
The International Arab Journal of Information Technology, Vol. 22, No. 2, March 2025 217

Symmetric Classes of Series-Parallel Digraphs

Ruzayn Quaddoura

Faculty of Information Technology, Zarqa University, Jordan

Ruzayn@zu.edu.jo

Abstract: Let S and T be the set of sources and sinks of a digraph G. Valdes et al. [16] defined the Series-Parallel digraph (SP-

dags) as a digraph whose reduction transitive is a Minimal Series-Parallel-digraph (MSP-dags). An MSP digraph is any digraph

that can be constructed starting with one vertex by applying two composition operators, a parallel composition which is the

disjoint union of two MSP-dags, and a series composition which is the disjoint union of two MSP-dags G1 and G2 with adding

the arcs of T1×S2. This famous class of digraphs has numerous theoretical and applied information technology applications. We

show in this paper that if we consider the multiplication in the series operation as S1×T2, T1×T2, or S1×S2 then the obtained

symmetric classes of series-parallel digraphs are recognizable in linear time.

Keywords: Digraphs, series-parallel digraphs, design and analysis of algorithms, complexity.

Received September 22, 2024; accepted December 19, 2024

https://doi.org/10.34028/iajit/22/2/1

1. Introduction

Series-Parallel digraphs (SP-dags) for short serve as

powerful tools for modeling, analyzing, and optimizing

complex systems across various disciplines, making

them indispensable in both theoretical research and

practical applications [3]. The class of SP-dags was

defined by Valdes et al. [16] in terms of minimal series-

parallel digraphs (MSP-dags) as follows:

Definition 1: An MSP-dag is defined recursively as

follows:

a) A dag containing only one vertex is an MSP-dag.

b) If G1=(V1, E1) and G2=(V2, E2) are two MSP-dags

then the dag constructed by each of the following

operations is also an MSP-dag:

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2).

• Series composition: G=G1SG2=(V1∪ V2, E1∪ E2 ∪
T1× S2) where T1 is the set of sinks of G1 and S2 is the

set of sources of G2.

A dag is an SP if and only if its transitive reduction is an

MSP-dag. It is proved by Valdes et al. [16] that a dag is

an MSP if and only if it doesn’t contain a sub-graph

isomorphic to the configuration in Figure 1. In addition,

a linear time recognition algorithm for SP dags has been

presented by Valdes et al. [16]. This algorithm

effectively helps to find solutions to many problems

related to this type of dag, for example [2, 10, 12].

Figure 1. The forbidden configuration of an MSP-dag.

We propose in this work to study three symmetric

classes of SP-dags by considering the multiplication in

the series operation of the minimal members to be one

of S1×T2, S1×S2, or T1×T2. The first class is called Series-

Parallel Sources Sinks and is denoted by (SP-ST), the

multiplication in the series operation of the minimal

members in this class is S1×T2. The second class is called

Series-Parallel Sources Sources and is denoted by (SP-

SS), the multiplication in the series operation of the

minimal members in this class is S1×S2. The third class

is called series-parallel sinks sinks and is denoted by SP-

TT, the multiplication in the series operation of the

minimal members in this class is T1×T2. For each case,

we will show that the minimal members of the

corresponding class of dags can be defined by some of

the forbidden configurations. Using this result, we will

show that all these classes can be recognized in linear

time. The motivation of this study is currently a purely

mathematical point of view, hoping that it will find light

in practical and theoretical applications. The paper is

organized as follows: The fundamental ideas and

notations that will be utilized throughout this study are

provided in section 2. The class SP-ST dags is presented

in section 3. The class SP-SS dags and the class SP-TT

dags are presented in section 4 and section 5

respectively. We present in section 6, as a conclusion,

two potential uses of these classes.

2. Preliminaries

A directed graph (or a digraph for short) G=(V, E) is

defined by two sets, V(G) or simply V is the vertex set,

and E(G) or simply E is the arc set. Every arc of E is an

ordered pair of vertices of V. The number n indicates the

number of vertices of G and the number m indicates the

number of edges of G. If (x, y) ∈ E then x is called a

predecessor of y, and y is called a successor of x. The set

of all predecessors of a vertex x is denoted by N+(x), and

the set of all successors of x is denoted by N-(x). The set

of neighbors of x is the set N(x) = N+(x) ∪ N-(x). The

https://doi.org/10.34028/iajit/22/2/1

218 The International Arab Journal of Information Technology, Vol. 22, No. 2, March 2025

number |N+(x)| is called the positive degree of x and

denoted by d+(x), and the number |N-(x)| is called the

negative degree of x and denoted by d-(x), the degree of

a vertex x is the number d(x)=|N(x)|. A vertex x is called

a source if d+(x)=0 and is called a sink if d-(x)=0. Given

a subset X of the vertices set V, the sub-graph induced

by X will be denoted by G[X]. The set N+(X) is the set of

successors of all elements of X, and the set N-(X) is the

set of predecessors of all elements of X. A path of length

k is a sequence of vertices x1, x2, ..., xk such that any two

consecutive vertices form an arc. A path x1, x2, ..., xk is

called a circuit if x1=xk and k ≥ 2. A directed acyclic

graph, denoted by dag, is a digraph with no circuit. A

chain of length k is a sequence of vertices x1, x2, ..., xk

such that (xi, xi+1) or (xi+1, xi) is an arc. If x1=xk and k ≥ 2

the chain is called a cycle. An arc (x, y) is called a

transitive arc if there is a path from x to y of length at

least 3. A dag G is minimal if any arc of G is not

transitive. The transitive reduction of a dag G is

obtained by removing from G all transitive arcs. A

bipartite graph G=(B ∪ W, E) is given by a set of black

vertices B and a set of white vertices W and a set of

edges E ⊆ B × W. A subset S of vertices of V(G) is called

an independent set if there is no edge between any two

vertices of S. A bi-clique is the complement in the

bipartite sense of an independent set. A graph G is called

F-free where F is a set of graphs when G does not

contain an induced sub-graph isomorphic to a graph of

F.

3. Series-Parallel Sources Sinks Dags

We define the class of series-parallel sources sinks dags

in terms of minimal series-parallel sources sinks dags as

follows:

Definition 2: (Minimal series-parallel sources sinks)

a) A dag containing only one vertex is an MSP-ST dag.

b) If G1=(V1, E1) and G2=(V2, E2) are two MSP-ST dags

then the dag constructed by each of the following

operations is also an MSP-ST dag :

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2).

• Series composition: G=G1SG2=(V1 ∪ V2, E1 ∪ E2 ∪
S1 × T2) where S1 is the set of sources of G1 and T2 is

the set of sinks of G2.

Definition 3: A dag is an SP-ST dag if and only if its

transitive reduction is an MSP-ST dag.

As MSP-dags, an MSP-ST dag G can be represented by

a binary decomposition tree T(G) that reflects the

construction of G starting of its vertices using series and

parallel operations as follows:

• The leaves correspond to the vertices of G.

• Let α be an internal node and α1, and α2 are

respectively the left and right child of α, then α is

labeled by P (resp. S) if G[α]=G[α1]PG[α2] (resp.

G[α]=G[α1]SG[α2]) where G[αi], i=1, 2 is the sub-

graph of G induced by the set of vertices having αi as

their least common ancestor.

Figure 2 illustrates an example of an MSP-ST dag and

its binary decomposition tree. It is worth mentioning

that the two children of an S-node are ordered according

to the series operation of that node.

Figure 2. An MSP-ST dag and its binary decomposition tree.

There is a strong relationship between an MSP-ST

dag and the notion of a K⨁S-bipartite graph defined in

[11] as follows:

Definition 4: A bipartite graph G=(B ∪ W, E) such that

n ≥ 2 is a K⨁S graph if the vertex set V(G) contains an

isolated vertex or there is a partition of V(G) into two

sets: a bi-clique K and an independent set S.

This relation is established by the following property:

Property 1: A bipartite graph G=(B ∪ W, E) with n ≥ 2

is a K⨁S-graph if and only if V(G) can be partitioned

into two sets V1 and V2, such that for every black vertex

b ∈ V1 and every white vertex w ∈V2, bw ∈ E, and for

every white vertex w∈V1 and every black vertex b∈ V2,

bw ∉ E.

Remark: Let G=(B ∪ W, E) be a K⨁S-graph without

isolated vertices, let (V1, V2) be the partition of V(G)

defined as in Property 1 that we called a K⨁S-

decomposition of G. For i=1, 2, if we consider the black

vertices of Vi as the set of sources of G[Vi] and the set of

white vertices of Vi as the set of sinks of G[Vi] then, we

can translate the partition (V1, V2) of G as a series

decomposition of G to G[V1] and G[V2]. This remark

and Theorem 1 which is proved by Quaddoura and Al-

Qerem [15] help us to characterize the MSP-ST dags as

it shows in Theorem 2.

Theorem 1: A bipartite graph G is (P6, C6)-free if and

only if every connected sub-graph of G is a K⨁S-graph.

Theorem 2: Let G be a dag. The following statements

are equivalent,

1. G is an MSP-ST dag.

2. G is a bipartite {Z1, Z2, Z3}-free digraph.

3. G is a bipartite digraph of depth 1 and every

connected sub-graph of Gn0 is a K⨁S-graph, where

Symmetric Classes of Series-Parallel Digraphs 219

Gn0 is the graph obtained by omitting the orientation

of G.

Figure 3. The forbidden configurations of an MSP-ST dag.

Proof 1⇒2: We observe that every vertex of an MSP-

ST dag is either a source or a sink, the reason for this

fact is that the series operation does not change the

identity of a source vertex or a sink vertex.

Consequently, an MSP-ST dag does not contain a path

of length 3. This means that an MSP-ST dag is a

bipartite dag of depth one. So, an MSP-ST dag is Z3-

free. From the other part, we can check that a P6 or a C6

has neither a series nor a parallel decomposition. Thus,

if G is an MSP-ST dag and contains a P6 or a C6 then,

there is a step during the construction of the binary

decomposition tree T(G) for which the decomposition

can no longer continue. So, G must be {Z1, Z2}-free.

Proof 2⇒3: Assume that G is a bipartite {Z1, Z2, Z3}-

free digraph. Then G is a bipartite graph of depth 1 and

Gn0 is a {P6, C6}-free. By Theorem 1, every connected

sub-graph of Gn0 is a K⨁S- graph.

Proof 3⇒1: To prove that G is an MSP-ST dag it is

sufficient to prove that G can be reduced to its vertex set

by a parallel and a series decomposition. We can

suppose, without loss of generality, that Gno is

connected, otherwise, since by supposition every

connected sub-graph of Gno is a K⨁S-graph, we can

apply this treatment for every connected component of

Gno. Let (V1, V2) be the K⨁S-decomposition of Gno.

Since G is a bipartite dag of depth 1 then, by the above

Remark, (V1, V2) is a series decomposition of G to G[V1]

and G[V2]. Thus, by considering the K⨁S-

decomposition of every connected component of Gno

[V1] and those of Gno [V2], we deduce that G can be

reduced to its vertex set by a parallel and a series

decomposition, therefore G is an MSP-ST.

The following Corollary is immediate since an MSP-ST

dag is Z3-free.

Corollary 1: The class of SP-ST dags and MSP-ST dags

are identical.

To recognize that an arbitrary dag G is an SP-ST dag,

we check first that G is a Z3-free, this can be done in

O(n) time complexity by checking that every vertex of

G is a source or a sink. Then we check that the bipartite

graph Gno is {P6, C6}-free, this can be done by the

O(n+m) time recognition algorithm of the {P6, C6}-free

bipartite graphs presented by Quaddoura and Al-Qerem

[15].

Corollary 2: The class of SP-ST dags can be recognized

in O(n+m) time complexity.

4. Series-Parallel Sources Sources Dags

We define the class of series-parallel sources sources

dags in terms of minimal series-parallel sources sources

dags as follows:

Definition 5: (Minimal series-parallel sources sources)

a) A dag having a single vertex is an MSP-SS dag.

b) If G1=(V1, E1) and G2=(V2, E2) are two MSP-SS dags

then the dag constructed by each of the following

operations is also an MSP-SS dag:

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2).

• Series composition: G=G1SG2=(V1 ∪ V2, E1∪ E2 ∪
S1×S2) where Si is the set of sources of Gi, i=1, 2.

Definition 6: A dag is an SP-SS dag if and only if its

transitive reduction is an MSP-SS dag.

In the same way, as in the class of MSP dags, an MSP-

SS dag G can be represented by a binary decomposition

tree T(G) that reflects the construction of G starting of

its vertices using series and parallel operations. Also, as

in the binary decomposition tree of an MSP dag, the two

children of an S-node are ordered according to the series

operation of that node. Figure 4 represents an SP-SS dag

G, the transitive reduction of G which is the MSP-SS

dag G’, and the binary decomposition tree T(G’). The

following theorem is the key to our recognition

algorithm of SP-SS dags, it characterizes the MSP-SS

dags by two forbidden configurations.

Figure 4. An SP-SS dag G, the transitive reduction of G which is the

MSP-SS dag G’, and the binary decomposition tree T(G’).

220 The International Arab Journal of Information Technology, Vol. 22, No. 2, March 2025

Theorem 3: Let G be a connected dag without transitive

arcs. G is an MSP-SS dag if and only if G is {F1, F2}-

free, as shown in Figure 5.

Figure 5. The forbidden configurations of an MSP-SS dag.

Proof: Suppose that G is an MSP-SS dag and let’s show

that G is {F1, F2}-free.

Claim 1: Let y1, y2 ∈ V(G) such that N-(y1) ∩ N-(y2) ≠ ∅

then N-(y1) ⊆ N-(y2) or N-(y2) ⊆ N-(y1).

Proof: Since G is an MSP-SS, every arc in G is created

by a series operation. According to the series operation,

for any vertex y, all the arcs {(x, y) | x ∈ N-(y)} are

created by the same series operation. So, if there is two

vertices y1, y2 such that N-(y1) ∩ N-(y2) ≠ ∅ then, if the

two sets of arcs {(x, y1) | x ∈ N-(y1)} and {(x, y2) | x ∈ N-

(y2)} are created by the same series operation then N-(y1)

= N-(y2). Suppose that the set of arcs {(x, y1) | x ∈ N-(y1)}

is created by a series operation S1 and the set of arcs {(x,

y2) | x ∈ N-(y2)} is created by a series operation S2 where

S1 precedes S2. Since N-(y1) ∩ N- (y2) ≠ ∅, the vertex y2

was a source during the operation S2, so N-(y1) ⊆ N-(y2).

If S2 precedes S1 then N-(y2) ⊆ N-(y1).

By Claim 1, G is F1-free.

Claim 2: Let y ∈ V(G), for every x1, x2 ∈ N-(y), N-(x1)=N-

(x2).

Proof: Let x ∈ N-(x1). By the definition of the series

operation, the arc (x1, y) is created by a series operation

S1 that precedes the series operation S2 for which the arc

(x, x1) has been created. Since the arcs (x1, y), (x2, y) were

created by the same series operation S1 then, during the

series operation S2 there exist as sources x1 and x2,

therefore (x, x2) ∈ E, this implies that N-(x1)=N-(x2).

By Claim 2, G is F2-free.

Suppose now that G is a connected dag without

transitive arcs and {F1, F2}-free. Let’s show that G is an

MSP-SS dag. Let S be the set of all sources of G and Q

= G[V - S].

Claim 3: Every vertex of Q that is a successor to a

vertex of S is a source of Q.

Proof: Let y be a vertex of Q that is not a source and a

successor to a vertex x ∈ S. Let z be a source in Q such

that z is an ancestor of y. Since G does not contain

transitive arcs, (x, u) ∉ E for every vertex u located on

the path going from z to y. Suppose that z is a

predecessor of y. Since S is the set of all sources of G,

there is a source t ∈ S such that (t, z) ∈ E. Since G does

not contain transitive arcs, the set {t, z, y, x} induces the

configuration F2, a contradiction. Suppose that z is not

a predecessor of y, let u1 and u2 be two vertices of the

path going from z to y such that u1 is a predecessor of y

and u2 is a predecessor of u1. Since G does not contain

transitive arcs, the set {x, y, u1, u2} induces the

configuration F2, a contradiction.

Let C1, ..., Ck be the connected components of Q and S’

is the set of sources of Q.

Claim 4: If a source x ∈ S is a predecessor to a source y

of some connected component Ci, 1 ≤ I ≤ k then x is a

predecessor to every source of Ci.

Proof: Suppose the contrary then, there is a source y’ in

Ci such that (x, y’) ∉ E. The vertices y and y’ have a

common successor in Ci. Otherwise, let z be a successor

of y in Ci and z’ is a successor of y’ in Ci, since G[Ci] is

connected there is a chain in G[Ci] that connects (y, z)

and (y’, z’), this chain contains the configuration F1, a

contradiction. Now, let z ∈ Ci such that (y, z), (y’, z) ∈ E,

the set {x, y’, y, z} induces the configuration F2, a

contradiction.

If k = 1 then by Claim 4, G[S ∪ S’] is a bipartite

complete. By Claim 3, G admits a series decomposition

into S and V(G) - S.

Suppose k ≥ 2. If G[S ∪ S’] is a bipartite complete then

as above G admits a series decomposition into S and

V(G) - S. So, suppose that G[S ∪ S’] is not a bipartite

complete. Since G is connected, G[S ∪ S’] must be also

connected.

Claim 5: There is a vertex y ∈ S’ such that for every x ∈
S, (x, y) ∈ E.

Proof: Suppose the contrary, then for every vertex y ∈
S’ there is a vertex x ∈ S such that (x, y) ∉ E. Let y1, y2 ∈
S’ and x1, x2 ∈ S such that (x1, y1), (x2, y2) ∈ E and (x1,

y2), (x2, y1) ∉ E. Since G[S ∪ S’] is connected, there is a

chain in G[S ∪ S’] that connects (x1, y1) and (x2, y2).

Without loss of generality, let x ∈ S such that (x, y1), (x,

y2) ∈ E, then {x, x1, y1, x2, y2} induces the configuration

F1, a contradiction.

Let Y = {y ∈S’ : ∀ x ∈ S, (x, y) ∈ E} and C1, ..., Cr are

the connected components of Q that contain the vertices

of Y. It is proven in Claim 4 that every source of every

connected component Ci (1 ≤ I ≤ r) is a successor of

every source in S. Therefore, by Claim 5, G admits a

series decomposition into V(G) - (C1, ..., Cr) and C1, ...,

Cr. Now, by applying this treatment on V(G) - C1, ..., Cr)

and C1, ..., Cr, it follows that we can always reduce G to

its vertex set by a parallel decomposition and a series

decomposition, this implies that G is an MSP-SS dag.

4.1. Recognition of SP-SS Dags

We present in this section a linear algorithm to recognize

if an arbitrary dag is an SP-SS dag or not. We will take

into account the topological sort of a dag G defined to

be a linear ordering of all vertices, such that if G has an

arc (x, y), then x appears before y in the ordering. It is

𝐹1

𝐹2

Symmetric Classes of Series-Parallel Digraphs 221

known that the topological sort of a dag can be obtained

in O(n + m) time complexity [4]. We can define the

topological sort of a dag to be suitable for our algorithm

as follows:

Definition 7: Let G be a dag and S is the set of sources

of G, let A1=S, and Ai={x: there is a source s such that

the length of the longest path from s to x is equal to i}.

The sort ρ=(A1, ..., Ap) is called the topological sort of

V(G).

For example, the topological sort of the dag G in Figure

4 is ρ =(A1, A2, A3) where, A1={a, b, c}, A2={d, e, f, g}

and A3={h, i, j, k, l}.

Our algorithm uses the following result:

Lemma 1: Let G be a dag and let ρ=(A1, ..., Ap) be the

topological sort of V(G). Then G is an MSP-SS dag if

and only if the following conditions are verified:

a) For every (x, y) ∈ E(G) there is 1 ≤ i ≤ p-1 such that

x ∈ Ai and y ∈ Ai+);

b) For every 2 ≤ i ≤ p, G[Ai-1 ∪ Ai] is a bipartite F1-free

graph;

c) Let C = (Ci-1, Ci) be a connected component of G[Ai-

1 ∪ Ai], 3 ≤ I ≤ p then for every x, y ∈Ci-1, N-(x)=N-(y).

Proof: Let (x, y) ∈ E(G) where x ∈Ai and y ∈Aj. We can

remark that j > i + 1 if and only if G contains a transitive

arc or G contains the configuration F2. Conditions a and

b assure that G is a F1-free, and conditions a and c assure

that G is a F2-free.

The following Lemma provides a simple method for

verifying the condition b in Lemma 1.

Lemma 2: Let G =(B ∪ W, E) be a bipartite dag of depth

one. G is F1-free if and only if for every x, y ∈ W, N-(x

)⊆ N-(y) or N-(x) ∩ N-(y)=∅.

Proof: Obviously if G is F1-free then the only if

conditions of this Lemma must be verified. On the

contrary, if one of these conditions is verified then every

connected component of G contains a universal vertex.

Therefore, we can reduce G to its vertex set by a parallel

and a series decomposition, so G is an MSP-SS dag,

hence G is F1-free.

We need a tool that characterizes the transitive arcs in

an SP-SS dag in linear time since it's improbable that a

linear time transitive reduction algorithm exists for all

dags [1]. By Lemma 1, the transitive arcs in an SP-SS

dag G are only those arcs that are not located between

two consecutive levels of the topological sort of G. This

condition is necessary but is not sufficient, since it is

possible after removing the arcs of this type from some

dag G then, the resulting graph may be an MSP-SS dag

even though G is not an SP-SS dag. Lemma 3 presents

a sufficient condition to be an arc of this type transitive.

Lemma 3: Let G be a dag such that the graph G’,

obtained by removing every arc of G that is not located

between two consecutive levels of the topological sort ρ

of G, is an MSP-SS dag. If for every arc (x, y) ∈ E(G) -

E(G’) there is a common descendant sink in G’ to both

x and y then G is an SP-SS dag.

Proof: Let (x, y) ∈ E(G) - E(G'), and let t be a descendant

sink in G’ to both x and y. To prove the Lemma it is

sufficient to prove that (x, y) is a transitive arc. Suppose

the contrary. Let ρ= (A1, ..., Ap) be the topological sort

of G. Since (x, y) ∈ E(G) - E(G’) then by supposition,

there are 1 ≤ i < j ≤ p and j ≥ i +2 such that x ∈ Ai and y

∈ Aj. Since t is a common descendant sink in G’ to both

x and y, there is j ≤ r ≤ p such that t ∈ Ar (in case j = r

then, y = t). Since y ∈ Aj and j ≥ i + 2 then, there is a path

in G’ from some vertex yi ∈ Ai to y say yi, y(i+1), …, yj

where yj = y. Since t is a descendant sink of y then, there

is a path from y to t in G’ say yj, y(j+1), …, t. Let P1 = yi,

yi+1, …, yj, yj+1,…, t. Similarly, since t is a descendant

sink of x, there is a path in G’ from x to t say P2=xi, xi+1,

…, t where xi=x. Since t is a common descendant sink

in G’ to both x and y, we can suppose that starting of

some i ≤ k ≤ r, the sub-path yk, yk+1,…, t of P1 is exactly

the sub-path xk, xk+1,…, t of P2. If i ≤ k ≤ j then, (x, y) is

a transitive arc, a contradiction, so k > j. Since k > j ≥

i+2, the vertices xk-1, xk-2, yk-1 are existed. Without loss of

generality, we can suppose that yk-1 = yj = y. Since, by the

construction of ρ, every Ai, 1 ≤ i ≤ p is a stable set, and

xk-1, yk-1 ∈ Ak-1, we have (xk-1, yk-1), (yk-1, xk-1) ∉ E(G’).

Also (xk-2, yk-1) ∉ E(G’), otherwise (x, y) is a transitive

arc. But now the set {xk, xk-1, xk-2, yk-1} induces the

configuration F2, a contradiction.

We can now translate the results of Lemma 1, Lemma

2, and Lemma 3 into the algorithm “Recognition of SP-

SS dags.” Algorithm (1) contains the necessary

procedures for detecting if an arbitrary dag is an SP-SS

dag or not based on the above Lemmas. The input of this

algorithm is the topological sort ρ = (A1, ..., Ap) of a dag

G = (V, E).

• Step 1: Computes the transitive reduction G’ of G,

according to Lemma 1 (if G is an SP-SS dag), by

striping every arc of E not located between two

consecutive levels of ρ. The dag G becomes the dag

G’ in the rest of the steps, so we referred to the set of

successors or the set of predecessors in G’ for some

vertex x to be simply N+(x) and N-(x) respectively.

• Step 2: Tests whether G’ contains the configuration

F1 or not according to Lemma 2.

• Step 3: Tests whether G’ contains between two

consecutive levels of ρ the configuration F2 or not

according to condition c in Lemma 1. The success of

step 2 and step3, means that G’ is an MSP-SS dag.

• Step 4: Computes the descendants sinks δ(y) in G’ for

every vertex y ∈ V(G).

• Step 5: The input of this step is the set of arcs D

resulting from step 1. This final step checks whether

222 The International Arab Journal of Information Technology, Vol. 22, No. 2, March 2025

every arc in D is transitive according to the output of

step 4 and based on Lemma 3.

Algorithm 1: Recognition of SP-SS Dag.

Input: The topological sort ρ = (A1,..., Ap) of a dag G = (V, E).

Output: The message “Success” if G is an SP-SS dag, otherwise

“’Failure message”

Step 1

D = ∅

For every (x, y) ∈ E(G) do

 If x ∈ Ai and y ∈ Aj with j > i+1 then D = D ∪ {(x, y)} ,E = E-

{(x, y)}

 End If

End For

Step 2

Let G1 = G[A1 ∪ A2],…,Gp-1 = G[Ap-1 ∪ Ap]

For i = p-1 down to 1

 Let Ai+1 = {y1,…,yr} such that d-(y1) ≥ ⋯ ≥ d-(yr)

 Let C1 = ⋯ = Cr = ∅

 For 1 ≤ j ≤ r

 If there is a vertex x ∈ N-(yj) that is marked by

 k ≠ j then

 If there is a vertex x ∈ N-(yj) that is not marked

 by k then

 Exit with a failure message

 End If

 Else Mark every vertex in N-(yj) by j; Cj = Cj ∪ N (yj)

 End If

 End For

Step 3

Let C1 ,… Ck be the non-empty sets produced in step 2

For 1 ≤ i ≤ k

 Let C i= {x1, …, xs}

 For 2 ≤ j ≤ s

 If N- (xj) ≠ N- (x1) then Exit with a failure

 message

End For

End For

Step 4

For every sink t let δ(t) = {t}

For i=p-1 down to 1

 Let Ai = {y1 ,…, yr}

 For i=1 to r

 δ(yi)= ⋃ 𝛿 𝑥 𝑥∈𝑁+ 𝑦𝑖

 End for

End for

Step 5

For every (x, y) ∈ D

 If δ(x) ∩ δ(y) = ∅ then exit with a failure message

Return success message

4.2. Complexity

Let’s show that the time complexity of this algorithm is

O(n + m). The computation of G’ according to step 1

runs in O(m) time, since this step considers only the set

of arcs E. The output of step 1 is the input of step 2.

According to step 1, the sets of arcs E(Gi), i=1, ..., p-1,

constitute a partition of E(G). Therefore, testing the

inclusion relation, according to Lemma 2, of the vertices

of N-(yj), j=1, …, r for every Ai+1 = {y1,…,yr }, i=1, ...,

p-1, using the marking procedure described in step 2,

can be executed in time O(|V(Gi)| + |E(Gi)|). The non-

empty sets C1, …, Ck produced in step 2 for every Gi,

i=1, ..., p-1 are the input of step 3. Indeed Ci ∪ {N+(x): x

∈ Ci}, 1≤ i ≤ k, are the connected components of Gi, i =

1, ..., p-1. To test the condition c of Lemma 1, it is

enough to compare for every x ∈ Ci, the set N-(x) with

N-(x1) where x1 is an arbitrary vertex of Ci. This can be

done in O(|V(Gi)| + |E(Gi)|) time. So, the total time

complexity of step 2 and step 3 requires O(n + m) time.

The set of descendant sinks δ(y) in G’ for a vertex y is

equal to the union of all the sets of descendant sinks δ(x)

in G’ where x ∈ N+(y). By step 1, if y ∈Ai, p-1 ≤ i ≤ 1

then, N+(y) ⊆ Ai+1. So the computation of the

descendants sinks for all the vertices y ∈ Ai, p-1≤ i ≤ 1

can be executed in time O(|V(Gi)| + |E(Gi)|). Therefore,

the total time complexity of step 4 is O(n + m) time. The

input of step 4 is the set D produced by step 1, so this

step can be executed in O(|D|). Hence, the total time

complexity of the whole algorithm is O(n + m).

5. Series-Parallel Sinks Sinks Dags

We define the class of series-parallel sinks sinks (SP-

TT) dags in terms of minimal series-parallel sinks sinks

(MSP-TT) dags as follows:

Definition 8: (Minimal series-parallel sinks sinks)

c) A dag having a single vertex is an MSP-TT dag.

d) If G1=(V1, E1) and G2=(V2, E2) are two MSP-SS dags

then the dag constructed by each of the following

operations is also an MSP-SS dag:

• Parallel composition: G=G1PG2=(V1 ∪ V2, E1 ∪ E2).

• Series composition: G=G1SG2=(V1 ∪ V2, E1∪ E2 ∪
T1×T2) where Ti is the set of sinks of Gi, i=1, 2.

Definition 9: A dag is an SP-TT dag if and only if its

transitive reduction is an MSP-TT dag.

Definition 10: Let G=(V, E) be a dag. The opposite dag

of G is the dag Gop=(V, Eop) where Eop={(x, y): (y, x) ∈
E}.

It is clear that a dag G is an SP-TT if and only if Gop is

an SP-SS. So, to recognize whether a dag G is an SP-TT

or not, it is sufficient to recognize whether Gop is a SP-

SS or not.

Corollary 3: Let G be a connected dag without

transitive arcs. G is an MSP-TT dag if and only G is {H1,

H2}-free, as shown in Figure 6.

Figure 6. The forbidden configurations of an MSP-TT dag.

Symmetric Classes of Series-Parallel Digraphs 223

6. Conclusions

We think there are some significant algorithmic and

combinatorial implications for the symmetric classes of

series-parallel digraphs proposed in this study. In this

final section, we talk about a few potential uses.

• Oriented chromatic number. Courcelle in [5]

established the concept of oriented colorings on

oriented graphs as follows: An oriented r-coloring for

oriented graph G=(V, E) is a partition of the vertex

set V into r independent sets, such that all arcs

connecting two of these subsets have the same

direction. The oriented chromatic number of a graph

G is the smallest integer r for which G has an oriented

r-coloring. Oriented colorings are useful in

scheduling models where incompatibilities are

oriented [9]. Computing the oriented chromatic

number of an oriented graph is generally NP-

complete [9]. It was proved by Gurski et al. [12] that

this number is at most 7 for the class of MSP dags,

and a linear time algorithm for computing the

oriented chromatic number of an MSP dag is

proposed. We conjecture that the computation of the

oriented chromatic number of an MSP-ST dag, MSP-

SS dag, or MSP-TT dag can be done in efficient time.

• Clique-width number. Courcelle et al. in [6]

introduce the notion of clique-width of a graph G to

be the smallest number of labels required to construct

G using the four operations listed below:

• The operation i(v) to create a new vertex v has the

label i.

• The operation G ⨁ H to make a union of two

disjoint labeled graphs G and H.

• The operation ηi, j(G) to add the labeled graph G

an edge (or an arc in case of digraphs) from each

vertex with label i to each vertex with label j (i ≠

j).

• The operation ρi→j(G) to change in the labeled

graph G every label i to label j.

If the clique-width of a given graph or digraph is

bounded then many problems that are NP-hard in

general admit polynomial-time solutions when

restricted to this graph (see for example [7, 8, 13, 14].

We conjecture that the computation of the clique-width

of an MSP-ST dag, MSP-SS dag, or MSP-TT dag can

be done in efficient time.

References

[1] Aho A., Garey M., and Ullman J., “The Transitive

Reduction of a Directed Graph,” SIAM Journal on

Computing, vol. 1, no. 2, pp. 131-137, 1972.

https://www.cs.tufts.edu/comp/150FP/archive/al-

aho/transitive-reduction.pdf

[2] Baffi L. and Petreschi R., “Parallel Maximal

Matching on Minimal Vertex Series-Parallel

Digraphs,” in Proceedings of the Asian Computing

Science Conference on Algorithms, Concurrency

and Knowledge, Thailand, pp. 34-47, 1995.

https://doi.org/10.1007/3-540-60688-2_33

[3] Bang-Jensen J. and Gutin G., Digraphs Theory,

Algorithms and Applications, Springer, 2009.

https://link.springer.com/book/10.1007/978-1-

84800-998-1

[4] Cormen T., Leiserson C., Rivest R., and Stein C.,

Introduction to Algorithms, The MIT Press, 2009.

https://cdn.manesht.ir/19908___Introduction%20

to%20Algorithms.pdf

[5] Courcelle B., “The Monadic Second-Order Logic

of Graphs VI: On Several Representations of

Graphs by Relational Structures,” Discrete

Applied Mathematics, vol. 54 no. 2-3, pp. 117-

149, 1994. https://doi.org/10.1016/0166-

218X(94)90019-1

[6] Courcelle B., Engelfriet J., and Rozenberg G.,

“Handle-Rewriting Hypergraph Grammars,”

Journal of Computer and System Sciences, vol. 46,

no. 2, pp. 218-270, 1993.

https://doi.org/10.1016/0022-0000(93)90004-G

[7] Courcelle B., Handbook of Graph Grammars and

Computing by Graph Transformation, 1997.

https://doi.org/10.1142/9789812384720_0005

[8] Courcelle B., Makowsky J., and Rotics U.,

“Linear Time Solvable Optimization Problems on

Graphs of Bounded Clique Width,” Theory of

Computing Systems, vol. 33, pp. 125-150, 2000.

https://doi.org/10.1007/s002249910009

[9] Culus J. and Demange M., “Oriented Coloring:

Complexity and Approximation,” in Proceedings

of the 32nd Conference on Current Trends in

Theory and Practice of Computer Science

(SOFSEM), Merin, pp. 226-236, 2006.

https://link.springer.com/chapter/10.1007/116112

57_20

[10] Finta L., Liu Z., Mills I., and Bampis E.,

“Scheduling UET-UCT Series-parallel Graphs on

Two Processors,” Theoretical Computer Science,

vol. 162, no. 2, pp. 323-340, 1996.

https://doi.org/10.1016/0304-3975(96)00035-7

[11] Fouquet J., Giakoumakis V., and Vanherpe J.,

“Bipartite Graphs Totally Decomposable by

Canonical Decomposition,” International Journal

of Foundations of Computer Science, vol. 10, no.

4, pp. 513-533, 1999.

https://doi.org/10.1142/S0129054199000368

[12] Gurski F., Komander D., and Lindemann M.,

“Efficient Computation of the Oriented Chromatic

Number of Recursively Defined Digraphs,”

Theoretical Computer Science, vol. 890, pp. 16-

35, 2021.

https://doi.org/10.1016/j.tcs.2021.08.013

[13] Kurt M., Berberler M., and Ugurlu O., “A New

Algorithm for Finding Vertex-Disjoint Paths,” The

International Arab Journal of Information

https://www.cs.tufts.edu/comp/150FP/archive/al-aho/transitive-reduction.pdf
https://www.cs.tufts.edu/comp/150FP/archive/al-aho/transitive-reduction.pdf
https://doi.org/10.1007/3-540-60688-2_33
https://link.springer.com/book/10.1007/978-1-84800-998-1
https://link.springer.com/book/10.1007/978-1-84800-998-1
https://cdn.manesht.ir/19908___Introduction%20to%20Algorithms.pdf
https://cdn.manesht.ir/19908___Introduction%20to%20Algorithms.pdf
https://doi.org/10.1016/0166-218X(94)90019-1
https://doi.org/10.1016/0166-218X(94)90019-1
https://doi.org/10.1016/0022-0000(93)90004-G
https://doi.org/10.1142/9789812384720_0005
https://doi.org/10.1007/s002249910009
https://link.springer.com/chapter/10.1007/11611257_20
https://link.springer.com/chapter/10.1007/11611257_20
https://doi.org/10.1016/0304-3975(96)00035-7
https://doi.org/10.1142/S0129054199000368
https://doi.org/10.1016/j.tcs.2021.08.013

224 The International Arab Journal of Information Technology, Vol. 22, No. 2, March 2025

Technology, vol. 12, no. 6, pp. 550-555, 2015.

https://iajit.org/PDF/vol.12,no.6/7418.pdf

[14] Oum S. and Seymour P., “Approximating Clique

Width and Branch-Width,” Journal of

Combinatorial Theory Series B, vol. 94, no. 4, pp.

514-528, 2006.

https://doi.org/10.1016/j.jctb.2005.10.006

[15] Quaddoura R. and Al-Qerem A., “Bipartite (P6,

C6)-Free Graphs: Recognition and Optimization

Problems,” Symmetry, vol. 16, no. 4, pp. 1-14,

2024. https://doi.org/10.3390/sym16040447

[16] Valdes J., Tarjan R., and Lawler E., “The

Recognition of Series-Parallel Digraphs,” SIAM

Journal on Computing, vol. 11, no. 2, pp. 298-313,

1982. https://doi.org/10.1137/0211023

Ruzayn Quaddoura received his

MSc in Theoretical Computer

Science from Institute National

Polytechnique de Grenoble (INPG,

France), and his PhD in Theoretical

Computer Science from Picardie

Jules Verne University (Amiens,

France). Currently, he is an assistant professor at Zarqa

University, Faculty of Information Technology,

Department of Computer Science. His research interests

include Algorithmic, Combinatorial Optimization, and

Graph Theory.

https://iajit.org/PDF/vol.12,no.6/7418.pdf
https://doi.org/10.1016/j.jctb.2005.10.006
https://doi.org/10.3390/sym16040447
https://doi.org/10.1137/0211023

