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Abstract: Automated segmentation of nuclei in Hematoxylin and Eosin (H&E) stained histopathology images plays a vital role 

in accurate cancer diagnosis and prognosis. These techniques enable detailed analysis of numerous nuclei in H&E images, 

providing both qualitative and quantitative insights. However, challenges arise when segmenting nuclei of varying sizes and with 

indistinct boundaries, which can undermine the reliability of segmentation outcomes. To address these issues, we propose a novel 

approach that integrates edge information, extracted from the input data, into the UNET architecture a well-established model 

for image segmentation. Our approach involves modifying the Attention Gate (AG) mechanism within the UNET to emphasize 

edge features during segmentation. This modification improves the precision of nucleus boundary delineation, particularly in 

cases with vague or overlapping boundaries, reducing segmentation errors and boosting overall accuracy. 
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1. Introduction 

Histopathology images are integral to modern medical 

diagnostics, providing detailed insights into the cellular 

and structural composition of tissues. These images are 

generated through the microscopic examination of thin 

tissue sections stained with specialized dyes, enabling 

pathologists to observe cellular morphology, detect 

abnormalities, and diagnose diseases. In this context 

“nucleus segmentation” refers to the process of 

identifying and delineating nuclei within tissue samples. 

Nuclei are key indicators of cellular activity, offering 

essential information on cell proliferation, 

differentiation, and pathology. Accurate segmentation 

of nuclei is crucial for quantifying cellular 

characteristics, measuring biomarkers, and analyzing 

tissue morphology all of which are critical components 

of histopathological analysis. 

However, nucleus segmentation in histopathology 

images is particularly challenging due to the complex 

and heterogeneous nature of tissues. Variations in 

staining intensity, tissue thickness, cellular density, and 

the presence of artifacts can hinder accurate 

segmentation. Manual segmentation methods, while 

traditionally used, are labor-intensive, time-consuming, 

and prone to subjectivity, making them unsuitable for 

large-scale analysis or time-sensitive clinical 

environments. 

To overcome these challenges, automated image 

analysis techniques, especially the UNET architecture, 

have become widely adopted. UNET is designed 

specifically for biomedical image segmentation, 

featuring a contracting path for extracting context and  

 
an expansive path for accurate localization. Its ability to 

retain fine details while capturing high-level features  

makes it particularly well-suited for nucleus 

segmentation in histopathology images. By 

incorporating skip connections and utilizing end-to-end 

learning, UNET provides a scalable and efficient 

solution for automating this critical task. 

In this research, we explore the use of UNET for 

nucleus segmentation in histopathology images, 

focusing on the impact of preprocessing techniques to 

enhance segmentation performance. Through extensive 

experimentation and evaluation on benchmark datasets, 

including the Kasturba Medical College (KMC) liver 

and MoNuSeg datasets, we aim to contribute to the 

development of automated nucleus detection methods in 

histopathological analysis. 

2. Literature Review 

This study includes citations to several helpful studies 

that helped us arrive at our findings. The list below 

includes a few of them. 

Lal et al. [8] presented a deep learning architecture 

called NucleiSegNet for segmenting nuclei in 

Hematoxylin and Eosin (H&E) stained liver cancer 

histopathology images. The model to tackle problems 

such as segmenting close nuclei and fluctuating nucleus 

shapes, the model integrates robust residual blocks and 

attention methods. It demonstrates its efficacy in nuclear 

segmentation tasks by outperforming current models in 

both quantitative and qualitative ways. Along with 

suggesting possible future uses and expansions of their 

work in histopathology image processing, Lal et al. [8] 
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also offer a fresh collection of annotated liver nuclei 

pictures. 

Oktay et al. [12], introduce an Attention Gate (AG) 

model for medical imaging. This model is trained to 

focus on input structures of variable shapes and sizes, 

improving sensitivity and accuracy. By training with 

AGs, irrelevant regions in input images are suppressed 

while salient features are highlighted, eliminating the 

need for external localization modules. AG are also 

integrated with the existing UNET architectures. This 

approach demonstrates notable enhancements in 

tissue/organ identification and localization, particularly 

benefiting small organs like the pancreas. 

Zhang et al. [16] used a deep residual UNET model 

to offer a novel approach for road extraction from aerial 

photos. Road segmentation in satellite photos is made 

more efficient with this method, which blends residual 

learning and UNET architecture. The efficiency of the 

method in remote sensing applications is demonstrated 

by its superior precision and recall compared to current 

state-of-the-art techniques. 

Ronneberger et al. [13] demonstrated how well 

UNET performs in a variety of segmentation tasks, such 

as cell segmentation in light microscopy images. UNET 

performs faster and more accurately than earlier 

techniques, particularly when applied to difficult 2D 

transmitted light datasets. For more study and use in 

biomedical image segmentation tasks, Ronneberger et 

al. [13] additionally offer trained networks, 

implementation information, and supplemental 

materials. 

Szegedy et al. [14] introduced the GoogLeNet 

architecture and the Inception module, which helped 

make deep neural networks more efficient and accurate. 

Instead of just making networks deeper or wider, it used 

different sized filters in parallel to capture more features 

with fewer computations. This innovation was key in 

advancing deep learning in image recognition tasks. 

Long et al. [9] introduced Fully Convolutional 

Networks (FCNs), a new way to do semantic 

segmentation, which means labeling every pixel in an 

image. Instead of using fully connected layers, it uses 

only convolutional layers so the network can take any 

size image and output a segmented version. It was one 

of the first deep learning models to do pixel-level 

prediction directly and accurately. 

He et al. [5] suggested Residual Networks (ResNet), 

a deep learning model that solves the problem of 

training very deep neural networks. It uses “skip 

connections” to let the network learn the difference 

(residual) between layers instead of learning everything 

from scratch. This made training easier and allowed the 

creation of very deep networks with much better 

accuracy. 

Yu et al. [15] present a Discriminative Feature 

Network (DFN) that improves how well a model can tell 

different objects apart in semantic segmentation. It 

focuses on making features more distinct 

(discriminative) and enhances both the detail and the 

overall structure in segmented images. The method 

helps the model better separate objects, especially when 

they have similar appearances. 

Milletari et al. [10] introduced V-Net, a deep learning 

model designed to segment 3D medical images like 

MRI scans. Unlike 2D models, V-Net works directly on 

volumetric 3D data and uses convolutional layers to 

process the whole volume at once. It also uses a special 

Dice loss function to better handle class imbalance, 

which is common in medical imaging. 

Kartheek et al. [6] introduced a new feature 

extraction method called Local Triangular Patterns 

(LTP) for facial expression recognition. It captures 

detailed facial texture information by focusing on 

triangular patterns in image regions. This handcrafted 

method helps improve the accuracy of recognizing 

different facial expressions, especially in challenging 

lighting or noise conditions. 

Gugulothu and Bhukya [4] present a deep learning 

method optimized using a hybrid algorithm called Coot-

Lion to predict how fast point mutations happen in 

COVID-19 genomes. By analyzing genetic data, the 

model aims to detect and predict virus mutations more 

accurately. The hybrid optimization improves model 

performance and prediction accuracy. 

Dasari and Bhukya [3] proposed a deep learning 

model to predict new viral genomes with a focus on 

explainability making the model’s decisions easier to 

understand. It helps researchers not only detect 

unknown viruses from genome data but also understand 

why the model made a certain prediction. This is 

important for building trust and aiding scientific 

discovery in virus research. 

Bhukya et al. [2] present a hybrid deep learning 

model with attention mechanisms to accurately find 

transcription factor binding sites important regions in 

DNA where proteins attach to control gene activity. The 

attention layer helps the model focus on the most 

important parts of the DNA sequence, improving both 

prediction accuracy and interpretability. 

The MoNuSeg dataset in [11] is a collection of 

histopathology images with manually labeled nuclei 

used for training and testing nucleus segmentation 

models. It’s widely used in medical image analysis 

challenges to help improve algorithms that detect and 

separate cell nuclei in tissue samples. 

Kartheek et al. [7] proposes a new method for 

recognizing facial expressions by analyzing texture 

patterns in images using symbolic features. The 

technique captures subtle facial changes more 

effectively, helping machines understand emotions from 

faces with improved accuracy. 

Bhukya [1] Suggested a new way to guess gene 

activity by first shrinking large sets of gene data using 

deep autoencoders. Then, a type of neural network 

Multi-Layer Perceptron (MLP) is used to make 

predictions from that smaller set. This method works 
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better because it finds hidden patterns and makes the 

data easier to handle. 

3. Proposed Work and Methodology 

Although the UNET architecture has achieved 

considerable success in image segmentation, 

particularly in non-medical fields, its application in 

medical imaging remains less explored, presenting 

opportunities for further refinement. One key limitation 

we identified is its inadequate performance in accurately 

delineating nucleus boundaries, leading to errors, 

especially at the edges. To overcome this issue, our 

approach involves preprocessing input images to extract 

edge maps, which are then integrated into the AG of the 

UNET architecture. Figure 1 illustrates the complete 

methodology of the proposed nucleus segmentation 

approach, showing the step-by-step process from input 

histopathological images to segmented outputs. It 

integrates key techniques such as Sobel edge detection 

for boundary enhancement, AG mechanisms for feature 

refinement, and a modified UNET architecture for 

accurate segmentation. The figure provides a structured 

visualization of how these components work together to 

improve segmentation performance. 

3.1. Dataset 

We trained our model using two datasets: the KMC liver 

dataset and the MoNuSeg dataset. The KMC liver 

dataset comprises 194 training images and 4 test images, 

each with a resolution of 512×512 pixels. The 

MoNuSeg dataset includes 30 training images with 

annotations for 22,000 nucleus boundary 

segmentations, and 7 test images containing 7,000 

nucleus boundaries. 

3.2. Preprocessing 

Histopathology images often exhibit variations in color 

and intensity due to differences in staining protocols, 

tissue characteristics, and imaging conditions associated 

with H&E staining. These inconsistencies create 

challenges for nucleus segmentation, as it becomes 

difficult to differentiate between true biological 

structures and staining artifacts. To address this, 

normalization is applied to the dataset as a preliminary 

step. Additionally, the manual annotation of nuclei in 

tissue samples usually results in a relatively small 

dataset, which can hinder model generalization and 

increase the risk of overfitting. To overcome these 

limitations, dataset augmentation techniques such as 

random rotation, cropping, blurring, and 

horizontal/vertical flipping are employed to expand the 

dataset and improve model performance. Figure 2 

illustrates an intermediate stage in the process depicted 

in Figure 1. The H&E stained tissue image (Figure 2-a)) 

represents the original input, whereas the Sobel edge 

map (Figure 2-b)) is a processed feature extracted using 

edge detection techniques. 

 

Figure 1. Attention gate combining edge map features. 

  

a) H & E stained tissue image. 
b) Edge map obtained after applying Sobel 

edge detection. 

Figure 2. Input tissue image and corresponding edge map. 

3.3. Edge Detection 

Edge maps are extracted from the input image using the 

Sobel filter, which is defined by two convolution 

kernels: Gx and Gy, representing the horizontal and 

vertical gradients, respectively. These kernels are 

applied to the image through convolution to calculate 

the gradient magnitude and direction at each pixel. 

The Sobel kernels are defined as: 

GX= 

1 0 1 

, Gy= 

−1 −2 –1 

−2   0 2 0 0 0 

1 0 1 1 2 1 

The convolution between the Sobel kernels and the 

image is performed as: 

𝐼𝑥 = 𝐼 ∗  𝐺𝑥, 𝐼𝑦 = 𝐼 ∗  𝐺𝑦 

where Ix and Iy are the convolved images representing 

the horizontal and vertical gradients, respectively. These 

gradient images are then combined to compute the 

gradient magnitude M at each pixel location using the 

following equation: 

𝑀 = 𝑞𝐼𝑥
2+𝐼𝑦

2 

Next, we apply a threshold to the gradient magnitude 

image to convert it into a binary image. Pixels with 

gradient magnitudes exceeding a specified threshold are 

categorized as edge pixels, while those below the 

(1) 

(2) 

(3) 
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threshold are classified as non- edge pixels. Through 

experimentation, we determined that a threshold value 

of 0.2 yielded optimal outcomes. 

3.4. UNET Architecture 

1) Encoder: the encoder in the UNET model, adapted 

from the NucleiSegNet paper, consists of four 

residual blocks and three down sampling layers. Each 

residual block is composed of a 3×3 convolution 

layer, followed by a separable convolution layer, and 

another 3×3 convolution layer. All convolution 

operations are followed by batch normalization and 

ReLU activation. The residual blocks are repeated 

four times, with down sampling layers inserted 

between them, having the output image size at each 

stage. After each residual block, the number of 

channels is doubled to retain critical information. 

This encoder effectively captures intricate image 

details necessary for accurate segmentation in the 

decoder. 

2) Bottleneck layer: the bottleneck layer compresses the 

input data, retaining only the essential information 

needed for accurate reconstruction. In NucleiSegNet, 

this layer comprises three convolutional layers with 

3×3 kernels, each followed by batch normalization 

and ReLU activation. This setup enables the 

encoding of global information about significant 

regions in H&E stained images, allowing the 

attention block to filter out irrelevant background 

areas effectively. 

3) Decoder: the decoder reconstructs the segmentation 

map using features extracted by the encoder. The 

compressed features from the bottleneck layer are 

passed through four convolution blocks, each 

containing two convolutional layers followed by 

batch normalization. After each convolution block, 

an attention block is applied. The output image size 

is doubled, and the number of channels is halved after 

each convolution, allowing for a gradual 

reconstruction of the segmentation map. 

4) Novel AG: in the attention block, the high-level 

features from the bottleneck block and the low-level 

features from the encoder block are combined to train 

the model’s attention to task-relevant regions. 

However, we found that the majority of segmentation 

problems happen at the mask’s boundaries. In order 

to enhance this, we implemented a new strategy.  

To gradually extract informative features, edge maps are 

first generated from the input data and processed via 

four residual blocks. The goal of this step is to train the 

model to identify pertinent edges for better attention 

management. To create EC, the resulting edge maps are 

scaled to fall between 0 and 1. Each residual block’s 

output s then routed to an AG. Here, the skip connection 

x from the matching encoder is inserted after the gating 

signal g from the next lower layer containing high level 

features has undergone. 

𝑋𝑐 =  𝜎(𝑈 (𝐻1×1(𝐻3×3(𝑔)))  +  𝐻3×3(𝑥)) 

𝑋𝑐  =  𝑋𝑐𝐸𝑐 + 𝑋𝑐 

Here Hy×y means standard convolutional operation with 

kernel size y, U means un sampling and σ means 

sigmoid function. This operation assigns higher 

importance to pixels with greater values in Ec, 

signifying nuclei boundaries. Finally, the gating signal 

g is scaled with Xc which diminishes attention to non-

essential features, aiding in precise segmentation of 

nuclei boundaries while minimizing focus on irrelevant 

areas. 

4. Experiment Results 

4.1. Training 

During the model training process, we utilized two 

datasets: the KMC liver dataset and the MoNuSeg 

dataset. Both datasets were split into distinct sets for 

training, validation, and testing. The KMC dataset as 

divided in a 1:6:24 ratio for testing, validation and 

training respectively. While the MoNuSeg dataset 

followed a 1:1:5 ratio. The input images were H&E 

stained and corresponding outputs included ground 

truth annotations.  

Training was conducted using the Adam W optimizer. 

After experimenting with different learning rates, we 

found that 0.001 worked well as the starting value. To 

reduce the model’s complexity, we divided input images 

into patches of size 256×256, which helped lower the 

number of parameters. For the test dataset, we predicted 

the segmentation mask for each patch, reassembled the 

patches and then evaluated the final scores. 

4.2. Evaluation Metrics 

For evaluating the performance of the model, we use the 

following metrics. Here tn, fn, fp, and tp, represent true- 

negative, false-negative, false-positive, and true-

positive with respect to the pixels of the predicted 

segmentation mask. 

1) Dice score: the Dice score assesses the overlap 

between actual segmentations and predicted 

segmentations in image segmentation tasks. It 

focuses on true positives (tp), measuring the 

agreement between positive predictions and ground 

truth. True negatives (tn) aren’t directly considered in 

its calculation. 

𝐷𝑖𝑐𝑒𝑠𝑐𝑜𝑟𝑒 =
2𝑡𝑝

2𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
 

2) IOU score: IOU measures the similarity between 

actual segmentation and predicted segmentations by 

comparing their intersection to their union. It 

considers true positives (tp) but doesn’t explicitly 

account for true negatives (tn). 

(4) 

(5) 
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𝐼𝑂𝑈 𝑆𝑐𝑜𝑟𝑒 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝 + 𝑓𝑛
 

3) Accuracy: Accuracy evaluates overall classification 

correctness by considering both true positives (tp) and 

true negatives (tn). it measures the correctness of the 

predicted samples of the total number of samples. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑡𝑛  + 𝑓𝑝 + 𝑓𝑛
 

4) Precision: Precision assesses the correctness of 

positive predictions by focusing on minimizing false 

positives. It is the division of true positive to addition 

of true positive and false positives. It emphasizes the 

model’s ability to avoid incorrectly labeling negative 

samples as positive, thus reducing false positives. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

4.3. Results 

In Figure 3, we compare the predicted masks of the 

models. Figure 3-a) shows the original H&E tissue 

image. Figure 3-b) shows the true mask or ground truth. 

Figure 3-c) shows the mask predicted by the existing 

model, and Figure 3-d) shows the mask predicted by the 

proposed model. 

 

  

a) H&E stained tissue image. b) Ground truth. 

  

c) Mask predicted by existing model. d) Mask predicted by proposed model. 

Figure 3. Comparison of ground truth and predicted segmentation 

masks. 

Table 1. Performance metrics for deep learning models on KMC 
liver dataset. 

Model Dice IOU Accuracy Precision 

Existing 85.26 74.38 84.00 98.27 

Proposed 87.69 78.50 88.59 98.84 

Table 1 presents a comparison of the performance 

metrics of the existing and proposed models on the 

KMC liver dataset, focusing on Dice score, IOU score, 

accuracy, and precision. The proposed model 

consistently outperforms the existing model across all 

metrics, indicating improved segmentation quality. The 

Dice score, which measures the overlap between 

predicted and actual segmentations, is higher for the 

proposed model (86.69) compared to the existing model 

(85.26). Similarly, the IOU score, which measures 

similarity by comparing the intersection to the union, is 

also higher for the proposed model (76.60) compared to 

the existing model (74.38). The proposed model also 

demonstrates better overall accuracy, achieving a score 

of 86.58 versus 84.00 for the existing model. 

Additionally, the precision is slightly improved with the 

proposed model (98.46) compared to the existing model 

(98.27). These improvements highlight the 

effectiveness of the proposed model in achieving better 

nuclei segmentation, leading to enhanced accuracy and 

reliability in the segmentation process for the KMC liver 

dataset. 

Table 2. Performance metrics for deep learning models on MoNuSeg 

dataset. 

Model Dice IOU Accuracy Precision 

Existing 81.65 69.05 82.60 93.24 

Proposed 82.56 70.76 86.73 94.85 

Table 2 compares the performance of the existing and 

proposed models on the MoNuSeg dataset using the 

metrics Dice score, IOU score, accuracy, and precision. 

The proposed model achieves slightly better results 

compared to the existing model across all metrics, 

indicating improved segmentation performance. 

Specifically, the proposed model has a Dice score of 

82.13, which is higher than the existing model’s score 

of 81.65. The IOU score for the proposed model is 

69.76, compared to 69.05 for the existing model. The 

proposed model also demonstrates better accuracy, 

achieving a score of 85.83, while the existing model 

scores 82.60. In terms of precision, the proposed model 

shows a slight improvement, with a score of 93.85 

compared to 93.24 for the existing model. These results 

highlight the effectiveness of the proposed model in 

enhancing segmentation accuracy and reliability on the 

MoNuSeg dataset. 

 

Figure 4. Training loss progression over epochs for KMC liver 

dataset. 

Table 3. Training loss progression for KMC liver dataset. 

Iteration Existing Proposed 

5 0.007516 0.005220 

10 0.004923 0.003633 

15 0.004336 0.003221 

20 0.004256 0.003145 

25 0.004060 0.002529 

30 0.003881 0.002761 

35 0.003847 0.002722 

40 0.003858 0.002573 

45 0.003732 0.002578 

50 0.003665 0.002430 

(6) 

(8) 

(7) 
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From Figure 4, we compare the training loss of the 

existing model with that of our proposed model on the 

KMC liver dataset. As observed in Table 3 the training 

loss progression for both the existing and proposed 

models on the KMC liver dataset over 50 iterations as 

shown in above figure. The proposed model consistently 

achieves lower training loss than the existing model, 

starting with a value of 0.005220 at iteration 5 and 

converging to a final value of 0.002430 at iteration 50. 

In comparison, the existing model starts with a loss of 

0.007516 and converges to 0.003665 at iteration 50. 

This indicates that the proposed model learns more 

effectively, with better convergence behavior and lower 

loss throughout the training process. 

 

Figure 5. Validation loss progression over epochs for KMC liver 

dataset. 

Table 4. Validation loss progression for KMC liver dataset. 

Iteration Existing Proposed 

5 0.005292 0.004184 

10 0.003673 0.003016 

15 0.003332 0.002456 

20 0.003347 0.002623 

25 0.003009 0.002266 

30 0.002744 0.002344 

35 0.002670 0.002034 

40 0.003203 0.002298 

45 0.003900 0.002345 

50 0.002480 0.002033 

From the above Figure 5, we compare the validation 

loss of the existing model with that of our proposed 

model on the KMC liver dataset. As observed in Table 4 

the validation loss progression of both the existing and 

proposed models on the KMC liver dataset over 50 

iterations. The proposed model consistently 

outperforms the existing model in terms of validation 

loss, starting with a lower loss value of 0.004184 at 

iteration 5 compared to 0.005292 for the existing model. 

As the iterations progress, the proposed model’s 

validation loss continues to decrease, ultimately 

converging at 0.002033 by iteration 50, whereas the 

existing model converges at a higher loss of 0.002480. 

This demonstrates that the proposed model generalizes 

better to the validation set, achieving a more stable and 

lower validation loss, indicating superior performance 

and less over fitting compared to the existing model. 

In Figure 6, we compare the F1-score of the existing 

model with that of our proposed model on the KMC 

liver dataset. The F1-score progression for existing and 

proposed models on the KMC liver dataset over 50 

iterations. The proposed model starts with an F1-score 

of 0.817854 and improves to 0.848766 while the 

existing model reaches 0.844240 showed in Table 5. 

This indicates that the proposed model consistently 

outperforms the existing one in accurately identifying 

nuclei boundaries. 

 

Figure 6. F1-score progression over epochs for KMC liver dataset. 

Table 5. F1-score progression for KMC liver dataset. 

Iteration Existing Proposed 

5 0.017645 0.016718 

10 0.015675 0.015553 

15 0.014921 0.014456 

20 0.014598 0.013554 

25 0.013995 0.013244 

30 0.013990 0.012908 

35 0.013715 0.012789 

40 0.013459 0.012567 

45 0.013600 0.012456 

50 0.013317 0.012234 

In Figure 7, we compare the training loss of the 

existing model with that of our proposed model on the 

MoNuSeg dataset. The proposed model consistently 

achieves lower training loss, starting at 0.016718 and 

converging to 0.012234, while the existing model 

begins at 0.017645 and ends at 0.013317 showed in 

Table 6. This indicates that the proposed model learns 

more effectively, resulting in improved training 

performance. Table 6 presents the training loss 

progression for the existing and proposed models on the 

MoNuSeg dataset over 50 iterations. 

 

Figure 7. Training loss progression over epochs for MoNuSeg 

dataset. 
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Table 6. Training loss progression for MoNuSeg dataset. 

Iteration Existing Proposed 

5 0.783715 0.817854 

10 0.817152 0.838346 

15 0.828144 0.841027 

20 0.827895 0.847224 

25 0.832375 0.850276 

30 0.838988 0.838118 

35 0.838260 0.841200 

40 0.838884 0.839956 

45 0.842489 0.844985 

50 0.844240 0.848766 

In Figure 8, we compare the validation loss of the 

existing model with that of our proposed model on the 

MoNuSeg dataset. The validation loss of our model is 

higher in the starting iterations, as shown in Table 7. The 

proposed model starts with a training loss of 0.027786 

and decreases to 0.016243, while the existing model 

shows a smaller decrease from 0.020152 to 0.016824. 

This indicates that the proposed model learns more 

effectively, resulting in a more significant reduction in 

training loss. 

 

Figure 8. Validation loss progression over epochs for MoNuSeg 

dataset. 

Table 7. Validation loss progression for MoNuSeg dataset. 

Iteration Existing Proposed 

5 0.020152 0.027786 

10 0.018317 0.019876 

15 0.017239 0.018332 

20 0.018278 0.017545 

25 0.019173 0.017432 

30 0.018103 0.016420 

35 0.019677 0.016654 

40 0.018749 0.016332 

45 0.018186 0.017996 

50 0.016824 0.016243 

In Figure 9, we compare the F1-score of the existing 

model with that of our proposed model on the MoNuSeg 

dataset. Table 8 displays the F1-score progression for 

the existing and proposed models on the MoNuSeg 

dataset over 50 iterations. The proposed model starts 

with an F1-score of 0.801967 at iteration 5 and increases 

to 0.826980 by iteration 50, whereas the existing model 

improves from 0.794418 to 0.821524 during the same 

period. This consistent increase in the pro- posed 

model’s F1-score highlights its superior performance in 

accurately identifying nuclei boundaries. Overall, the 

results indicate that the proposed model demonstrates 

better learning efficacy and effectiveness in the 

segmentation task. 

 

Figure 9. F1-score progression over epochs for MoNuSeg dataset. 

Table 8. F1-score progression for MoNuSeg dataset. 

Iteration Existing Proposed 

5 0.794418 0.801967 

10 0.806771 0.807878 

15 0.811101 0.813567 

20 0.812827 0.819890 

25 0.817243 0.818954 

30 0.816816 0.819976 

35 0.818373 0.821987 

40 0.821007 0.822765 

45 0.819720 0.825432 

50 0.821524 0.826980 

5. Conclusions 

In conclusion, our research explores the well-

established field of UNET models, aiming to introduce 

a novel approach to image segmentation that enhances 

traditional deep learning methods. Our technique 

involves extracting edge information from input images 

before feeding them into the UNET model, allowing the 

attention mechanism to better preserve crucial details. 

By testing our model on two datasets, we evaluated its 

performance based on training loss, IOU scores, Dice 

scores, accuracy, and precision, demonstrating the 

effectiveness of our method. 
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