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Abstract: In deep learning, Hyperbolic Tangent (Tanh) and Sigmoid nonlinear activation functions can retain the complex 

relationship, which is more appropriate in Recurrent Neural Networks (RNNs). The gradients of these activation functions are 

vital in updating the weights during training the network. However, both functions are vulnerable to the vanishing gradient 

problem and expensive in exponent operations. It causes gradients to vanish during back propagation that leads to training 

overheads and low performance. Although most of the studies put forward methods to reduce exponent operations, there is not 

a viable solution to tackle the gradient issues. Hence, we propose a Taylor expansion of second order to realize Tanh and Sigmoid 

functions. In particular, Long Short-Term Memory (LSTM) network makes extensive use of these functions as well as gating 

mechanism to control the flow of information and gradients. In consequence, Taylor expansion Tanh and Sigmoid activation 

functions based parallel heterogeneous LSTM network integrated with Bayesian hyperparameter optimization is being proposed 

for multi-step time series prediction. The current model efficacy is evaluated on bench mark datasets Mackey-Glass Series 

(MGS), Electricity Transformer Temperature hourly 2 (ETTh2), coronavirus daily cumulative cases, Cumulative Deaths (CD-5) 

and (CD-7), daily New Cases (NC4), and Total Recovery Cases (TRC-8) in India. The model performance is compared with 

conventional models like the Auto Regressive Integrated Moving Average (ARIMA), Tree-based Pipeline Optimization Tool 

(TPOT) regressor, LSTM, Gated Recurrent Unit (GRU), transformer, and the proposed model with Tanh and Sigmoid activations. 

The analysis reveals that the current model achieves remarkable performance in terms of Mean Absolute Percentage Error 

(MAPE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2 Score) when 

compared to existing models. 
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1. Introduction 

In Artificial Neural Networks (ANNs), the nonlinear 

behavior of activation functions is essential for 

investigating the mapping between input and output. 

Recently, machine learning has been modified to use 

ANNs for multi-labeling [4] and regression [14]. These 

include machine translation [17], image analysis [26], 

disease forecasting [1, 2, 3], and many more. A neuron 

performs two major operations: Product accumulation 

and activation function. The activation function 

incorporates nonlinearity to ensure that Neural 

Networks (NNs) are successful in a wide range of 

applications. The prominent activation functions are 

Hyperbolic Tangent (Tanh), Sigmoid, softmax and 

Rectified Linear Unit (ReLU) family. These activation 

functions play a crucial role in Recurrent Neural 

Networks (RNNs), often serving as gating mechanisms. 

The ReLU family is well-known for its unbounded 

activation capabilities, while softmax is commonly 

employed in the output layer, especially for multi-label 

classification and attention mechanisms. In regression  

 
tasks, Tanh and Sigmoid activation functions are 

typically used for both standard and recurrent 

activations. However, it’s important to note that these 

functions can lead to vanishing gradient issues, which 

may result in small gradients that cause training 

instability, reliance on costly exponent calculations, and 

sluggish convergence [18]. During training, the 

vanishing gradient problem can occur when the weights 

of the derivatives start getting very close to zero. This 

makes it quite challenging to update the weights with 

the Backpropagation algorithm. Additionally, the 

hardware costs for executing exponent operations [43] 

can be significant. To tackle these issues, improving the 

derivatives of these functions can greatly reduce the 

vanishing gradient problem and enhance overall 

efficiency. Various methods have been proposed to 

address this, including adaptations for Sigmoid [46] and 

Tanh [9, 10] functions, cost reductions on Field 

Programmable Gate Arrays (FPGAs) [35], 

normalization techniques [31], and gradient clipping 

methods [47]. Most of these strategies aim to lessen the 
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reliance on exponent operations and prevent weights 

from nearing zero, rather than directly improving 

gradients. Moreover, performance can vary across 

different applications within the same field. These 

challenges can be effectively approached using well-

known strategies that involve suitable activation 

functions and gated architectures. 

Thus, a second-order Taylor expansion-based Tanh 

and Sigmoid activation function integrated with a 

parallel heterogeneous Long Short-Term Memory 

(LSTM) model is being put forward for multi-step series 

prediction. The work has been structured as follows: 

Part 2 designates the current work associated with the 

domain of vanishing gradient. In part 3, we describe the 

dataset in this work followed by the methods and 

experimental design in part 4 and results and discussions 

of study presented in part 5. Finally, in part 6 

conclusions and future research directions have been 

forwarded. 

2. Literature Survey 

The vanishing gradients issue in ANNs can be addressed 

by promoting better derivative flow and simplifying the 

training process using Residual Neural Networks 

(ResNets). Recent studies have unveiled a ground 

breaking method incorporating a norm preservation 

mechanism [29] within ResNets, expanding upon this 

concept. The authors offer valuable perspectives on how 

keeping norm consistency can tackle the issues of 

vanishing gradients and enhance the performance of 

networks. However, it's worth noting that implementing 

this norm preservation may lead to increased 

computational demands, and the method could struggle 

to scale when applied to more complex models or larger 

datasets. A novel method [20] modifies the gradient 

flow for enhanced stability and effectiveness in learning 

by substituting the original derivative with an artificial 

one. This approach efficiently addresses the vanishing 

gradient issue for ReLU and Sigmoid functions at low 

processing costs, yet relies on a heuristic for the 

artificial derivative, necessitating a distinct design for 

each activation function. Recent study by Wei et al. [43] 

suggests using a Probability-based Sigmoid Function 

(P-SFA) approximation to minimize exponential 

operations, showing improvements in power 

consumption, processing speed, and recognition 

performance in certain datasets, though it doesn’t 

directly address vanishing gradient problems. 

The functional approximation has become popular 

for reducing costs and addressing issues of vanishing 

derivatives. According to De Ryck et al. [10], Tanh 

activation functions in NNs can be efficiently 

approximated using high-order Sobolev norms. The 

findings imply that function approximation rates can be 

attained by Tanh networks with only two hidden layers 

that are on par with or even higher than those of much 

deeper ReLU networks. Nonetheless, the main purpose 

of this discovery is to serve as a substitute for the ReLU 

function in prediction tasks. 

Zhang et al. [47] tackles the vanishing gradients issue 

by introducing a framework to investigate the effects of 

gradient clipping on network training, although 

implementing adaptive clipping thresholds may 

complicate the process due to the need for additional 

computational resources. Moreover, Hochreiter [19] 

provided valuable theoretical insights explaining the 

struggles of conventional RNNs with vanishing 

gradients, illustrating how their proposed LSTM 

architecture effectively addresses these challenges 

through the utilization of gating mechanisms. This 

enhances gradient retention and overall learning 

performance. Additionally, a survey [24] covered the 

various activation functions employed across different 

NN architectures and tasks, shedding light on their 

impact on performance and training dynamics. Another 

comprehensive review [13] looked into a variety of 

activation functions, assessing their effectiveness 

through metrics like convergence speed, training 

stability, and overall performance against standard 

benchmarks. Zaki et al. [46] presented a simpler 

Sigmoid approximation for NNs on FPGAs, 

demonstrating improved performance over the original, 

although it fails to solve gradient issues. 

Timmons and Rice [36] highlighted improvements in 

NNs training times through approximations of ReLU, 

Tanh, and Sigmoid across three architectures: the 

Modified National Institute of Standards and 

Technology (MNIST) classifier, MNIST auto encoder, 

and CharRNN. While these approximations led to 

reduced training times, they remain unsuitable for other 

network types. 

Additionally, Chandra [9] investigated the use of 

Catmull-rom spline interpolation to approximate the 

Tanh function. The results indicated a smaller logic area 

requirement compared to the original Tanh, which 

effectively lowers costs but does not tackle the gradient 

issue. 

Conversely, Cetin et al. [8] explored Sigmoid 

approximation via Taylor expansion in multilayer 

networks for diagnosing hepatitis. This approach 

employed three intervals to mimic the Sigmoid function 

and successfully achieved comparable accuracy to the 

original Sigmoid, though it came with the trade-offs of 

added complexity and hardware overhead. The 

investigation also addressed functional approximations 

related to softmax alternatives. In this context, research 

[42] examined periodic alternatives to softmax, 

particularly with attention mechanisms to address the 

gradient problem, suggesting these periodic activation 

functions offer advantages over traditional softmax. 

Banerjee et al. [5] introduced soft-margin Taylor as a 

viable alternative to softmax, revealing that utilizing a 

Taylor expansion up to two terms yielded superior 

accuracy across three datasets (MNIST, Canadian 

Institute For Advanced Research (CIFAR10), and 
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CIFAR100) when compared to an expansion of up to ten 

terms. Temurtas et al. [35] estimated toluene gas 

concentrations through NN architectures that utilize a 

nine-term Taylor series expansion of the Sigmoid 

activation function based on transient sensor responses. 

The summary of other studies is given in Table 1 below. 

Table 1. Summary of additional work related activation functions. 

Ref. Year Type of activation function Description 

[15] 2024 Tanh Exponential Linear Unit (TeLU) TeLU aims to mitigating issues such as vanishing and exploding gradients. 

[39] 2024 Novel activation function 
A novel activation function within the CNN enhances feature extraction capabilities 

compared to ReLU. 

[24] 2024 Comprehensive survey of 400 activation functions for NN. Describe the extensive compilation of fixed and adaptive activation functions. 

[21] 2023 
User Interface Activation (UIA) functions, which uses 3 

hyperparameters allowing it to emulate existing activation. 

The model achieves improvement of up to 5% compared to those using traditional 

activation functions. 

[13] 2022 overview of activation functions Understanding of various activation functions and their implications in DL. 

[23] 2022 Scaled-Gamma-Tanh (SGT) activation SGT activation designed to enhance the MRI classification using 3D CNNs. 

[5] 2021 Soft margin-Taylor softmax Results indicate that the SM-Taylor softmax can outperform the standard softmax 

[10] 2021 Tanh activation function 
Derive explicit error bounds for the approximation of Sobolev-regular and analytic 

functions using Tanh-activated NNs. 

[20] 2021 
Artificial derivatives are used in the back propagation 

algorithm. 

Replacing the standard derivatives used in backpropagation with artificial 

derivatives. 

[40] 2020 
Optimization of activation functions within LSTM 

networks using a Differential Evolution Algorithm (DEA) 

The DEA-based search systematically explores the space of possible activation 

functions, evaluating their performance within LSTM networks on specific tasks 

 

3. Dataset 

To assess the performance of the proposed model for 

multi-step time series forecasting, the author considers 

two bench mark datasets, Mackey-Glass (MG) series 

[33], Electricity Transformer Temperature hourly 2 

(ETTh2) [48], and multiple coronavirus datasets [32, 

37] have been taken from the Oxford Martin Programme 

on Global Development at Oxford Martin School [16]. 

3.1. Mackey-Glass Series (MGS) 

In order to evaluate the efficiency of current model, a 

benchmark chaos dataset is considered as a first study. 

The time series is attained by resolving the Mackey-

Glass (MG) equation [28], which is one of the 

frequently used benchmark datasets for evaluating the 

forecasting models. MG time series is shown in Figure 

1, which is generated by a differential system as shown 

in Equation (1). 

𝑑𝑥

𝑑𝑡
=

𝑎𝑥(𝑡 − 𝜏)

1 + 𝑥𝑐(𝑡 − 𝜏)
− 𝑏𝑥(𝑡) 

a=0.2, c=10, and b=0.1 are the constant variables. τ≥17 

can set to generate the chaotic behavior of system. The 

time series of 1000 samples are generated, of which 

80% is considered training; including 20% for 

validation and the remaining is used for testing. 

 

Figure 1. Graph of MG time series. 

3.2. Electricity Transformer Temperature 

Hourly 2 (ETTh2) 

The dataset is part of the Electricity Transformer 

Temperature (ETT) series, which is commonly used in 

time series forecasting and anomaly detection as 

displayed in Figure 2. It specifically contains 

temperature data from electricity transformers over 

time. The ETTh2 dataset monitors an electricity 

transformer from a region of a province in China [48], 

including oil temperature and variants of load from 1st 

July 2016 to 31st July 2016 at an hourly frequency. 

 

Figure 2. Graph of electricity transformer hourly oil temperature. 

3.3. Coronavirus Dataset 

In this study, different variants of coronavirus datasets 

have been taken from the Oxford Martin Programme to 

assess the proposed model. One set of datasets [32] 

consists of three variants such as daily cumulative 

confirmation cases, Cumulative Deaths (CD-5), and 

New Cases (NC4) in India between February 24, 2020, 

to May 20th, 2020, and another dataset [37] that consists 

of daily cumulative confirmation cases, CD-5 and 

recovery cases in India between January 30th, 2020 to 

August 11th, 2021. 

(1) 



An Improved Taylor Hyperbolic Tangent and Sigmoid Activations for Avoiding Vanishing ...                                                 1037 

4. Methods 

In this section, examine the different phases, such as 

data preprocessing, the proposed methodology, and the 

experimental design. 

4.1. Preprocessing 

In the preprocessing stage, initially replace the missing 

values, and then the min-max transformation technique 

is applied for effective convergence of the model 

parameters. The min-max normalization is given in 

Equation (2), which converts the data from 0 to 1. The 

resultant scaled data is split into 80% for training and 

20% for testing. Further, both are split into input and 

target with window size of 5 and 7. 

𝑦′ =
𝑦 − 𝑚𝑖𝑛𝑋

𝑚𝑎𝑥𝑋 − 𝑚𝑖𝑛𝑋

(𝑛𝑒𝑤_𝑚𝑎𝑥 − 𝑛𝑒𝑤_ 𝑚𝑖𝑛) + 𝑛𝑒𝑤_ 𝑚𝑖𝑛 

y'=Normalized value of y. 

y=Observed value of x. 

minx=Minimal of x. 

maxx=Maximal of x. 

new_max=Maximal of normalized data. 

new_min=Minimal of normalized data. 

4.2. Proposed Methodology 

The approach involves creating Tanh and Sigmoid 

activation functions based on Taylor expansion, 

followed by tuning the current model using Bayesian 

Optimization (BO). 

4.2.1. Taylor Expansion Activation Functions 

In LSTM networks, the Hyperbolic Tangent (Tanh) and 

Sigmoid activation functions are widely utilized to 

manage gradient flow, with the Tanh being a well-

known activation function that outputs values between -

1 and 1 for real number inputs, as shown in Equation 

(3). 

𝑓(𝑥) = 𝑇𝑎𝑛ℎ(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥  

x ∈ (-∞, ∞) 

The Sigmoid function transforms any real number into 

a value between 0 and 1, as illustrated in Equation (4). 

𝑔(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

(1 + 𝑒−𝑥)
 

Both Tanh and Sigmoid functions are susceptible to 

vanishing gradient issues [20], which can slow down 

convergence and decrease efficiency. 

The Taylor series expresses a function as an infinite 

sum derived from its derivatives at a specific point. 

Vincent et al. [41] described a Taylor realization of 

softmax as sum of two terms for ex i.e., 1+x+0.5x2. The 

Taylor series for e-x and ex can be found in Equations (5) 

and (6). 

𝑒−𝑥 = 1 − 𝑥 +
𝑥2

2!
−

𝑥3

3!
+ ⋯ +

(−1)𝑛𝑥𝑛

𝑛!
 

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+

𝑥3

3!
+ ⋯ +

𝑥𝑛

𝑛!
 

 

Figure 3. Graph of conventional and Taylor expansion 

approximations. 

For single layer, the derivative loss of neuron is given 

by Equation (7). 

𝜕𝐿

𝜕𝑤
=

𝜕𝐿

𝜕𝑦
∗ 𝑓′(𝑥) ∗

𝜕𝑥

𝜕𝑤
 

where L is the loss function, w is weights of neuron; x is 

the input to network and y is the output of neuron. 

In nth layer, gradient is accumulated and it is shown 

in Equation (8). 

𝜕𝐿

𝜕𝑤
= (∏ 𝑓′(𝑥))

𝑛

𝑖=1

𝜕𝐿

𝜕𝑦𝑛
∗

𝜕𝑥

𝜕𝑤
 

Both f'(x) and g'(x) are less than one for Tanh and 

Sigmoid functions. Further, multiplying many small 

vales causes the gradient to decay exponentially leading 

to vanishing gradient. 

Taylor based activation uses polynomial functions 

that is given by Equation (9) 

𝑓(𝑥) = 𝑎0 + 𝑎1 𝑥 + 𝑎2𝑥2 + 𝑛𝑎𝑛𝑥𝑛 

the derivative of f(x) is as follows 

𝑓′(𝑥) = (1 + 𝑂(𝑥)) 

Hence, accumulated gradient of nth layer is given 

Equation (11) 

∏ 𝑓′(𝑥))

𝑛

𝑖=1

 ≈  (1 + O(x))𝑛 

Equations (8) and (11) represent the gradients are 

preventing from vanishing issues.  

𝑔′(𝑥) = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)(1 − 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑥)) 

𝑓′(𝑥) = 1 − 𝑡𝑎𝑛ℎ2(𝑥) 

In this study, n is set to 2 for implementing the Tanh and 

Sigmoid activation functions, with the Tanh activation 

function’s Taylor expansion approximation illustrated 

in Figure 3. The derivatives of these determines the 

weights of NN using backpropagation algorithm. The 

derivatives of the Sigmoid and Tanh functions utilized 

in backpropagation are outlined in Equations (10) and 

(11). Taylor Tanh and Sigmoid functions offer improved 

gradients over their original counterparts, as illustrated 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(12) 

(11) 

(13) 
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in Figure 4-a) and (b), potentially enhancing learning 

efficiency and mitigating the vanishing gradient issue in 

NN models. 

 
a) Taylor expansion of Tanh and other approximations. 

 
b) Taylor expansion of Sigmoid and other approximations. 

Figure 4. Gradients of Taylor expansion and other approximations. 

4.2.2. Proposed Model 

The variants of RNNs are effective in many times series 

prediction [6, 12] tasks. One of the popular variants is 

the LSTM network, which can be used with Tanh and 

Sigmoid activation functions for the gating mechanism. 

However, LSTM and bidirectional network 

performance are not consistent across the different 

domains. Moreover, a bidirectional network consisting 

of two parallel networks processing input in forward and 

reverse order. As a result, these networks produce 

limited performance in many applications. 

 

Figure 5. Architecture of proposed model. 

 

Figure 6. Structure of LSTM cell. 

As a consequence, recent trends indicate that hybrid 

RNN models are popular in many regression tasks. In 

this work, a parallel arrangement of two LSTM 

networks as shown in Figure 5, utilizing Taylor 

expansion Tanh and Sigmoid activations is being 

proposed for multi-step time series prediction. Each 

LSTM uniquely captures the relationship and Taylor-

based approximation activations limit vanishing 

gradient issues and enhance the prediction performance. 

The outputs from the parallel LSTM cells are 

concatenated and then processed by a dense network for 

prediction. The structure of LSTM cell is illustrated in 

Figure 6 and its internal operations governed by 

Equations (14) to (19). 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑊𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 

𝑂𝑡 = 𝜎(𝑊𝑂𝑥𝑡 + 𝑊𝑂ℎ𝑡−1 + 𝑏𝑂) 

ℎ𝑡 = 𝑂𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

Further, the model parameters were optimized using BO 

and determine optimal parameters in just a few 

iterations [11]. It is more effective than random search 

[7], grid, and manual tuning by experts [34]. Randomly 

initialized values in genetic algorithms often fail to 

identify optimal parameters [25], while the 

effectiveness of particle swarm optimization hinges on 

proper population initialization; in contrast, Bayesian 

hyperparameter optimization using Gaussian processes 

offers consistent performance and shorter run times 

compared to grid and manual search methods [45]. The 

current model parameters, as shown in Table 2, are 

optimized using BO [30] against other optimization [9, 

31]. 

Table 2. Search space for proposed model. 

Name of the parameter Specifications  

LSTM layer (number of neurons) 4-256 

Dropout 0.1-0.5 

Learning rate 0.001-0.1 

Optimizer Adam, RMSProp 

4.2.3. Experimental Design 

The proposed model with Taylor Tanh and Sigmoid 

activations is executed in the Google Colab Intel (R), 

Xenon (R) CPU@2.20GHz in the Python 3.10.12 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 
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environment, and other libraries including Tensorflow-

2.15.0, Keras-2.15, BO-1.4.3, automatic Auto 

Regressive Integrated Moving Average (ARIMA) 

library pmdarima-2.0.4 and AutoML framework TPOT-

0.12.2. Taylor expansion Tanh and Sigmoid functions 

are customized and same are utilized in the development 

of current model. The proposed model is fine-tuned with 

essential hyperparameters, including the number of 

neurons, learning rate, dropout, and optimizer type, 

while other parameters are set to 200 epochs, a batch 

size of 32, and a loss function of mean square error. 

Other models, LSTM, Gated Recurrent Unit (GRU), and 

transformer are tuned with the same search space by a 

BO with conventional Tanh and Sigmoid functions. The 

ARIMA model is developed using the pmdarima library, 

and p, d, and q values are selected using the auto_arima 

method for all datasets. An AutoML model is a Tree-

based Pipeline Optimization Tool (TPOT) repressor, 

which uses genetic hyperparameter algorithm to select 

the best ML pipeline model for the dataset. The 

population and generation values are five considered for 

the TPOT regressor model fitting. 

4.3. Evaluation Metrics 

The current model and existing models’ performance is 

assessed using metrics such as Mean Absolute 

Percentage Error (MAPE), Mean Absolute Error 

(MAE), Root Mean Square Error (RMSE), and R-

Squared Score (R2 Score). 

 MAPE: it is used for measuring the accuracy of 

regression model by calculating the normalized 

difference between actual and predicted values. The 

range of MAPE is 0 to 1. MAPE is illustrated in 

Equation (20). 

𝑀𝐴𝑃𝐸 =
1

𝑛 
∑|

𝑦𝑖−𝑦𝑖̂

𝑦𝑖
|

𝑛

𝑖=1

∗ 100 

yi,  yî and n is the actual value, prediction value, and size 

of the data, respectively. 

 MAE: it is another metric [22, 44] that evaluates 

regression models alongside MAPE. The range of 

MAE is from zero to infinity. MAE is computed as 

follows 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

 

 R2 score: the R² score, or coefficient of 

determination, indicates how well the data fits the 

regression curve [27], typically ranging from -∞ to 1, 

where a higher value reflects a more reliable 

prediction model, and can be calculated using 

Equation (22). 

𝑅2𝑠𝑐𝑜𝑟𝑒 = 1 − [
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

] 

 RMSE, known as the residual, measures the 

prediction error by evaluating the difference between 

the best fit data and the actual data, as outlined in 

Equation (23). 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − 𝑦̂𝑖)2

𝑛

𝑖=1

 

5. Results and Discussions  

The Taylor expansion Tanh and Sigmoid-based current 

model was assessed on bench mark chaotic Mackey-

Glass Series (MGS) [33], ETT [48], Coronavirus 

Cumulative Confirmation (CCC-3) cases, daily NC4, 

CD-5 [32], CCC-6, CD-7, and Total Recovery Cases 

(TRC-8) [37, 38] in India. 

5.1. Mackey-Glass Chaotic Series 

The present model network parameters were determined 

using BO and the best set was used to predict the MGS 

a length of 7 samples. 

Table 3. The performance metrics of proposed and existing on MGS 
for 7 sample ahead prediction. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (503) 14.1670 0.0958 0.1148 0.2062 

TPOT 2.2318 0.0301 0.0235 0.9610 

LSTM-BO 5.7279 0.0694 0.0508 0.8217 

GRU-BO 4.4125 0.0561 0.0386 0.8961 

Transformer 6.6530 0.0851 0.0571 0.7714 

Pro.Model-Tanh and Sigmoid 3.3567 0.0452 0.0327 0.9231 

Pro.Model-Taylor activation  3.1779 0.0423 0.0311 0.9302 

The model obtains a MAPE of 3.1779, MAE of 

0.0423, RMSE of 0.0311, and regression coefficient of 

0.9302. The present model with Taylor expansion 

activation produces better performance metrics than 

conventional Tanh and Sigmoid functions as shown in 

Table 3. Further, the transition of training loss over 

epochs shown in Figure 8 is marginally good compared 

to traditional functions. The existing model, TPOT 

regressor produces low metrics on MGS but it is not 

consistent across other datasets when compared to a 

present model with Taylor expansion functions. For 

short length sequence, self-attention-based transformer 

unable to perform well [48] that results it yields high 

regression error than present model with Taylor 

expansion. 

 

Figure 7. The proposed and TPOT model prediction on MGS. 

(20) 

(21) 

(22) 

(23) 
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Figure 8. Training loss of Taylor expansion and conventional 

activation. 

Additionally, the present model shows consistency in 

prediction on MGS, which is shown in Figure 7. The 

training loss of present model indicates low variation 

than conventional activation functions as shown in 

Figure 8. Hence, the present model helps to forecast the 

times series data with remarkable performance. 

5.2. Electricity Transformer Temperature 

Hourly 2 (ETTh2) 

Present model was assessed on another domain dataset, 

which is electrical transformer oil temperature on hourly 

basis. The Taylor expansion Tanh and Sigmoid model 

predicts 7-hour ahead oil temperature more effectively 

than other models including regular activation, TPOT 

and transformer. The current model achieves MAPE of 

3.8234, MAE of 0.0579, RMSE of 0.0807, and 

regression coefficient of 0.6498. 

Table 4. Current and existing models’ regression metrics on ETTh2. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (212) 7.8006 3.7870 0.1333 0.0346 

TPOT 5.9447 0.0915 0.1309 0.0767 

LSTM-BO 5.6927 0.0882 0.1247 0.1638 

GRU-BO 7.8169 0.1231 0.1639 -0.4410 

Transformer 5.5644 0.0844 0.1357 0.063 

Pro.Model-Tanh and Sigmoid 5.3719 0.0817 0.1130 0.3120 

Pro.Model-Taylor activation  3.8234 0.0579 0.0807 0.6498 

The Table 4 shows experimental metrics of present 

and existing models. The current model on 7-hour ahead 

prediction closely follows the actual data, which is 

appeared in Figure 9 than regular activation. The 

propagation loss of present model during training attains 

low and small fluctuation across the epochs when 

compared to regular activations as exhibited in Figure 8. 

Moreover, existing models like TPOT repressor and 

transformer could not attain good regression accuracy 

on 7-hour oil temperature prediction. Hence, proposed 

model can effectively use for short term prediction of 

electrical transformer oil temperature. 

 

Figure 9. Current model with Taylor and conventional activation 

prediction on ETTh2. 

5.3. Coronavirus Cumulative Confirmation 

(CCC-3) Cases 

The present model was evaluated for cases of 

coronavirus in India i.e., between February 24, 2020, 

and May 20, 2020. For the Taylor expansion activations, 

the values of MAPE, MAE, RMSE, and regression 

coefficient obtained were 1.4570, 0.0109, 0.0130, 

and0.9703.  

The performance metrics of the suggested and 

current approaches for CCC-3 prediction are displayed 

in Table 5. The results obtained from the current model 

demonstrate a notable advancement in prediction 

relative to the deep learning model utilizing the Grey 

Wolf hyperparameter Optimizer (GWO) [32]. Figure 10 

illustrates the model with Taylor expansion activations 

and conventional activations on 7-day ahead CCC-3 

forecasting. Existing models such as the ARIMA, TPOT 

regressor, LSTM, GRU, and transformer exhibit lower 

performance than the current model. Training loss of 

present model exhibits less fluctuations than regular 

activation as given in Figure 8. 

Table 5. One week ahead CCC-3 prediction performance metrics of 

proposed and existing models. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (021) 17.0205 0.1273 0.1541 0.2986 

TPOT  12.4757 0.0931 0.1769 -4.7532 

LSTM-BO 2.3250 0.0163 0.0197 0.9220 

GRU-BO 31.5538 0.2298 0.2388 -9.064 

Transformer 5.0696 0.0379 0.0502 0.5470 

Pro.Model-Tanh and Sigmoid 2.0671 0.0152 0.0167 0.9516 

Pro.Model-Taylor activation 1.4570 0.0109 0.0130 0.9703 

 

Figure 10. One week ahead CCC-3 prediction of proposed model 

with Taylor Tanh and Sigmoid. 

5.4. Coronavirus Daily New Cases (NC-4) 

The model was assessed on COVID-19 new cases in 
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India, the values of MAPE, MAE, RMSE, and 

regression coefficient were 9.2375, 0.0646, 0.0817, and 

0.1756, respectively. The performance metrics of the 

existing and current approaches for 7-day ahead NC 

forecasting is displayed in Table 6. The results obtained 

from the current model demonstrate a notable 

advancement in prediction relative to the deep learning 

model utilizing the GWO [32]. Figure 11 illustrates the 

model with Taylor expansion activations and 

conventional activations on 7-day ahead NC-4 

forecasting. Despite, the nonlinear behavior of new 

cases current model can closely approximate than 

conventional as well as existing models. Figure 8 shows 

the loss of the current and conventional activations. 

Table 6. One week ahead NC-4 prediction regression metrics of 

proposed and existing models. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (013) 33.4896 0.2358 0.2738 -2.5984 

TPOT  28.1645 0.2048 0.2729 -5.4537 

LSTM-BO  10.3363 0.0703 0.0860 0.1156 

GRU-BO 9.5522 0.0698 0.0966 - 0.1494 

Transformer 18.3185 0.1144 0.1323 -1.5857 

Pro.Model-Tanh and Sigmoid 9.3258 0.0648 0.0826 0.1737 

Pro.Model-Taylor activation 9.2375 0.0646 0.0817 0.1756 

 

Figure 11. One week ahead NC-4 prediction of proposed model with 

Taylor Tanh and Sigmoid. 

5.5. Cumulative Deaths (CD-5) 

Another coronavirus univariate CD-5 dataset was used 

for interpreting the current network. The values of 

MAPE, MAE, RMSE, and regression coefficient 

obtained were 1.8657, 0.0144, 0.0180, and 0.9315. 

Table 7 represents the regression metrics of current and 

existing methods for forecasting 7-day ahead deaths. 

The model with Taylor obtains lower metrics when 

compared to existing models as shown in Figure 12.  

Table 7. One week ahead CD-5 prediction metrics of proposed model 

and other models. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (220) 10.5459 0.0804 0.0931 0.7137 

TPOT  21.0852 0.1687 0.2608 -13.002 

LSTM-BO 3.1877 0.0237 0.0289 0.8072 

GRU-BO 9.2664 0.0681 0.0838 -0.5595 

Transformer 4.0115 0.0301 0.0408 0.6288 

Pro.Model-Tanh and Sigmoid 2.1242 0.0169 0.0212 0.9156 

Pro.Model-Taylor activation 1.8657 0.0144 0.0180 0.9315 

The results obtained from the current model 

demonstrate a notable advancement in prediction 

relative to the deep learning model utilizing the GWO 

[32]. Figure 8 shows the loss of the current and 

conventional activations on CD-5. 

 

Figure 12. One week ahead prediction on CD-5 in India. 

5.6. Coronavirus Cumulative Confirmation 

(CCC-6) Cases 

One more univariate dataset CCC-6 was considered 

from 30th January, 2020 to 11th August 2021 for 

analyzing current network with Taylor expansion 

activations using Bayesian hyperparameter 

optimization. The model was obtained 2.0655, 0.0180, 

0.0224, and 0.9555, MAPE, MAE, RMSE and R2 score, 

respectively. 

Table 8. One week ahead CCC-6 prediction metrics of proposed and 

existing models. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (020) 20.4712 0.1963 0.2740 -3.1329 

TPOT  2.4388 0.0192 0.0261 0.9330 

LSTM-BO 2.8126 0.0257 0.0348 0.8851 

GRU-BO 15.3179 0.1362 0.1380 -0.8294 

Transformer 9.3665 0.0823 0.0832 0.3293 

Pro.Model-Tanh and Sigmoid 2.7505 0.0243 0.0297 0.9143 

Pro.Model-Taylor activation 2.0655 0.0180 0.0224 0.9555 

 

 

   

a) One week ahead CCC-6 prediction. b) One week ahead CD-7 prediction. c) One week ahead TRC-8 prediction. 

Figure 13. Coronavirus cumulative cases one week ahead prediction. 
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Table 8 exhibits current and existing methodologies 

regression metrics for 7-day ahead forecasting. The 

model with Taylor approximation outperforms than 

existing methods, including conventional activations as 

displayed in Figure 13-a). Training loss of both current 

and conventional activations is displayed in Figure 8. 

5.7. Cumulative Deaths (CD-7) 

The univariate dataset CD-7 was used for the 

assessment of the current network with Taylor 

activations for 7-day ahead forecasting. On CD-7, 

model efficiency was determined in terms of MAPE, 

MAE, RMSE, and regression coefficient of 1.6314, 

0.0123, 0.0159, and 0.9882, respectively. The present 

network and existing techniques metrics are shown in 

Table 9. It indicates notable regression accuracy when 

compared to existing methods. The model with Taylor 

approximation outperforms existing methods, including 

conventional activations as displayed in Figure 13-b). 

Figure 8 reveals the training loss of proposed and 

regular activation. 

Table 9. One week ahead CD prediction metrics of proposed model 

and other models. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (021) 14.9573 0.1260 0.1389 0.3798 

TPOT  41.9185 0.3640 0.4138 -6.5578 

LSTM-BO 14.7701 0.1285 0.1371 0.1824 

GRU-BO 20.3843 0.1731 0.1795 -0.4204 

Transformer 3.7927 0.0327 0.0356 0.9441 

Pro.Model-Taylor and Sigmoid 1.8060 0.0137 0.0175 0.9858 

Pro.Model-Taylor activation 1.6314 0.0123 0.0159 0.9882 

5.8. Total Recovery Cases (TRC-8) 

On TRC-8, the current model produces MAPE, MAE, 

RMSE, and regression coefficient of 2.3395, 0.0189, 

0.0247, and 0.9565, respectively. Table 10 resembles 

regression accuracy metrics of current as well as 

existing techniques for 7-day ahead recovery cases 

forecasting. It shows the scope of the current model in 

forecasting is remarkable when compared to others. As 

a consequence, the role of the present model in 

forecasting coronavirus diseases is remarkable. Figure 

13-c) reveals the one-week ahead prediction by the 

present model and other models. Training loss of both 

current and conventional activations is displayed in 

Figure 8. 

Table 10. Performance metrics of current and existing models on 

TRC-8. 

Metrics 

Model 
MAPE (%) MAE RMSE R2 score 

ARIMA (021) 30.6506 0.2954 0.4150 -6.2878 

TPOT  3.1081 0.0231 0.0331 0.9237 

LSTM-BO 5.4033 0.0477 0.0506 0.8377 

GRU-BO(6gru) 11.7886 0.1031 0.1071 0.2102 

Transformer 2.6536 0.0214 0.0311 0.9337 

Pro.Model-Tanh and Sigmoid 2.6368 0.0204 0.0283 0.9426 

Pro.Model-Taylor activation 2.3395 0.0189 0.0247 0.9565 

5.9. Model Learning Overheads 

Learning time of NN depends on number of model 

parameters and other specifications. The Training 

complexity of proposed Taylor expansion and 

conventional activations in shown in Figure 14. On 

MGS, learning time of Taylor expansion and regular 

activations are 471 and 349 seconds, respectively for 

135804 model parameters. The model with regular 

activations shows reduction in learning time on majority 

of datasets than Taylor expansion approximation. It 

might be due to exponent operations of specific dataset 

during approximation. 

 

Figure 14. Computational overheads of proposed and conventional 

activation on datasets. 

6. Conclusions and Future Scope 

In this study, a new model based on Taylor expansion 

activation was developed and assessed on different 

univariate time series datasets. The findings indicate 

that the suggested framework utilizing the Taylor 

approximation activation function yields greater 

consistency in predictions compared to traditional 

activation functions like Tanh and Sigmoid. 

Additionally, the current methodology prevents the 

vanishing gradients issue in NNs. However, TPOT and 

transformer results reveal competitive performance on a 

few datasets. The transformer performance is more 

consistent than the TPOT regressor. The statistical 

ARIMA model produces high MAPE, MAE, RMSE, 

and low R2 scores on all datasets. Hence, the present 

model can be utilized for short-term prediction where 

little past information is known and provides a diverse 

scope for developing the activation functions to avoid 

vanishing gradients. Conversely, the study provides a 

direction for improving the gradients of activation 

functions to prevent learning issues and reduce the 

exponent operations. 

However, one of the challenges is hyperparameter 

tuning search space is limited due to the availability of 

processor and memory resources. On the other hand, 

computation overheads of current model with custom 

activation functions. In the future, the proposed 

methodology can be extended for multivariate time 
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series datasets and long-term prediction. 

Simultaneously, BO can be integrated with other well-

known Hyper-Parameter Optimization (HPO) 

techniques to facilitate parallel processing. 
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