbps, 

demonstrating the suggested methods superior 

presentation in terms of throughput transversely all 

device counts. 

Table 6: Numerical results of throughput. 

X-axis (number of devices) 
y-axis throughput (kbps) 

2MRLOR SFLA Proposed 

10 281 295 300 

20 286 300 316 

30 290 310 326 

40 296 315 335 

50 300 320 342 

5.2.5. Comparison of Packet Delivery Ratio (PDR) 

The number of packets distributed separated by the total 

number of packets formed by all nodes is recognized as 

the PDR. The PDR can be specified in the next way: 

Ř =
Ď

Ĝ
∗ 100 

In this case, Ř attitudes for the number of delivered 

packets, Ď for the number of formed packets, and Ĝ for 

the PDR. 

Table 7 and Figure 10 exemplifies the PDR in 

percentage (%) in contradiction of the number of 

devices for 3 various policies: 2MRLOR, SFLA, and the 

proposed method. At 10 devices, PDR are 75% for 

2MRLOR, 80% for SFLA, and 83% for the suggested 

methods. With 20 devices, the ratios are 70% for 

2MRLOR, 83% for SFLA, and 85% for the proposed 

method. At 30 devices, the packet delivery ratio for 

2MRLOR is 75%, SFLA achieves 86%, and the 

proposed method reaches 90%. For 40 devices, the 

(42)

8 

(41)

8 
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ratios are 78% for 2MRLOR, 85% for SFLA, and 93% 

for the proposed method. Finally, with 50 devices, the 

packet delivery ratios are 80% for 2MRLOR, 89% for 

SFLA, and 96% for the proposed method, showcasing 

the superior packet delivery performance of the 

proposed method across all device counts. 

Table 7. Numerical results of traffic prediction rate. 

X-axis (number of devices) 
y-axis packet delivery ratio (%) 

2MRLOR SFLA Proposed 

10 75 80 83 

20 70 83 85 

30 75 86 90 

40 78 85 93 

50 80 89 96 

 

Figure 10. PDR. 

6. Research Summary 

Initially, we construct a network consisting of 50-

Devices, 2-Base Station, 1-Edge Server. Then, we 

perform Multicast group management using the SOM-

PSO. Next, we perform Resource Allocation using Deep 

Reinforcement Learning. Then, we perform Predictive 

Analytics for Multicast Traffic Demand using the DTA-

MLC Next, we implement the Enhanced Edge Catching 

strategies using the Context-aware Long-Short-Term 

Model with graph neural networks (C-ALSTM-GNN) to 

forecast content demand. Then, we perform Multicast 

routing protocol using the Efficient QoS Multicast 

(EQM). Finally, we plot graph for the following metrics 

are No of Devices vs. Latency (ms), No of Devices vs. 

Energy efficiency (%), No of Devices vs. Traffic 

prediction rate (%), No of Devices vs. Throughput 

(kbps) and No of Devices vs. packet delivery ratio (%) 

Figures 7 to 11 and Tables 3 to 7. 

 

Figure 11. NS-3 simulation environment. 

The network simulator version 3, or NS-3, has an 

efficient network topology and provides all 

specifications for the proposed technique. 

7. Conclusions 

In conclusion, foremost goal and scope of this research 

is to develop and validate the AI-driven multicast 

approaches for improving the network performance in 

5G systems we use the SOM-PSO to handle Multicast 

groups. Next, we use Deep Reinforcement Learning for 

Resource Allocation. Next, we use Multi-Link 

Communication and the DTA-MLC Next, we use the 

Context-aware Long-Short-Term Model with Graph 

Neural Networks (C-ALSTM-GNN) to estimate content 

demand and execute the enhanced edge catching 

techniques. Next, we use the EQM to carry out the 

multicast routing protocol. The proposed achieves 

latency with 32 ms, energy efficiency with 93%, traffic 

prediction rate 96%, throughput with 342 kbps and PDR 

with 96%. 
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