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Abstract: Medical image fusion is the process of creating a single image from the information included in several medical 

images of the same body region taken using various imaging modalities like Computed Tomography (CT), Magnetic Resonance 

Imaging (MRI), Single-Photon Emission Computed Tomography (SPECT) And Positron Emission Tomography (PET). Many 

deep learning-based techniques for combining medical images have been presented, but creating suitable fusion rules is still 

challenging. Another issue with single-scale networks is inadequate feature extraction. Therefore, this paper proposes an 

efficient deep learning-based multi-level feature extraction network for Multi-modal Medical Image Fusion (MMIF). In this 

research, we propose a new advanced MMIF approach for medical image fusion. The proposed research employs two distinct 

enhanced Deep Learning (DL) algorithms for low and high-level feature extraction to fully extract and fuse significant and 

distinctive features from source images. The Improved GoogLeNet (IGoogLeNet) model is used to extract the low-level features, 

while Modified DenseNet-201 (MDenseNet-201) is used to extract the high-level features. Second, without creating new fusion 

rules, the proposed unique feature fusion module merely permits the fusion and enhancement of unique features. The Soft 

Attention (SA) fusion mechanism based on Softmax is used for fusing low-level and high features. Finally, the Modified Resblock 

module is developed for image reconstruction. For all image pairs, the proposed approach yields average values of 0.7671, 

32.84, 19.316, 10.063, 0.8232, 5.3384, and 8.9874 for Edge-based Similarity Measure (QAB/F), Spatial Frequency (SF), Peak 

Signal-to-Noise Ratio (PSNR), Average Gradient (AG), Structural Similarity Index Measure (SSIM), Mutual Information (MI), 

and Gradient-based Metric (QG). Compared with the most recently published methods, the experimental findings show that our 

proposed fusion approach efficiently improves image contrast, brightness, and quality and better retains important information. 
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1. Introduction 

Medical image fusion, which combines two or more 

multi-modal images to increase the accuracy of disease 

detection, has been extensively studied for clinical 

medical applications. Therefore, to lessen interference 

and incorrect judgment when utilizing multiple multi-

modal medical images, numerous studies have 

investigated medical image fusion techniques [12]. 

Medical areas use a variety of common multi-modal 

image forms, which are primarily classified into 

anatomical and functional categories. The two primary 

anatomical types are Computed Tomography (CT), 

which provides density information on implants and 

bones, and Magnetic Resonance Imaging (MRI), which 

provides a wealth of soft tissue information. Single-

Photon Emission Computed Tomography (SPECT) and 

Positron Emission Tomography (PET) images are 

examples of functional types that offer details on blood 

flow and organ metabolism [23]. Because every  

 
modality has distinct qualities and limits of its own, it is 

challenging for medical professionals to provide an 

accurate diagnosis by examining a single modality [9, 

10]. For instance, details from multimodal imaging, 

including those of head, neck, and lung cancers, can 

surpass PET alone in terms of specificity and sensitivity 

and must be analyzed to diagnose malignant tumors 

[16]. When MRI and PET images are combined, one can 

better identify brain disease by studying the metabolism 

in small areas of the cortex and obtaining a precise 

function match. MRI offers a high structural detail 

resolution [28, 30]. With certain qualities for clinical 

applications, data from several modalities are combined 

as part of the medical image fusion process to aid in the 

analysis of medical issues [2, 25]. 

There are two categories of image fusion approaches: 

transform domain and spatial domain [15]. Since spatial 

domain approaches directly affect image space, they are 

more susceptible to noise and have a lower capacity to 
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capture important features; in contrast, Adaptability to 

these problems is higher for transform domain 

techniques and has taken the lead in this field [3]. For 

instance, the three primary processes of the classical 

method known as Multi-Scale Decomposition (MSD) 

are multi-scale decomposition, coefficient fusion, and 

multi-scale reconstruction. Using multi-scale inverse 

transformation, multi-scale coefficients are used for 

splitting an image using MSD. The output image is then 

created by fusing the coefficients using fusion rules [19, 

31]. A popular domain image fusion technique for the 

physiological properties of the human visual system is 

Sparse Representation (SR) [14]. Transform domain-

based existing techniques like the adaptive sparse 

representation algorithm and SR entail intricate, labour-

intensive design challenges that demand a substantial 

amount of resources and are still comparatively 

inefficient [33]. 

Shallow machine learning based on several methods 

has recently been released [18]. Due to its strong 

generalization capabilities, image fusion based on 

Support Vector Machines (SVM) was developed. For 

example, Wavelet coefficients can be categorized into 

related features by an adaptive SVM. Image fusion is a 

common application for neural networks, such as Pulse-

Coupled Neural Networks (PCNNs). In this PCNN 

technique, medical image fusion is achieved by 

combining PCNN with the conventional Non-

Subsampled Contourlet Transform (NSCT) [5]. 

However, these techniques have several mathematical 

problems, including enormous parameter sets and non-

linearity. In the transform domain, PCNN must also be 

used in conjunction with other transform techniques. 

Image fusion has also been utilized with reinforcement 

learning. 

Additionally, after advancements in deep learning, 

several widely used Deep Learning (DL) networks, such 

as Convolutional Neural Networks (CNNs), Visual 

Geometry Group Networks (VGGs), Recurrent Neural 

Networks (RNNs), and Generative Adversarial 

Networks (GANs) were presented for image fusion [11]. 

For instance, CNN is used by the image fusion 

framework Improved Fusion Convolutional Neural 

Network (IFCNN) to extract prominent features [17]. 

To merge two exposure images, a novel, prior-aware 

Generative Adversarial Network (GAN) is also created. 

To reconstruct the image, it comprises a detailed guided 

decoder, and the input image’s semantics are encoded 

using a content-prior-guided encoder [13]. To guarantee 

that more detailed information is effectively preserved 

in the final fused image, deep learning techniques offer 

powerful feature extraction and simple implementation 

[1]. Consequently, deep learning feature extraction has 

been used extensively in medical image fusion, offering 

good performance in obtaining both high-level and low-

level features [32]. Most non-end-to-end networks 

require complex artificial fusion architecture. While 

fusion rules are not necessary for end-to-end networks, 

Final fusion and network training are made more 

difficult by the lack of ground truth [34]. 

To arrive at proper performance evaluation measures 

for the objective findings of medical image fusion to be 

successful, input image details and important data must 

be correctly preserved. To address these issues, we, 

therefore, propose a novel and cutting-edge method for 

Multi-modal Medical Image Fusion (MMIF) that 

combines deep learning-based feature extraction models 

for medical image fusion without the need for manually 

created fusion rules. The proposed approach of 

separately extracting and fusing low-level and high-

level features is a powerful technique in image fusion. 

It makes use of the advantages of both feature sets to 

create excellent fused images that are contextually and 

technically rich. 

The following are some of the important 

contributions of the proposed research: 

 A novel and efficient model for MMIF is proposed in 

this research, it successfully combines multi-modal 

medical images using deep learning models for 

feature extraction, a Soft Attention (SA) fusion rule 

based on Softmax for feature fusion and a Modified 

Resblock module for image reconstruction.  

 Initially, the pre-processing techniques are applied to 

enhance the quality of the image such as the 

undesired noise in the images being removed using 

median filtering and the image contrast is enhanced 

using the Histogram Equalization (HE) technique. 

 After pre-processing, the low-level features are 

extracted using the Improved GoogLeNet 

(IGoogLeNet) model while the high-level features 

are extracted using the Modified DenseNet-201 

(MDenseNet-201) model.  

 Then for image fusion, the SA fusion mechanism 

based on Softmax is applied to fuse the high-level 

and low-level features. The fused high-level and low-

level features can be combined to form the final fused 

image using the Modified Resblock module in the 

image reconstruction phase. 

 We evaluate the proposed method on multiple multi-

modal medical image pairs (Magnetic Resonance 

Imaging-Computed Tomography (MRI-CT), 

Magnetic Resonance Imaging-Positron Emission 

Tomography (MRI-PET), and Magnetic Resonance 

Imaging-Single-Photon Emission Computed 

Tomography (MRI-SPECT)) using different 

performance measures and show improved fusion 

performance in comparison to the nine most 

advanced fusion techniques. 

The remaining parts of this research are organized as 

follows, section 2 displays an overview of related works 

on medical image fusion. Details of the proposed 

approach structure are given in section 3. The 

experimental results and performance evaluation are 

made in section 4. Lastly, the paper is summarized and 

concluded in section 5. 
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2. Related Prior Works 

Different MMIF methods were provided by researchers. 

These methods are investigated and yield accurate 

outcomes. We summarize and discuss a few of this 

research in this section. 

Using various imaging modalities, a medical image 

fusion technique was created by Sinha et al. [21] in the 

Non-Subsampled Shearlet Transform (NSST) domain 

for combining a grayscale image with the corresponding 

pseudo-color image acquired. To identify the 

corresponding sub-images, the grayscale image is first 

decomposed using the NSST. The Maximum Regional 

Energy (MRE)-based rule and Prewitt operator fuse the 

low-pass sub-images. The fused high-pass sub-images 

are obtained using the developed Improved Dual-

Channel Pulse-Coupled Neural Network (IDPCNN). In 

the combined sub-images, the inverse NSST is applied 

to create the final fused image. 

The Principal Component Analysis Network 

(PCANET) developed by Ghandour et al. [6] is a 

reasonably simple deep-learning model for extracting 

medical image features. A Principal Component 

Analysis (PCA) filter is used for feature extraction. For 

medical image fusion, a useful feature space is 

developed by this work using PCANET and the nuclear 

norm. Specifically, the retrieved PCANET properties 

can function like a CNN. Finally, the Final Decision 

Map (FDM) is evaluated using a Focus Score Map 

(FSM). Using FDM, the fused image is created through 

the combination of the two input medical images. 

For medical image fusion, a unified AI-Generated 

Content (AIGC) system called Cross-Modal Interactive 

Network (CMINet) was introduced by Song et al. [22]. 

CMINet combines an interactive CNN with a recursive 

transformer. Within modalities, the extended spatial and 

temporal dependencies are captured by designing a 

recursive transformer. Across modalities, the local 

features are extracted and fused using the interactive 

CNN. With extensive functional and structural details, 

the developed approach can produce fused images by 

making use of cross-modality interaction learning. 

Furthermore, the recursive network’s architecture is 

designed to minimize the number of parameters, which 

may be advantageous for implementation on devices 

with limited resources. 

For unsupervised multi-modal medical image fusion, 

an adaptive cross-modal fusion technique was studied 

by Xie et al. [29]. Specifically, the cross multi-axis 

attention mechanism-based lightweight cross 

Transformer is developed in this work. The multi-modal 

data’s local and global interactions are extracted and 

integrated using the cross-window and cross-grid 

attention techniques in this paper. A spatial adaptation 

fusion module provides additional guidance to the cross 

Transformer, enabling the model to concentrate on the 

most pertinent data. For feature extraction, a unique 

feature extraction module is built that integrates many 

gradient residual dense convolutional and Transformer 

layers. 

A lightweight residual fusion network, a real-time 

MMIF technique, was presented by He et al. [7]. 

Initially, a three-branch feature extraction architecture 

is created. The texture and brightness data are fully 

extracted using the two separate branches. The texture 

and brightness data can be better preserved by 

dynamically fusing distinct modalities at a shallow level 

due to the fusion branch. Moreover, the model’s 

traditional residual convolution is intended to be 

replaced by a lightweight residual unit for image fusion. 

A novel MMIF technique utilizing the Parameter 

Adaptive-Pulse Coupled Neural Network (PA-PCNN) 

and Non-Subsampled Contourlet Transform (NSCT) 

was presented by Ibrahim et al. [8]. These images are 

divided into high- and low-frequency bands by the 

NSCT. The bands are combined using PA-PCNN. The 

NSCT approach’s inverse was employed to create the 

fused image. This method’s flaw is that the quality 

metrics aren’t appropriate for combining SPECT, MR-

T1, and MR-T2 image modalities. The following Table 

1 provides an overview of these studies. 

Table 1. Literature survey. 

Related works Year Approach Pros Cons 

Sinha et al. [21] 2024 IDPCNN High performance and low computational time It is computationally intensive and time-consuming 

Ghandour et al. [6] 2024 PCANET Improves results while requiring less computing time 

This technique still adds unnecessary noise to the 

medical images before fusing them into one final 

image. Absence of processing steps for pre-and post-

processing. 

Song et al. [22] 2024 CMINet 
Rich structural and functional information are produced 

in fused images. 

Compared to some deep learning algorithms, this 

method takes longer to execute overall. 

Xie et al. [29] 2024 

Cross multi-axis attention method 

based on a lightweight cross 

Transformer 

This model produces a better fusion effect. 
(1) Complex architecture 

(2) Computationally intensive 

He et al. [7] 2024 LRFNet 
The recommended fusion strategy has been found to 

outperform the competition. 

The drawback of this approach is that combining CT, 

MRI, and SPECT imaging modalities is not 

appropriate for quality assessments. 

Ibrahim et al. [8] 2024 PA-PCNN 

Experiments conducted both qualitatively and 

quantitatively show that the suggested method is better 

than other fusion methods. 

It takes a lot of time and computing power. 

 

2.1. Problem Statement 

An essential component of image-based disease 

diagnosis is the fusion of medical images. Many 

approaches for the fusion of medical images have been 

proposed recently. However, the images produced by 
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the existing fusion methods frequently have drawbacks, 

such as poor image quality, a loss of important 

information, image distortion, decreased brightness and 

contrast, a loss of edge information, a limited capacity 

to preserve details, and an enormous requirement for 

training data for deep learning. In this research, we 

provide a novel approach to address the previously 

noted difficulties in the process of medical image 

fusion. A new advanced MMIF method based on the 

efficient multi-level feature extraction models, SA 

fusion mechanism based on Softmax, and Modified 

Resblock module-based image reconstruction is 

proposed.  

 

 

 

 

3. Proposed Methodology 

The primary emphasis of our research is the integration 

of MRI and PET/CT/SPECT images. Preprocessing 

must be done before combining SPECT/PET and MRI 

data since PET and SPECT images are color. In the 

fusion network, the MRI and CT images are supplied 

directly. From Red Green Blue (RGB) to Luminance, 

Chrominance-Blue, Chrominance-Red YCbCr space, 

the primary purpose of pre-processing is to convert 

color images. Subsequently, the input image is 

identified as the Y component. Next, by fusing two input 

images, a fused image Y Fused is produced utilizing the 

proposed MMIF network model. Lastly, the final fused 

image is produced by transforming the Cb, Cr, and Y 

Fused components into the Red, Green and Blue (RGB) 

color space. Figure 1 depicts the proposed MMIF 

network model’s organizational structure. 

 
Figure 1. An overview of the proposed MMIF fusion network. 

 
Figure 2. The overall structure of the proposed MMIF fusion approach. 

The proposed MMIF network model’s intricate 

network architecture is revealed in Figure 2, which is 

divided into four primary sections: image pre-

processing, feature extraction, feature fusion, and image 

reconstruction. filtering (median filter) and contrast 

enhancement HE are two methods used in the pre-

processing step to improve the quality of the input 

images. It has two branches for the feature extraction 

phase. The IGoogLeNet is included in the upper branch, 

and MDenseNet-201 is included in the lower branch. 

Images’ low-level features are extracted by the 

IGoogLeNet model, and their high-level features are 

extracted by MDenseNet-201. After that, feature fusion 

is accomplished using attention-based fusion rules, and 

low- and high-level feature fusion is accomplished 

using a soft attention fusion rule based on Softmax, the 

structural and functional details of the fused images are 

effectively balanced using the proposed fusion 

mechanism. Using the combined features, this fused 

image is produced using an image reconstruction 

module. The final image can be created by combining 

fused high-level and low-level features, which is 

accomplished through the usage of the Modified 

Resblock module during image reconstruction. The 

proposed model undergoes training and validation using 

the Whole Brain Atlas dataset. The proposed research’s 

findings are assessed based on impartial evaluation 

standards. Nine popular cutting-edge methods are 
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compared with the proposed method to verify its 

validity and accuracy. Algorithm (1) shows the step-

wise algorithm for the proposed fusion approach. 

Algorithm 1. The stepwise algorithm of the proposed fusion 

approach: 

Input: MRI and CT image pairs. 

Output: Fused image with enhanced quality and performance 

measures. 

Step 1: Pre-processing 

 Noise Removal: Apply median filtering to remove noise and 

preserve edges in the MRI and CT images. 

 Contrast Enhancement: Use histogram equalization to 

improve the visual contrast of the input images. 

Step 2: Feature Extraction 

 Low-Level Feature Extraction: Extract fine-grained features 

such as edges and textures using the IGoogLeNet model. 

 High-Level Feature Extraction: Extract semantic and 

contextual features using the Modified DenseNet-201 model. 

Step 3: Feature Fusion 

 Combine low-level and high-level features. 

 Use the Soft Attention (SA) mechanism based on Softmax to 

dynamically assign weights and emphasize important 

features during fusion. 

Step 4: Image Reconstruction 

 Develop a Modified Resblock module to reconstruct the fused 

image from the fused features. 

 Ensure that both fine details and semantic information are 

preserved in the reconstructed image. 

Step 5: Performance Evaluation 

             Analyze the quality of the fused image using the 

following performance measures: 

 QAB/F (Fusion Quality Index) 

 SF (Spatial Frequency) 

 PSNR (Peak Signal-to-Noise Ratio) 

 AG (Average Gradient) 

 SSIM (Structural Similarity Index Measure) 

 MI (Mutual Information) 

 QG (Gradient-Based Quality Metric) 

3.1. Database Description 

The Whole Brain Atlas Harvard medical dataset, which 

is a publicly accessible dataset 

(https://www.med.harvard.edu/aanlib/), was used to 

train the proposed MMIF approach. Since every image 

in the collection has already been co-registered, no 

registration is necessary. 256x256 is the default image 

size. In the present work, two multimodal images are 

used as the source image for image fusion. A range of 

imaging modalities are included in the dataset; for 

experiment analysis, we have used three sets of pair 

images, including MRI-CT, MRI-PET, and MRI-

SPECT. 

3.2. Dataset Splitting 

To verify the effectiveness of the proposed research, we 

randomly divide the dataset into training and testing. 

Tables 3 and 4 illustrate the dataset distribution used for 

training and testing the proposed network across 

multiple imaging modalities, including MRI-CT, MRI-

PET, and MRI-SPECT.  

Algorithm (1) provides the image distribution for 

network training, covering various disease categories 

such as metastatic adenocarcinoma, Alzheimer’s 

disease, mild Alzheimer’s, glioma, and meningioma. 

Notably, MRI-SPECT contributes 45 images each for 

Alzheimer’s, mild Alzheimer’s, and glioma. In 

comparison, MRI-CT is used for meningioma with 60 

images, summing up to 90 images for MRI-SPECT and 

60 images for MRI-CT. 

Table 2 presents the dataset distribution for network 

testing, focusing on Alzheimer’s disease, acute stroke, 

and sub-acute stroke. MRI-CT and MRI-SPECT are 

used for testing acute stroke and sub-acute stroke cases, 

respectively, each containing 30 images. Additionally, 

MRI-PET is utilized for Alzheimer’s disease testing 

with 30 images. Each modality is allocated an equal 

number of images for evaluation, ensuring a balanced 

assessment of the network’s generalization 

performance. 

Table 2. Image distribution for network training. 

Modalities 

Metastatic 

adenocarci

noma  

Alzheimer’s  
Mild 

Alzheimer’s 
Glioma Meningioma Total 

MRI-CT     60 60 

MRI-PET   45 45  90 

MRI-

SPECT 
45 45       90 

Table 3. Image distribution for network testing. 

Modalities Alzheimer’s 
Acute 

stroke  

Sub-acute 

stroke  
Total 

MRI-CT  30  30 

MRI-PET 30   30 

MRI-

SPECT 
    30 30 

3.3. Image Pre-Processing 

Initially, the pre-processing techniques are applied to 

the original images to enhance the final fused images’ 

visual quality. In the pre-processing stage, we 

performed noise removal based on Median Filtering and 

contrast enhancement based on HE. 

3.3.1. Noise Removal 

In the proposed approach, the median filtering 

technique is used to eliminate undesirable noise from 

the input images. The median filter is a nonlinear spatial 

filter. The “speckle” noise in the image could be 

eliminated by applying a median filter. Because of its 

de-noising ability and computational sufficiency, it is 

commonly used in encouraging noise removal 

approaches. Typically, it’s used to minimize noise and 

smooth out images without causing edge blur. The 

median filter is one popular non-linear filter used to 

eliminate Salt and Pepper noise. In the input window, 

the median brightness value is used to determine the 

output pixel, which is dependent on the window being 

moved over the image. 
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3.3.2. Contrast Enhancement 

Contrast enhancement enhances the image quality for 

easier interpretation and makes it easier to retrieve the 

information it contains. HE, the most popular technique 

for contrast enhancement, frequently allows for the 

increase of contrast on image details. Making the 

image’s grey-level histogram as flat as possible is the 

goal of this change. The following steps explain how to 

get a consistent dispersion following a point transition: 

Preservation of Average Brightness as the basis for 

Equalization Depending on whether contrast 

enhancement is applied before or after the restoration 

procedure, the goal is to improve the image quality 

while maintaining the average brightness. 

The average of an image X, such that Xm∈{X0, 

X1,...,XL-1}, is indicated by the letter Xm. While 

maintaining the mean brightness, the image X is divided 

into two sub-images XL and XU during the process of 

HE, 

𝑋 = 𝑋𝐿 ∪ 𝑋𝑈 

Following the individual equalization of the two sub-

images, the resulting equalized image is composed of 

the original image’s average brightness. 

3.4. Feature Extraction 

In image processing, where feature extraction and 

representation are crucial steps, deep learning 

techniques have been applied extensively. Due to the 

great precision and rich semantic information that 

different scale features may represent, multi-scale 

techniques are frequently employed to handle features. 

Numerous well-known and traditional techniques 

demonstrated that the introduction of multi-scale feature 

extraction can lead to superior outcomes. 

To improve the quality of images used in clinical 

diagnosis, medical image fusion combines 

complementary data with multi-modal images. 

Typically, there are three steps in this process: image 

reconstruction, feature fusion, and feature extraction. 

Nevertheless, the majority of image fusion techniques 

are unable to adequately adjust for cross-modal 

interaction when attempting to extract shared and 

specific data from various modal images, which results 

in imperfect feature extraction and fusion. Furthermore, 

most existing approaches’ multilevel feature interaction 

is inadequate, which results in improper usage of fused 

information under various receptive fields. To 

overcome these problems, we employ distinct deep 

learning models to extract the high-level and low-level 

features, utilizing the advantages of each feature type to 

create high-quality fused images that are contextually 

and technically rich. High-level features record 

semantic information, while low-level features record 

specific details. The overall fused image quality can be 

improved by combining both images. The low-level 

features in the proposed research are extracted using the 

IGoogLeNet model, and the high-level features are 

extracted using the MDenseNet-201 model. The fusion 

process can be more resilient to noise and fluctuations 

in the input images by using features from many levels.  

3.4.1. Low-Level Feature Extraction 

The low-level features including frequency domain 

features, intensity histogram features, shape features, 

spatial characteristics, texture features, and intensity 

information are extracted using the IGoogLeNet model. 

Google researchers created the CNN-based architecture 

known as GoogLeNet. The model demonstrated its 

strength as the victor of the ImageNet 2014 competition. 

The GoogLeNet architecture’s primary goal is to 

attain great accuracy at a low computational cost. The 

split, transform, and merge concepts used in the 

inception architecture, which gave rise to CNN’s 

inception block, are the foundation upon which the 

GoogLeNet model is built. This design combines multi-

scale convolutional transformations. Figure 3 shows an 

overview of the inception block. Other deep learning 

architectures have set convolution sizes for each layer; 

this is not the case with the inception module. The 3×3 

max pooling and the 1×1, 3×3, and 5×5 convolutions all 

function in parallel at the input of the inception module, 

and their combined output is stacked to produce the final 

result. Large convolutional filters are a computationally 

and memory-intensive feature of the original 

GoogLeNet model. Deep network training becomes 

difficult as a result, particularly on systems with 

restricted resources. Over-fitting is a common problem 

with large convolutional filters with multiple 

parameters. To navigate around these challenges, we 

improve the GoogLeNet model’s structure.  

Small blocks are used in place of conventional 

convolutional layers in the GoogLeNet model. At 

various scales, the spatial information of the images 

including both fine and coarse grain levels are captured 

by using condensed filters of various sizes, such as 1×1, 

3×3, and 5×5 in these blocks. Alongside 3×3 max-

pooling layers, the GoogLeNet model has numerous 

convolutions with 5×5 filters, 3×3 filters, and 1×1 filters 

arranged, as depicted in Figure 3. 

 

Figure 3. The overview of the inception block. 

(1) 
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Before using large-size kernels, the GoogLeNet 

model adds a bottleneck layer of 1x1 convolutional 

filters to control the calculations. The architecture’s 

number of parameters (weights and biases) is reduced 

by using 1×1 convolution. Additionally, it eliminates 

duplicate information and lowers costs by removing 

irrelevant feature maps by using sparse connections. 

Additionally, it eliminates duplicate information and 

lowers costs by removing irrelevant feature maps by 

using sparse connections. The number of parameters is 

significantly reduced as a result of these parameter-

tuning processes. 

Table 4. The model architecture of IGoogLeNet used in this 

research. 

Layer  Patch size/ stride Depth Pool Proj Output size 

Conv 1 7x7/2 1  112×112×64 

MaxPool 1 3x3/2 0  56×56×64 

Conv2 3x3/1 2  56×56×192 

Max pool 2  3x3/2 0  28×28 ×192 

Inception-3a   2 32 28×28×256 

Inception-3b  2 64 28×28×480 

Max pool3  3x3/2 0  14×14×480 

Inception-4a  2 64 14×14×512 

Inception-4b  2 64 14×14×512 

Inception-4c   2 64 14×14×512 

Inception-4d  2 64 14×14×528 

Inception-4e   2 128 14×14×832 

Max pool4  3x3/2 0  7×7×832 

Inception-5a  2 128 7×7×832 

Inception-5b  2 128 7×7×1024 

As shown in Table 4, we created the IGoogLeNet 

model’s structure specifically for low-level feature 

extraction in this research. The IGoogLeNet model’s 

layer-by-layer design components are displayed in this 

table. The different convolution filters employed in the 

inception module are 1×1, 3×3, and 5×5. The reduction 

layer’s ×1 filters utilized before related convolution 

layers are represented by the 3×3 reduce and 5×5 reduce 

signs. The “pool projection” column, is also referred to 

as “Pool proj”. In the projection layer, it indicates how 

many 1×1 filters are present following the inherent 

maximum pooling. The term “max pool” refers to the 

greatest quantity of pooling layers. These max-pooling 

layers are designed to down-sample the input as it is 

transmitted throughout the network. Repaired linear 

Units (ReLUs) are the activation functions of all the 

convolution, reduction, and projection layers in this 

architecture. Without pooling, there are 22 layers in this 

architecture (or 27 layers if pooling is taken into 

account). The output of the last inception module yields 

the extracted low-level features (1x1 convolution layer). 

3.4.2. High-Level Feature Extraction  

Using the MDenseNet-201 model, more semantic 

information such as shapes, objects, and patterns are 

extracted. DenseNet-201 presents a dense connection 

where feature maps from all earlier layers are sent to 

each layer through a dense block. Reusing features is 

encouraged by this connectivity topology, which also 

enhances information flow throughout the network. 

DenseNets are made up of dense blocks, each of which 

has a constant component size but varying filters in 

some cases. The downward sampling is regulated by 

DenseNet Transition Networks using Batch 

Normalizing layers (BN), 1×1 convolution, and 2×2 

pooling. We evaluate the various deep learning models, 

select the one that works best, and change it to satisfy 

our needs. With the addition of specific layers, we 

change the DenseNet201 model’s structure to improve 

the original DenseNet201 model. Reduced trainable 

parameters resulted from this, which aided in lowering 

execution speed and computing complexity. 

With one Max-Pooling Layer (MPL) pool size of 

two, one dense layer, one drop-out layer, and one flatten 

layer, the original DenseNet201 model was enhanced. 

Ultimately, this modified DenseNet201 

(MDenseNet201) model was used for training. In every 

map of features, one of MPL’s most important tasks was 

figuring out how much value was contained. When 

using a pooling process, feature maps and filters are 

similar. The pooling process is substantially quicker 

than feature maps. This model demonstrates how 

employing two MPL layers reduces the size of each 

feature map. This is a result of its usage of a two-pool 

size. Figure 4 displays the MDenseNet201 structure. 

 

Figure 4. A schematic representation of the MDenseNet-201 model. 

In the DenseNet model, the dense block output is 

transformed into a one-dimensional vector as the 

primary purpose of the flatten layer, which may be 

feature maps. The MDensNet201 architecture is made 

up of 3x3 parts or blocks. Block 0 has 1 has several 

layers including the convolution, BN, MPL, ReLu, and 

Zero Padding (ZP). The dense layers were used to 

categorize the acquired features. The major advantage 

of our proposed MDenseNet201 has a small number of 

parameters compared to the original DenseNet201 

model. 

3.5. Feature Fusion 

Several image fusion rules can be used to conduct 

feature fusion. The attention-based fusion method is one 
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of them. In existing papers, a Motion-Attentive 

Transition Network (MATNet) was used in the SA 

fusion for the segmentation process. An Attention 

Transition (AT) unit and a soft attention unit make up 

the two units that make up the Motion-Attentive 

Transition (MAT) module. Appearance learning is 

promoted by transmitting the attentive motion features 

by the AT unit. Focusing on important input regions is 

made easier with the help of the SA unit. Both the high-

level and low-level features of I1 and I2 are fused using 

a Softmax-based soft attention fusion module. 

 
Figure 5. The soft attention fusion block structure. 

The SA Fusion module, a small part of the MAT 

block, is used in this instance to fuse the most 

information possible into a single image. Figure 5 shows 

the soft attention fusion module’s structure. This figure 

shows the fusion process for low-level features; high-

level features are fused similarly. Initially, the feature 

maps I1 and I2, which were acquired during the earlier 

stage of feature extraction, are divided into three 

channels each. Then, as shown in the bottom (2), the 

attention map is produced by applying the Softmax 

function over the channels of the I1 feature map,  

𝑆𝑜𝑓𝑡max 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛: (𝐴𝑎𝑚) = 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐼1𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠[𝑖]) 

Where the channel’s index number is depicted as ‘i’, 

ranging from 0 to 2. 

To improve attention weights-based features, the 

attention map Aam is used, which was produced from the 

soft-max operation and then the relevant channel of the 

I2 feature map is multiplied element-wise with it,  

𝐸𝑛ℎ𝑎𝑛𝑐𝑒𝑑𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: 𝐸𝑓 = 

(𝐴𝑎𝑚) ⊗ (𝐼2𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑚𝑎𝑝𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠[𝑖]) 

Where the corresponding channel I’s attention-aware 

feature map is represented as, E𝑓 and the element-wise 

multiplication operation is denoted as ⊗, which is then 

fed into the feature extraction layer to create the fused 

feature map. After that along the channel direction, each 

channel’s enhanced features are ultimately 

concatenated. At last, the low-level and high-level fused 

feature maps have been acquired. 

3.6. Image Reconstruction 

Feeding the fused feature maps into a Modified 

Resblock module, which has three convolutional layers 

including 3×3, 3×3, and 1×1. The final resulting fused 

image is obtained from the third convolutional layer 

after the feature channels of the first and second layers 

are combined. The fused low-level feature maps are sent 

to the first 3x3 convolutional layer, and the fused high-

level feature maps are sent to the second 3x3 

convolutional layer. The 1×1 convolutional layer 

combines these feature maps to form the final 

reconstructed image. The input for the first and second 

layers of convolution is 64 channels. The output 

channels of the three convolutional layers are 64, 64, 

and 32, as can be seen above. Figure 6 displays the 

image reconstruction module. 

 

Figure 6. Image reconstruction module. 

3.7. Loss Functions 

In addition to learning the image reconstruction at the 

pixel level, the network also extracts the image’s 

structure and gradient information. Our foundation is 

structural similarity, which is represented by the value 

of SSIM, which ranges from -1 to 1. The closer the value 

is to 1, the more similar the two are and the higher the 

quality of the fusion. The image’s structural information 

(2) 

(3) 
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is effectively extracted in the proposed approach using 

SSIM loss, and it is defined as:  

𝐿𝑆𝑆𝐼𝑀 = 1 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦) 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
 

Where the input image is represented by x, while the 

reconstructed image is represented by y. The variance of 

x and y is described as 𝜎𝑥
2 and 𝜎𝑦

2. The mean of x and y 

is described as 𝜇x and 𝜇y. The covariance of x and y is 

described as 𝜎xy. In cases where 𝜇𝑥
2 + 𝜇𝑦

2 and 𝜎𝑥
2 + 𝜎𝑦

2 

are extremely near to zero, the unstable outcomes are 

prevented by employing the C1 and C2 variables. 

4. Result and Discussion 

This section discusses the proposed approach’s 

effectiveness and performance. The proposed 

approach’s fusion results are also simulated. 

Discussions are held over each source image utilized in 

this research. This part is divided into five subsections: 

evaluation measures, experimental setups and 

parameter settings, and performance evaluation of the 

proposed MMIF approach with a comparison of 

recently published fusion approaches. 

4.1. Experimental and Parameter Settings  

The proposed research’s performance is examined by 

dividing the dataset into training and testing groups at 

random. For the analysis of experiments, Python 

software is employed. The investigation was conducted 

using a computer equipped with 16 GB of main 

memory, an NVIDIA GeForce RTX 3060 Ti graphics 

card, and an Intel Core i5-12400F CPU. During the 

training phase, 32 is the batch size, 0.0001 is the 

learning rate, and the number of epochs is 100. The 

parameters of the proposed network models are 

optimized using the Adam optimizer. 

4.2. Evaluation Measures 

To precisely and statistically analyze the performance 

of the proposed approach and assess the fused medical 

image, seven representative evaluation measures are 

chosen in the medical image fusion field. The evaluation 

measures are MI, QG, SSIM, PSNR, AG, SF, and QAB/F. 

QAB/F: It is a comprehensive evaluation of the image 

fusion quality by measuring the extent to which 

important textural features and edge information are 

conserved in the fused image.  

 SF: By monitoring changes in intensity at various 

spatial frequencies, SF evaluates an image’s texture 

and amount of detail by successfully differentiating 

between smoother areas and finer details. 

 PSNR: A metric indicating how faithfully the 

original images are matched in a fused image is 

provided by PSNR 

 AG: AG measures an image’s total intensity change. 

 SSIM: By considering structure, contrast, and 

luminance, the similarity between two images is 

evaluated by using the SSIM measure.  

 QG: The source and fused image’s gradient 

information is compared for analyzing the quality of 

fusion is called QG. Because the image’s edges and 

textures are represented by the gradient information, 

QG can determine whether the key details and 

structures of the original image are retained during 

image fusion. 

 MI: Between the source and fused images, the shared 

information content is analyzed using the MI metric. 

It can be applied to evaluate the image fusion’s 

quality and make sure that the fused image’s final 

representation accurately transmits and incorporates 

the relevant information. 

4.3. Performance Evaluation 

The Harvard medical dataset, which is openly 

accessible, is used to assess the proposed method. The 

efficacy of the proposed model is demonstrated using 

three different sets of medical images, one pair each of 

MRI-CT, MRI-PET, and MRI-SPECT. 

This technique ensures that an efficient fusion 

regulation is created, allowing a substantial portion of 

the information from the input images to be preserved 

in the fused image. We use the most cutting-edge 

methods currently available for multi-modal medical 

image analysis to present both qualitative and 

quantitative evaluations. This new method creates fused 

images that are rich in texture features, noise-free, and 

able to identify the exact tumor region.  

Before performing the fusion process, each input 

image can be enhanced to highlight the important details 

and features that are relevant to the fusion process by 

applying median filtering and histogram equalization. 

This can enhance the fused image’s quality and facilitate 

interpretation and analysis. 

A comparison analysis of the proposed approach with 

representative conventional and cutting-edge deep 

learning algorithms for MRI-CT, MRI-PET, and MRI-

SPECT image fusion is given in this section. Using the 

publicly accessible Whole Brain Atlas Harvard dataset, 

both qualitative and quantitative comparative studies 

are carried out. 

4.3.1. Fusion of MRI and CT Images 

For fusing MRI-CT image pairings, the comparison of 

various techniques is shown in this section. Comparing 

techniques include Efficient Model Module And Sparse 

Transformer (EMOST) [26], Multiscale Adaptive 

Transformer (MATR) [20], efficient fusion network 

based on dense Res2net and double nonlocal attention 

models (Res2Fusion) [27], Image Fusion Network 

Based On Memory Unit (MUFuison) [4], Principal 

(4) 

(5) 
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Component Analysis Network (PCANET) [6], the 

Parameter Adaptive-Pulse Coupled Neural Network and 

Non-Subsampled Contourlet Transform (PA-PCNN-

NSCT) [8] and Multilevel Bidirectional Feature 

Interaction Network (MBFINet) [20]. The test set 

results are used for analyzing the performance of the 

proposed research. For testing, thirty pairs of MRI-CT 

images are utilized. The MRI-CT image fusion results 

are shown in Figure 7. Additionally, the image fusion 

objective assessment metrics were employed to assess 

the fused images. According to the existing fusion 

works, the MUFusion approach can successfully 

maintain the MRI image’s rich texture information. 

However, it results in edge artifacts. The fused images 

created using the MATR approach clearly show blurring 

effects, and the local regions have degraded details. The 

MRI image's structural information can be effectively 

characterized by the MBFINet and Res2Fusion 

approaches, but the CT image’s features cannot be 

adequately presented by them. The fused image is not 

sufficiently clear since the PCANET approach loses 

significant texture information. Although the general 

contour is preserved by the IDPCNN approach, the local 

magnified region lacks clear texture information. The 

MRI and CT images’ significant features are retained by 

the PA-PCNN-NSCT technique, however, some 

detailed information is lost. Furthermore, the DSAGAN 

adds excessive amounts of extraneous noise, which 

reduces the fused image’s clarity. Using the proposed 

fusion approach, The MRI and CT images’ key features 

are successfully fused while maintaining the structures 

and contours. Additionally, the fused image’s textures 

and details produced by the proposed MMIF approach 

are the clearest. 

   
a) MRI Image. b) CT Image. c) Fused Image. 

   

d) MRI Image. e) CT Image. f) Fused Image. 

   

g) MRI Image. h) CT Image. i) Fused Image. 

Figure 7. The MRI-CT image pairs’ fusion results. 

Figure 8 compares the existing fusion methods with 

the results of MRI-CT image pairings’ quantitative 

evaluation. For each test image, the best fusion results 

are efficiently produced by the proposed approach in 

terms of Edge-based Similarity Measure (QAB/F), 

Spatial Frequency (SF), Peak Signal-to-Noise Ratio 

(PSNR), Average Gradient (AG), Structural Similarity 

Index Measure (SSIM), Mutual Information (MI), and 

Gradient-based Metric (QG). On certain test images, our 

proposed MMIF approach yields the best results for the 

AG and MI measures. The typical evaluation outcomes 

of several techniques on MRI-CT image pairs are shown 

in Table 5. The proposed approach outperforms the 

EMOST method across all performance measures. 

Consequently, the proposed MMIF approach 

outperforms recent existing methods in terms of 

qualitative and quantitative fusion performance. The fact 

that the proposed fusion method achieves high PSNR is 

indicative of lower noise levels, an increased 

relationship between the source and different images, 

and extremely strong information about the association 

between the fused and original images. The proposed 

MMIF approach fuses MRI and CT images in an average 

of 0.221 seconds.

Table 5. The mean values of seven assessment measures of several fusion methods across MRI-CT image pairs. 

Reference Methods SF QG MI AG SSIM QAB/F PSNR 

Wang et al. [26] EMOST 35.3573 0.6245 0.1983 7.1684 0.7135 0.4933 15.6856 

Tang et al. [24] MATR 16.4298 0.5311 0.1806 4.6715 0.3024 0.2703 14.9843 

Wang et al. [27] Res2Fusion 19.0822 0.3801 0.9054 4.7169 - - - 

Cheng et al. [3] MUFusion 24.8076 0.5441 0.1792 6.468 0.5082 0.4254 15.3391 

Ghandour et al. [6] PCANET 37.32781 - 3.11297 8.419538  0.614455 - 

Ibrahim et al. [8] PA-PCNN-NSCT - - 2.8512 10.103 - 0.5819 - 

Shi et al. [20] MBFINet 37.3247 0.6643 0.8078 8.7659 - - - 

Proposed approach MMIF approach 39.6863 0.7362 5.0291 11.1062 0.8264 0.7524 15.9050 
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a) SF. b) QAB/F. 

  

c) PSNR. d) AG. 

  

e) SSIM. f) MI. 

 

g) QG. 

Figure 8. Performance comparison for MRI and CT image fusion. 

4.3.2. Fusion of MRI and PET images 

For MRI-PET image fusion, the experimental results are 

shown and discussed in this section. The proposed 

approach’s performance is examined using the test set of 

MRI-PET image pairs. Figure 9 displays the proposed 

fusion results for MRI and PET images. The proposed 

research compared with recent existing fusion works 

such as EMOST [26], MATR [20], Res2Fusion [27], 

MUFusion [3], PCANET [6], PA-PCNN-NSCT [8], and 

MBFINet [20]. In the final fused images, the poor spatial 

details are produced by the DDCGAN from the 

comparison analysis. Rich texture information is well 

preserved by the MUFusion approach. Although the 

MATR approach can efficiently maintain color 

information, certain fused images can appear blurry as a 

result of it. Low brightness in the PCANET fused 

images significantly impairs the ability to perceive 

texture details. Although the MBFINet approach does an 

adequate task of preserving detailed information, the 

fusion results contain extraneous noise. Spatial 

distortion is produced at the edge region by the 

Res2fusion method. The MRI image’s detailed 

information is not properly characterized by the 

IDPCNN approach, and the blurring effect is visible in 
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the fused images. The structural information is 

effectively preserved by the proposed approach without 

adding noise or distorting color when compared to 

existing fusion methods. 

   

a) MRI Image. b) PET Image. c) Fused Image. 

   

d) MRI Image. e) PET Image. f) Fused Image. 

   

g) MRI Image. h) PET Image. i) Fused Image. 

Figure 9. The MRI-PET image pairs’ fusion results. 

Fusion results of MRI-PET image pairings’ 

quantitative evaluation with several fusion methods are 

displayed in Figure 10. The proposed approach works 

better than the existing fusion methods in terms of QG, 

MI, SSIM, AG, PSNR, SF, and QAB\F. The statistical 

assessment results’ average values for MRI-PET image 

pairs are shown in Table 6. The proposed approach 

outperforms the most recent EMOST fusion method as 

per the evaluation values. The proposed approach 

produced the maximum results for SF, MI, and SSIM. 

In general, the proposed fusion approach performs 

better when combining MRI and PET images. Within 

the pair of image quality indices (QG and AG), the 

proposed algorithm obtained the greatest ranking. The 

finding that the proposed algorithm’s AG index is 

noticeably greater than the AG indices of the other 

algorithms is especially important. This result implies 

that, in comparison to images produced by the other 

nine compositing algorithms, those produced by the 

proposed method show enhanced sharpness, contrast, 

and brightness. The outcomes for the three indices 

(SSIM, MI, and QAB/F) that were used to assess how 

much information was preserved in the composite 

images agreed with the conclusions that had been 

previously addressed. Concerning these indices, the 

proposed MMIF approach performed best, but the 

models EMOST, DSAGAN, PCANET, MBFINet, and 

IDPCNN had marginally lower scores. However, for 

these three indications, the models MSENet, MATR, 

Res2Fusion, and MUFusion showed noticeably lower 

results. This outcome shows that, in terms of 

maintaining image details, the proposed model performs 

better than the other models. The proposed MMIF 

approach fuses MRI and PET images in an average of 

0.051 seconds. 

Table 6. The mean values of seven assessment measures of several fusion methods across MRI-PET image pairs. 

Reference Methods SF QG MI SSIM AG  QAB/F PSNR  

Wang et al. [26] EMOST 33.7913 0.5577 0.5051 0.7213 8.3689 0.5845 15.2748 

Tang et al. [24] MATR 15.7889 0.5272 0.496 0.3256 4.7864 0.3437 16.1177 

Wang et al. [27] Res2Fusion 21.432 0.5502 0.9377 - 7.1876 - - 

Cheng et al. [3] MUFusion 23.6499 0.4924 0.5056 0.5041 7.0929 0.5026 15.3141 

Ghandour et al. [6] PCANET 26.02398 - 2.32974 - 7.51449 0.680409 - 

Ibrahim et al. [8] PA-PCNN-NSCT - - 3.01 - 8.5367 0.6805 - 

Shi et al. [20] MBFINet 38.4875 0.7602 0.9566 - 10.9738 - - 

Proposed MMIF approach 41.0832 0.8513 5.9432 0.8093 11.1883 0.7896 17.5323 
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a) SF. b) QAB/F. 

  

c) PSNR. d) AG. 

  

e) SSIM. f) MI. 

 

g) QG. 

Figure 10. Performance comparison for MRI and PET image fusion. 

4.3.3. Fusion of MRI and SPECT Images 

The experimental results on MRI-SPECT image pairs 

are shown and discussed in this section. The proposed 

approach’s performance is examined using the test set of 

MRI-SPECT image pairs. The proposed fusion results 

for MRI and SPECT are shown in Figure 11. This 

section compares the proposed approach for fusing 

SPECT and MRI images with other SOTA methods. The 

comparison methods include EMOST [26], MATR [20], 

Res2Fusion [27], MUFusion [3], PCANET [6], PA-

PCNN-NSCT [8], and MBFINet [20]. From the existing 

fusion works, the functional and structural information 

is not well preserved by the DDCGAN technique. The 

MUFusion approach may effectively maintain texture 

details and color information as compared to the 

DDCGAN method. When applied to edge regions, the 

MATR technique causes some blurring. Furthermore, 

the fused images produced by MATR have an 

excessively bright color. The MSENet approach 

produces fused images that are excessively blurry. The 

MRI image contains distorted information as a result of 

Res2Fusion’s inability to maintain the crucial original 

content. In the dark region, the local information is lost 

by the PA-PCNN-NSCT method. The MBFINet creates 

fused images that are less vibrant and struggle to 

maintain edge details. When compared to the other 

approaches, ours is better at preserving both structural 

and functional information, making it more useful for 

later medical needs. Our approach, however, does not 

allow the CT image to interfere and preserves more 

texture information from the MRI image. By contrast, 

the proposed approach more effectively maintains dense 

structures in the SPECT source image and edge details 

in the MRI source image.  
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a) MRI image. b) SPECT image. c) Fused image. 

   

d) MRI image. e) SPECT image. f) Fused image. 

   

g) MRI image. h) SPECT image. i) Fused image. 

Figure 11. The MRI-SPECT image pairs’ fusion results. 

The proposed approach’s performance is examined 

using the test set results. Thirty pairs of fused images are 

chosen to assess the proposed research. For MRI-

SPECT image fusion, the statistical assessment results 

of the proposed fusion methods with various existing 

fusion methods are given in Table 7. Test set MRI-

SPECT image pairs of fusion images are chosen to 

assess the proposed method’s efficacy as shown from a 

visual comparison, as illustrated in Figure 12. As seen in 

this figure, our proposed approach outperforms the 

others in terms of QG, MI, SSIM, AG, PSNR, SF, and 

QAB/F. When compared to previously published methods, 

the metric QAB/F clearly shows the superior performance 

of our proposed approach, especially concerning 

information and edge preservation in the generated 

images. QG shows that more texture details are preserved 

in our fused image. With all factors considered, our 

proposed fusion approach performs better overall in both 

quantitative and qualitative evaluations of the MRI-

SPECT fusion challenge. The proposed MMIF 

approach fuses MRI and SPECT images in an average 

of 0.052 seconds. 

  

a) SF. b) QAB/F. 

 
 

c) PSNR. d) AG. 

  

e) SSIM. f) MI. 

 

g) QG. 

Figure 12. Performance comparison for MRI and SPECT image fusion. 
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4.4. Discussion 

In this research, we have used separate effective deep 

learning models for extracting multi-level features. 

Low-level features capture fine details, while high-level 

features capture semantic information. Combining both 

can enhance the overall quality of the fused image. The 

proposed MMIF algorithm outperforms the other nine 

algorithms on almost all average measures, as shown by 

Tables 5, 6, and 7. The proposed approach nevertheless 

gives better results even though it only infrequently 

produces values that are marginally higher than those 

obtained using other techniques. The proposed MMIF 

approach outperformed the nine comparative techniques 

in terms of overall performance. The performance 

measures QG, MI, SSIM, AG, SF, PSNR, and QAB/F, 

measurements are shown in Tables 8, 9, and 10. The 

fusion outcome performs better when the above-

mentioned measures have high values. One purpose of 

image fusion is to increase comprehensive, adequate, 

and relevant details, producing a product best suited for 

human visualization. For fusion approaches to be 

effective, objective evaluation and visual analysis are 

equally important. The fusion results of the proposed 

MMIF approach are shown in Figures 7, 9, and 11 to 

demonstrate the efficacy of the proposed research. 

Images show that for all medical dataset pairs, the fusion 

outputs of our method perform better than alternative 

fusion methods. The existing fusion methods produced 

lower values for evaluation measures. To assess the 

effectiveness and show the resilience of the proposed 

MMIF approach, we practically assess the impact of 

transformation results in the QG, MI, SSIM, AG, PSNR, 

SF, and QAB/F metrics for three medical sets of 

medical image pairs. We examined the performance of 

our fusion approach for different evaluation metric 

values. 

Table 7. The mean values of seven assessment measures of several fusion methods across MRI-SPECT image pairs. 

Reference Methods SF QG MI SSIM AG  QAB/F PSNR  

Wang et al. [26] EMOST 18.0355 0.5878 0.7259 0.7442 4.9279 0.6034 22.2516 

Tang et al. [24] MATR 10.8671 0.5691 0.7183 0.4658 3.526 0.4612 17.1012 

Wang et al. [27] Res2Fusion 14.5082 0.6045 0.9526 - 4.5531 - - 

Cheng et al. [3] MUFusion 14.5663 0.5595 0.7303 0.5648 4.4729 0.545 21.4031 

Ghandour et al. [6] PCANET 17.66169 - 2.17266 - 4.97301 0.68963 - 

Ibrahim et al. [8] PA-PCNN-NSCT - - 3.4902 - 6.7863 0.6799 - 

Shi et al. [20] MBFINet 19.9801 0.752 1.1725 - 6.0554  - 

Proposed MMIF approach 23.7125 0.864 5.0431 0.8341 7.8972 0.7593 24.5127 

Table 8. Quantitative results obtained with a combination of different blocks in MRI-CT image pairs. 

Pre-processing (Median 

filtering+Histogram 

Equalization) 

Low-level feature 

extraction 

(IGoogLeNet) 

High-level feature 

extraction 

(MDenseNet-201) 

Feature fusion 

(Soft Attention) 

Feature Reconstruction 

(Modified Resblock)  
SSIM PSNR MI SF AG 

 
        0.6314 13.507 4.231 30.5491 9.2091 

   
      0.4432 12.572 3.1093 27.7654 7.7262 

     
    0.3964 10.761 3.735 26.5931 6.9282 

  
      0.2452 9.632 2.843 24.2626 4.2601 

        0.2875 8.016 2.7851 23.8915 4.2006 

          0.8264 15.905 5.0291 39.6863 11.1062 

Table 9. Quantitative results obtained with a combination of different blocks in MRI-PET image pairs. 

Pre-processing (Median 

filtering+Histogram 

Equalization) 

Low-level feature 

extraction 

(IGoogLeNet) 

High-level feature 

extraction 

(MDenseNet-201) 

Feature fusion 

(Soft Attention) 

Feature 

Reconstruction 

(Modified Resblock)  

SSIM PSNR MI SF AG 

 
        0.6415 15.618 4.132 36.6503 10.1102 

   
      0.4523 13.686 3.0183 30.8563 8.6371 

     
    0.2975 11.652 3.675 27.4045 7.047 

  
      0.2254 10.743 2.954 26.3637 7.3712 

        0.2966 9.107 2.895 25.9807 6.3127 

          0.8093 17.5323 5.9432 41.0832 11.1883 

Table 10. Quantitative results obtained with a combination of different blocks in MRI-SPECT image pairs. 

Pre-processing (Median 

filtering+Histogram 

Equalization) 

Low-level feature 

extraction 

(IGoogLeNet) 

High-level feature 

extraction 

(MDenseNet-201) 

Feature fusion 

(Soft Attention) 

Feature 

Reconstruction 

(Modified Resblock)  

SSIM PSNR MI SF AG 

 
        0.7227 23.500 4.872 21.5792 5.0113 

   
      0.6764 22.742 3.546 20.6991 4.5490 

     
    0.6096 20.884 3.886 20.6126 4.158 

  
      0.4478 20.968 3.0509 19.2788 3.2901 

        0.3188 19.8018 2.654 19.8914 3.4048 

          0.8341 24.5127 5.0431 23.7125 7.8972 

 
Measuring objectively in terms of metrics, the 

proposed method outperforms earlier comparable 

methods concerning the information transfer rate for all 

medical images. Furthermore, in comparison to 
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alternative methodologies, the average value of 

assessment metrics for the proposed method is greater 

for each of the three pairings of medical datasets. 

Compared to existing fusion procedures, it was 

observed that the non-reference-based metrics values of 

the proposed method are highly significant. Comparable 

methods perform so much less than our proposed MMIF 

approach, which performs similarly visually. 

Furthermore, our approach becomes more apparent, 

showing the least amount of information loss and the 

highest amount of information transfer. In contrast, in 

other comparing approaches, fused images show higher 

levels of noise and information loss. 

The novel network model proposed in this research 

combines the benefits of DenseNet-201, IGoogLeNet, 

and the Soft Attention mechanism. The model improves 

the accuracy and efficiency of image processing by 

combining the benefits of each technique efficiently and 

drastically lowering the chance of artifacts and edge 

blurring. The application of the proposed method has 

proven successful, producing images that are rich in 

information by combining several modalities of medical 

imaging, offering more thorough and precise reference 

data for clinical diagnosis. 

4.5. Ablation Study 

We used test datasets to perform tests on all three sets 

of image pairs (MRI-CT, MRI-SPECT, and MRI-PET) 

in order to evaluate the effect of different blocks on the 

model’s effectiveness. For these experimental 

assessments, three example image pairs were chosen. 

These images represent various modalities, each 

displaying unique information relating to the tumor. The 

main goal was to highlight differences between tumor 

locations while preserving the fine details from the 

original maps in the fusion results. Various 

combinations of the pre-processing, feature extraction, 

and fusion blocks were used in the adopted ablation 

studies. Ablation tests on several combinations of 

proposed modules on MRI-CT, MRI-PET, and MRI-

SPECT image pairings are displayed in Tables 8, 9, and 

10. According to ablation experiment results for image 

pairs, all measures perform significantly less well, and 

the final fusion process takes longer without the pre-

processing step. Additionally, the fusion results are 

marginally impacted by the pre-processing step’s 

absence. Without low-level feature extraction 

(IGoogleNet), the obtained fused image lacked 

sharpness and fine details, leading to blurred or less 

visually informative results. Metrics like SF and AG 

showed significant reductions, reflecting poorer 

preservation of local features. Without high-level 

feature extraction (MDenseNet-201), the fused image 

lacked meaningful integration of high-level semantics, 

leading to less interpretable results. We have obtained 

lower results for SSIM and MI metrics because the 

fused image needs to retain the meaningful content of 

the source images. When both low-level and high-level 

feature extraction are omitted, PSNR is reduced due to 

noise and loss of fidelity in the reconstructed image, the 

MI is decreased indicating less information transfer 

from the source images to the fused image, the final 

image may appear blurred, less detailed, or semantically 

incoherent. The proposed research achieved higher 

performance measures and superior fusion results by 

utilizing the complete combination of all modules. 

4.6. Efficiency and Limitations 

Based on the experiment analysis, each modal dataset 

was used to calculate the speed of the proposed 

approach. For MRI-PET and MRI-SPECT image 

fusions, the proposed MMIF method requires longer 

processing times. These findings indicate that, except 

for the fusion approach based on sparse representations, 

the majority of deep learning-based fusion techniques 

are faster than conventional fusion techniques. The 

proposed approach is quicker than the conventional 

approaches, but it is a little slower than the other 

approaches since the fusion of grayscale images 

happens more slowly than that of color images because 

60% of the channels in the grayscale image must be 

processed, compared to 10% in the color image. 

Furthermore, we have shown the fusion results on three 

group datasets, showing that the grayscale fusion effect 

outperforms the color image fusion both subjectively 

and quantitatively. It is evident that the important 

PET/SPECT data are retained, however vibrant colors 

cover out some of the MRI’s finer details. Since just 

Network processing is done on the Y channel of the 

YCbCr space in the color image fusion instance of the 

proposed MMIF approach, extra processing of color 

information is not required. Thus, color processing and 

MRI information enhancement will be taken into 

consideration in future work to better combine color 

with other texture data. 

5. Conclusions 

The proposed efficient deep learning-based multi-level 

feature extraction network has been utilized to perform 

MMIF. First, two distinct and effective deep learning 

models, such as IGoogLeNet and MDenseNet-201, are 

used to extract the multi-level features, including low-

level and high-level features in the feature extraction 

phase. Then the Softmax-based soft attention fusion 

mechanism is used to fuse the high-level and low-level 

features and features in the feature fusion phase. Finally, 

the fused high-level and low-level features are 

combined using the Modified Resblock module to form 

the final fused image in the image reconstruction phase. 

In comparison to cutting-edge methods, the proposed 

MMIF fusion approach with its SA fusion mechanism 

performed better on seven performance metrics, 

including QG, MI, SSIM, AG, PSNR, SF, and QAB/F. The 
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results of the proposed MMIF approach with SA fusion 

mechanism and effective multi-level feature extraction 

networks showed minimized noise, maximum mutual 

information and high structural similarity in the fused 

image. Additionally, the best results in terms of QG, AG, 

and SF values were obtained using the proposed MMIF 

approach. According to the subjective evaluation, the 

proposed MMIF approach with SA fusion resulted in 

more visually understandable images for medical 

professionals. In terms of certain performance metrics, 

no other task has produced better results. The 

effectiveness of the proposed fusion network was 

verified by comparing it with nine state-of-the-art 

approaches using three modal datasets. Our proposed 

MMIF fusion approach exhibited enhanced 

performance compared with all comparator models such 

as EMOST, DSAGAN, MATR, MSENet, Res2Fusion, 

MUFusion, PCANET, PA-PCNN-NSCT, and 

MBFINet. 

Future studies may investigate utilizing the whole 

fusion block’s MATNet block since the promising 

results are produced by the attention-based networks in 

highlighting relevant features. To improve the 

association between an object’s appearance and motion, 

the two-stream encoder for motion-attentive 

representations is created using MATNet by integrating 

the MAT block. Better fusion results are achieved by 

extracting selective representations from multi-level 

encoder data through the use of a bridge network. 
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