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Abstract: Compressive Sensing (CS) is a relatively new sophisticated technique that finds applications in various fields, and the 

selection of a measurement matrix influences the effectiveness of CS in image processing by identifying sparse informative pixels 

for sampling. The randomness in the selection of the measurement matrix results in variations in the assessment values. In this 

context, the Spectral Decomposition-Driven Adaptive Block Measurement Matrix (SD-DAB) method is proposed to improve the 

objective evaluation of images. The main aim of the proposed method is to obtain recovered images with the support of speed 

and quality. To accomplish this, the SD-DAB has been meticulously designed, which employs adaptive block processing, a 

technique that divides an image into smaller blocks and processes each block individually, adjusting the processing parameters 

based on the content of each block. This allows for more efficient and targeted analysis or enhancement, as the method adapts 

to variations in texture, brightness, or other local characteristics of the image. and the processed image matrix is analyzed with 

spectral decomposition. To evaluate the results, the proposed SD-DAB is contrasted with traditional methods like. The measured 

matrices were evaluated and compared with image quality and computational time, including the Peak Signal to Noise Ratio 

(PSNR), Signal to Noise Ratio (SNR), Structural Similarity Index Matrix (SSIM), and Mean Square Error (MSE). The evaluation 

was accomplished for distinctive sub-rates ranging from 0.1 to 0.9 and with images of varying sizes. The proposed method 

demonstrates superior performance at sub-rate 0.9 applied to a 512×512 sized woman with a dark hair image. It outperforms 

other methods with a higher PSNR of 38.49dB, SNR of 32.24dB, SSIM of 0.56, lower MSE of 9.20, and notably faster 

computational time of 29.61secs. 
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1. Introduction 

The Compressive Sensing (CS) technique is a signal or 

image processing technique that enables the effective 

acquisition and reconstruction of the signal or image 

with fewer measurements, much smaller than the 

original input dimension. CS aids in image processing 

and compression. CS exploits the sparsity or 

compressibility of the images. The fundamental concept 

underlying CS is that several signals, such as images, 

can be expressed in a sparse or compressible manner 

within a specific basis or transform domain. CS in the 

context of image compression, enables the acquisition 

and retention of a smaller number of measurements 

compared to conventional approaches, while still 

achieving high-quality reconstruction. The process 

comprises three primary components sensing, sparsity 

representation, and reconstruction. Sensing directly 

samples the image pixels, and CS involves acquiring 

random linear pixels of the image. Samples were 

collected by multiplying the image with a randomized 

measurement matrix. The measurement of acquired 

sparsity is used for the reconstruction of images with  

 
fewer samples and for more efficient processing with 

optimization, which promotes sparsity. Typically, 

optimization aims to minimize the L1-norm of the 

transformed picture coefficients given the obtained data. 

Image reconstruction utilizing inverse transform on 

sparse pixels solves the optimization challenge. CS 

algorithms perform admirably in image compression, 

enabling high compression ratios while maintaining 

visual quality. Medical imaging, satellite imaging, and 

low-power image sensors are among the many 

applications of CS. It is crucial to understand that CS is 

simply a method of image compression, and its success 

is governed by the unique properties of the image and 

the measurement matrix utilized. Moreover, the 

computational complexity of the reconstruction process 

can pose difficulties in real-time applications. However, 

CS introduces new opportunities for efficient image 

capture, transmission, and storage. The data acquisition 

system follows the Nyquist-Shannon theorem, which 

stipulates that the sampling rate must double the 

bandwidth to guarantee precise information 

reconstruction [6]. Traditional methods are laborious 
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and require a large bandwidth for storing and 

transferring data. CS takes advantage of sparse 

information by reducing the sample rate [29]. Natural 

images contain a substantial proportion of pixel values 

that can be either zero or close to zero. The 

reconstruction of images is enabled by fewer samples 

and more efficient processing. Fusion of two recovery 

algorithms [11], such as Basis Pursuit (BP) and, 

Orthogonal Matching Pursuit (OMP), was used and 

various images were considered as input, such as test, 

satellite, coin, cameraman, and, MRI images of different 

sizes. The inference of the study shows that OMP 

performs with a Peak Signal to Noise Ratio (PSNR) 

value of 22 dB for test images, 19 dB for satellite 

images, and 24 dB for Magnetic Resonance Images 

(MRI). 

Multiplication of the sparse signal with the 

measurement matrix is an essential step in the CS 

technique. It is crucial to select the measurement matrix 

[9] to properly select important data for transmission 

while retaining the necessary information for better 

image recovery. The Adaptive Overlap Block 

Compressive Sensing (Ad-OL-BCS) algorithm is 

applied to divided blocks of images, such as natural 

images and traffic signs [49]. The Poisson equation is 

employed in the recovery process, and the results show 

a better Structural Similarity Index Matrix (SSIM) of 

98.14% than the traditional method, with a PSNR value 

of 44.28 dB. The effectiveness of PSNR shows an 

improved result of 20.98% and 18.98%, whereas the 

SSIM stands at 11.92% and 12.32%, respectively. 

Parallel Compressive Sensing (PCS) for image 

encryption and bit-level XOR [41] enhances security 

and reconstruction. The image was divided into small 

blocks hashed by SHA-256 and quantized using bit-

level XOR. The pixels are scrambled and bit XOR 

operations are performed on the image. The complex 

Hadamard measurement matrix reduces computational 

complexity and improves performance. The 

measurement matrix must adhere to both mutual 

coherence [8] and Restricted Isometric Property (RIP). 

Image reconstruction with fewer samples of sparsity is 

obtained by reducing the coherence [26] between the 

image and the column matrix. CS recovery algorithms 

[10, 17, 19, 23, 38] like BP, Iterative Hard Threshold 

(IHT), OMP, and Compressive Sampling Matching 

Pursuit (CoSaMP) were analyzed for better image 

recovery. CS finds applications [32] in diverse fields, 

such as medical image processing, signal processing, 

and communication, where the transmission of large 

amounts of data is achieved using fewer samples, 

thereby reducing storage, bandwidth, and transmission 

time. The approach is exemplified by techniques like 

few-shot segmentation [27], that address issues related 

to limited data availability and computational resources. 

Recent research has demonstrated innovative strategies 

such as learning what not to segment to improve focus 

on relevant features, leveraging base and meta-learning 

paradigms, and using divide-and-conquer frameworks 

to improve adaptability. The primary objectives of the 

research paper are first to design a Spectral 

Decomposition-Driven Adaptive Block Measurement 

Matrix (SD-DAB) based CS. Second, to optimize the 

trade-off between computational efficiency and 

reconstruction quality. Third to evaluate the proposed 

method against conventional methods at different 

subrates with metrics like PSNR, Signal to Noise Ratio 

(SNR), SSIM, Mean Square Error (MSE) and elapsed 

time. Inspired by these developments, the proposed SD-

DAB approach integrates an adaptive measurement 

matrix to efficiently capture spectral and spatial 

characteristics, demonstrating potential applicability in 

both CS and other image recovery tasks. The Proposed 

SD-DAB divides the input image into blocks and 

measures the sparse pixels of the blocks adaptively and 

has several merits, including faster recovery time with 

enhanced image quality, reduced memory, and low 

computational complexity. 

The main contribution of the proposed paper 

introduces spectral decomposition driven adaptive 

measurement matrix that dynamically adjusts based on 

local spectral characteristics of each block capturing the 

dominant frequency components resulting in textured or 

detailed regions and the method achieves higher fidelity 

and structural similarity at low subrates. 

The paper is structured as follows: Section 2 presents 

a detailed overview of previous related studies on 

measurement matrices in various CS image applications 

section 3 introduces, the proposed SD-DAB, along with 

an examination of existing measurement matrices for 

image processing and section 4 provides a detailed 

tabulation and discussion of the results obtained from 

the proposed method compared to existing methods. 

Finally, section 5, concludes the paper by highlighting 

the significance of the different measurement matrices 

and the proposed SD-DAB in CS. 

2. Related Works 

Real-world images were validated, and data reduction 

was achieved by Joint Multiphase Decoding (JMD) for 

Block Compressive Sensing (BCS) [15]. Normalization 

techniques have been applied and Energy savings of 

50% and 20% were obtained for block sizes of 8 and 16, 

respectively, for the analysis of energy consumption. 

Table 1. Inference of results. 

Matrix Inference 

Partial fourier matrix Higher PSNR and higher execution time 

Bernoulli Matrix (BM) Low execution time 

Hadamard Matrix (HM) Better PSNR and fast recovery time 

The performance of the CS was compared with that 

of traditional sampling techniques [35]. A comparison 

was made with a total of 3600 samples for 30 

displacements with signal lengths ranging from 1 to 600 

for various measurement matrices such as the Gaussian 
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Random Matrix (GRM), Bernoulli Random Matrix 

(BRM), Random Partial Fourier Matrix (RPFM), Partial 

Orthogonal Random Matrix (PORM), Partial Hadamard 

Matrices (PHM), Toeplitz Matrix (TM), and Chaotic 

Random Matrices (CRM). The OMP algorithm recovers 

the compressed signal and the result analysis is 

performed for the PSNR and recovery time, as shown in 

Table 1 above. 

Xiao et al. [40] are proposed the design of a 

measurement matrix with and apple image with various 

matrices like GRM, BRM, PORM, PHM, and TM. The 

output results are analysed and finally concluded with 

PORMs with OMP recovery algorithm as better 

measurement matrix for apple image of pixel 256×256 

at various sampling points M with 150,160,170,180 

values with PSNR values 35.5, 36.2, 36.6 and 37.4 dB 

respectively. The Structurally Random Matrix (SRM) 

proposed by Do et al. [14] for a large-scale real-time CS 

with fast consumption that helps block processing. The 

SRM defines 3 steps pre-randomized, transform, and 

sub-sample. The complexity is reduced to a factor of 
𝑁

4 𝑙𝑜𝑔 𝑁
 times. Using OMP as the recovery technique, the 

performance analysis of the BM [47] as a sensing matrix 

in compressed sensing provides important new 

directions for efficient signal reconstruction. Various 

sensing matrices including partial Hadamard, random 

symmetric, binary, and semi-Hadamard matrices were 

investigated with 1024-length signal exhibiting 20 non-

zero elements in the frequency domain. Recovery 

performance was assessed using the normalized 

reconstruction error metric 
‖𝑥−𝑥̂‖2

‖𝑥‖2
. While PHM usually 

produce reduced reconstruction errors because of their 

organized character, research shows that Bernoulli 

matrices provide strong performance and often surpass 

deterministic matrices. Using full orthogonal Hadamard 

codes, the Bernoulli sensing matrix [25] is improved 

showing better performance in reconstructing binary, 

uniform, and Gaussian signals. Using the orthogonality 

of randomly selected pseudo-orthogonal columns 

greatly improves the columns of the sensing matrix. 

Perfect reconstruction was obtained in tests involving 

four different models with parameters I=3, B=2, p=20, 

β=1.25, α=0.8, and a measurement size of M=32 for a 

64-dimensional signal where the SNR topped 50 dB. 

For image compression, the quick reconstruction of 

images including Boat, Barbara, and Mandrill makes 

use of optimized Toeplitz matrices [28] in tandem with 

several optimization techniques including Genetic 

Algorithm (GA), Particle Swarm Optimization (PSO), 

and Simulated Annealing (SA). BP and OMP to recover 

the images. A real-time framework for processing 

images, including Cameraman, Mandrill, and Peppers, 

each scaled to 128×128 pixels, is examined using 

TelosB nodes on the Contiki OS platform [5]. The 

proposed approach for image processing in Wireless 

Sensor Networks (WSNs) integrates a TM with OMP. 

Results indicate that employing Toeplitz matrices 

enhances image transmission and processing efficiency 

in resource-constrained contexts such as WSNs. 

Processing child and natural images of size 256×256 in 

a Deterministic Random Sensing Matrix (DRSM) helps 

to reduce storage needs [33]. This method intends to 

recover with OMP small coherence. PSNR is enhanced 

by changing the size of the sensor matrix; optimal 

results are found at a matrix size of 250×256 against a 

size of 150×256. Deep Neural Networks (DNN) are 

used at several sampling rates in a block-by-block 

approach to rebuild MRI images of the head and knee 

[36]. This method lets image blocks be effectively 

sampled and reconstructed, hence enhancing the image 

quality. Better reconstruction resulted in the MRI 

images at several sample rates-more especially, at 0.02, 

0.06, 0.1, 0.3, and 0.5. A Time Division Multiple Access 

(TDMA) [44] method is proposed as an alternative to 

sparse representation for processing images of size 

256×256. This approach focuses on calculating the 

sparsity of the measurement matrix to facilitate easier 

hardware implementation. The proposed chaotic 

measurement matrix [43] with the Chebyshev and 

logistic maps compresses the image into blocks for the 

generation of measurement values. The image peppers 

and cell X-ray were used for encryption, and the 

performance showed a better result than the ordinary 

measurement matrix in terms of encryption time for 

various compression ratios. The encryption and 

decryption time required for a compressive ratio of 0.25 

is found to be 1.01 secs and 7.95 secs respectively. 

Different sampling matrices [7] such as the BRM, 

GRM, HM, and TM, are considered for CS applications. 

Sampling ratios in the range of 10-40% were considered 

for evaluating the matrix performance under various 

scenarios allowing to compare the effectiveness of each 

matrix in terms of the Root Mean Squared Error 

(RMSE) values and reconstruction time, measured in 

seconds. The hybrid transform-based CS [2] with the 

Convolutional Neural Network (CNN) technique 

showed a better PSNR and elapsed time for the 

cameraman image. 

A strategy for reducing the complexity of computing 

for dehazing was proposed by Manoharan and 

Jayaseelan [22]. The convolutional capabilities of Deep 

Belief Neural Networks (DBN) are used for training the 

datasets for a shorter duration, resulting in better image 

quality. 

A novel end-to-end deep learning framework named 

Adaptive Deep Convolutional Compressive Sensing 

Network (ADCoSNet) was designed by Shinde and 

Durbha [34] for adaptive 3D reconstruction of sparse 

Light Detection And Ranging (LiDAR) data, 

specifically for forests. This technique integrates 

Empirical Mode Decomposition (EMD) with deep 

convolutional CS, using the last Difficult Mode 

Function (IMF) as a statistical prior to effectively 

capturing local features. Extensive experiments 

conducted to test ADCoSNet showed a maximum PSNR 
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of 48.96 dB, which is approximately 8 dB better than 

reconstructions without data-dependent transforms, and 

a reconstruction RMSE of 7.21. Emphasizing block-

based processing [3] methods, numerous CS recovery 

algorithms of image processing are evaluated in depth. 

The techniques of computational complexity, accuracy, 

and efficiency are examined. Segmenting images into 

smaller portions enables one to improve the recovery 

process by reducing the dimension of the problem. The 

results demonstrate the effectiveness of block-based CS 

methods, particularly in enhancing image 

reconstruction quality and reducing computing costs, so 

appropriate for real-time image processing applications. 

Developed for the efficient elimination of random-

valued impulse noise in digital images, the region 

adaptive fuzzy filter [31] is a sophisticated method. 

Perceptual SIMilarity (PSIM) described in Equation (1) 

is the metric designed to combine Gradient Magnitude 

(GM) similarities at two scales, micro and macro 

structures, and colour information to predict image 

quality by mimicking the human visual systems [18]. 

𝑃𝑆𝐼𝑀 =
𝐻𝜏

𝐿𝛼 × 𝑆𝛽 × 𝐶𝜃
 

where 

Hτ=High distortion-based pooling, emphasizing high 

distortion regions. 

Lα=largre scale GM similarity. 

Cθ=colour information similarity. 

The BCS proposed a variant of CS for images focusing 

on block-based processing techniques to improve the 

reconstruction performance of individual images and 

correlated images with smaller blocks and reduce 

computational complexity [37]. The joint reconstruction 

framework preserves the fine details and structures of 

the image and results in superior performance in terms 

of objective metrics. The stable signal recovery from 

limited and noisy measurements [12] using convex 

optimization techniques such as ℓ1-minimization 

satisfies the RIP. The method has profound implications 

for various applications like imaging, signal, and data 

compression. The signal space CoSaMP [13] is the 

modified version of traditional CoSaMP, designed to 

recover the signals which are not on standard basis but 

in an overcomplete dictionary. Equation (2) states D-

RIP that extends RIP to signal represented in a 

redundant dictionary D: 

1 − 𝛿𝑘 ≤
‖𝐴𝐷𝛼‖2

‖𝐷𝛼‖2 ≤ 1 + 𝛿𝑘 

where 

α=sparse coefficient vector. 

D=redundant dictionary. 

For a signal x represented as x=Dα, the recovery error 

after l+1 iterations is bounded as stated in Equation (3) 

‖𝑥 − 𝑥𝑙+1‖2 ≤ 𝐶1‖𝑥 − 𝑥𝑙‖2 + 𝐶2‖𝑒‖2 

where 

xl=reconstructed signal after l iterations. 

e=measurement noise. 

C1 and C2 depend on δ4k and approximation parameters 

ϕ1, ϕ2. 

A novel block coherence [16] measures the recovery 

of block sparse signals providing an uncertainty relation 

tailored to block sparse signals thereby providing 

insights into the structural properties with efficient 

recovery. The block coherence quantifies the mutual 

coherence between blocks ϕ.for a measurement matrix 

with blocks ϕi and ϕj the block coherence is defined in 

Equation (4)  

𝜇𝐵 = 𝑚𝑎𝑥
ⅈ=𝑗

‖𝜙𝑖
𝑇𝜙𝑗‖

2

‖𝜙𝑖‖2‖𝜙𝑗‖
2

 

where 

ϕi and ϕj =Block columns of ϕ. 

‖.‖2=spectral norm or Euclidean norm. 

Gradient Magnitude Similarity Deviation (GMSD) 

designed to evaluate the visual quality of images [42] 

which reflects edge pixel information and textures is 

crucial for human evaluation. The Gradient Magnitude 

Similarity (GMS) score is calculated for each pixel by 

calculating the difference between reference and 

distorted images that are used for computing Mean 

Gradient Magnitude Similarity (GMSM) with the 

formulas given in Equation (5). 

𝐺𝑀𝑆𝐷 = √
1

𝑁
∑(𝐺𝑀𝑆(𝑖) − 𝐺𝑀𝑆𝑀)2

𝑁

𝑖=1

 

This paper presents a novel technique called SD-DAB 

based Measurement Matrix, where the image is divided 

into smaller matrices to improve image restoration. This 

component enables the creation of a measuring matrix 

that enhances image quality and decreases recovery 

duration. The proposed SD-DAB maintains a high 

PSNR and achieves low elapsed time. To validate the 

efficacy of SD-DAB, a comparative analysis using the 

Random Gaussian Matrix (RGM), Random Bernoulli 

Matrix (RBM), TM, and HM measurement matrices are 

performed additionally, the proposed method conducts 

thorough and unbiased evaluations of various 

measurement metrics and recovery methods, resulting 

in a complete assessment of the performance of the 

proposed SD-DAB. A novel approach to CS for natural 

images by employing a hybrid transform-based sensing 

matrix [4] reports significant improvements in image 

quality metrics, The approach achieved a PSNR of 

34.85 dB, a SSIM of 0.945, and a MSE of 5.12. 

Structured measurement matrices such as Toeplitz, 

Hadamard, and Bernoulli have been widely studied for 

their role in enhancing signal reconstruction 

performance. Simultaneously, Orthogonal Frequency 

(1) 

(2) 

(3) 

(4) 

(5) 
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Division Multiplexing (OFDM) offers robust 

transmission over multipath fading channels, making it 

suitable for wireless image transmission. Recent studies 

have integrated CS with OFDM [20] to jointly address 

compression and reliable transmission challenges. 

These hybrid approaches demonstrate improved 

performance in terms of PSNR, SSIM, and Bit Error 

Rate (BER) under noisy and fading channel conditions. 

Conventional chaotic matrix [46] construction methods 

often suffer from data redundancy due to interval 

sampling. To address this, recent approaches use 

uniform chaotic sequences with binary transformation 

through irreversible functions, reducing correlation and 

storage overhead. Embedding these sequences into 

structured Toeplitz matrices, followed by 

orthogonalization via Singular Value Decomposition 

(SVD), further enhances matrix efficiency and 

reconstruction quality. Compared to traditional 

orthogonalization methods, SVD offers faster 

processing without requiring square matrices. Table 2 

tabulates the details of the related work defining the pros 

and cons of CS in various applications. An adaptive CS 

method using Schur decomposition [1] to construct 

data-dependent sensing matrices, combined with 

optimized reconstruction algorithms. Their approach 

demonstrated superior performance, achieving a PSNR 

of 36.12 dB, an SSIM of 0.952, and a lower MSE of 

4.26, outperforming standard CS methods and 

validating the effectiveness of adaptive decomposition-

based sensing in natural image reconstruction. 

Table 2. Summary of related work. 

Ref Method Approach Pros Cons 

[15] JMD for BCS JMD with normalization 
Energy savings (50% for 8-block, 20% 

for 16-block) 

May not scale efficiently for high-res 

images 

[35] Matrix comparisons GRM, BRM, RPFM, PORM, PHM, TM, CRM 
Identifies optimal matrices for different 

signals 
High variability in performance 

across different matrix types 

[40] Apple image analysis PORM with OMP on 256x256 apple image PSNR up to 37.4 dB Limited to specific image types/sizes 

[14] SRM Pre-randomized, transform, sub-sample 
Low complexity: N/(4logN), fast for 

large-scale 

Limited flexibility in adaptive 

transforms 

[47] BM Used in OMP with various signals 
Strong performance, surpasses 

deterministic matrices 
Sensitive to sparsity and randomness 

[25] Enhanced Bernoulli Pseudo-orthogonal columns added 
Better for binary/Uniform/Gaussian 

signals 
Implementation complexity due to 

orthogonality enforcement 

[28] 
TM with 

GA/PSO/SA 
Used for image compression and recovery 

Optimized Toeplitz enhances quality and 

efficiency 

Requires computationally heavy 

optimization algorithms 

[5] Toeplitz on WSN 
128×128 images on Contiki OS with TelosB 

nodes 
Suitable for resource-constrained 

environments 
Constrained by hardware limitations 

[33] DRSM 
Deterministic random matrix for 256×256 

images 

Storage-efficient, better PSNR at 

250×256 

Low performance at small matrix 

sizes 

[36] DNN for MRI Block-by-block CS reconstruction with DNN Effective at multiple sampling rates 
Requires training data and model 

complexity 

[44] TDMA-based CS Hardware-efficient matrix design Easier hardware implementation Less flexible for high-res images 

[43] 
Chaotic measurement 

matrix 
Chebyshev and logistic maps used Better encryption performance 

High decryption time (7.95 sec at 
0.25 CR) 

[7] RMSE comparison Sampling matrices: BRM, GRM, HM, TM Wide matrix evaluation 
RMSE varies widely under different 

scenarios 

[2] 
Hybrid 

transform+CNN 
Cameraman image recovery Better PSNR and faster time Model generalization not validated 

[22] DBN for dehazing Uses deep belief nets Better quality with less training time 
May be less interpretable than 

traditional methods 

[34] ADCoSNet Deep learning for 3D LiDAR recon with EMD PSNR up to 48.96 dB, better RMSE 
Tailored for LiDAR-not directly 

transferable to images 

[3] Block-based CS Block segmentation to reduce complexity Enhanced quality and real-time recovery Block boundary artifacts possible 

[31] 
Region adaptive 

fuzzy filter 
Noise removal using fuzzy logic Effective against impulse noise 

Application limited to specific noise 

types 

[18] PSIM Metric Combines gradient and color features Closer match to human vision Complex metric computation 

[37] Joint BCS Fine detail preservation with small blocks Superior objective metrics 
Limited to specific types of image 

correlation 

[12] Convex optimization Signal recovery using ℓ1-minimization Theoretically robust under RIP Solving convex problems is slow 

[13] 
Signal space 

CoSaMP 
Recovers overcomplete dictionary signals Reduced error with theoretical bounds Sensitive to D-RIP compliance 

[16] Block coherence 
Tailored coherence measure for block sparse 

signals 
Improved structural recovery Complex to calculate for large blocks 

[42] GMSD Visual quality via edge/textures Matches human perception well 
Requires reference image for 

comparison 

[4] 
Hybrid transform-

based CS 
Hybrid transform-based sensing matrix for 

natural image compression 
PSNR: 34.85 dB, SSIM: 0.945, MSE: 

5.12; better image quality metrics 
Model generalization not validated 

[20] CS with OFDM Integration of CS with OFDM 
Improved PSNR, SSIM, and BER under 

noisy/fading channels 

Complexity in synchronization and 

channel estimation 

[46] Chaotic TM+SVD 
Uniform chaotic sequence, binary 
transformation, embedded in TM, 

orthogonalized via SVD 

Reduced correlation, storage overhead; 
faster SVD processing; enhanced 

reconstruction 

Added computational steps for 

binary transformation 

[1] 
Adaptive CS with 

Schur decomp. 
Adaptive CS using Schur decomposition with 

optimized reconstruction algorithms 
PSNR: 36.12 dB, SSIM: 0.952, MSE: 
4.26; superior reconstruction quality 

Implementation complexity for 
adaptive matrix construction 

[21] 
Iteration-free fractal 

+Fuzzy clustering 

Combines iteration-free fractal coding with 

fuzzy c-means clustering on DCT coefficients 

42×speedup in encoding time; only 9% 

PSNR reduction 
Slight loss in reconstruction quality 
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A hybrid technique to image compression [21] uses 

iteration-free fractal coding and fuzzy clustering on 

Discrete Cosine Transform (DCT) coefficients to reduce 

encoding time while maintaining image quality. 

Traditional fractal image compression is effective at 

exploiting self-similarity within images, but it is 

computationally expensive due to extensive range-

domain searches. The system suggests using mean 

image as the domain pool and applying One-

Dimensional Discrete Cosine Transform (1D DCT) to 

both range and domain blocks. Fuzzy c-means 

clustering is used to group related domain blocks, 

narrowing the search to a single relevant cluster during 

encoding. Experimental results with standard images 

demonstrate that the approach delivers an average 42x 

speedup in encoding time while only reducing PSNR by 

9%, indicating a positive trade-off between speed and 

reconstruction quality. 

3. Methodology 

The proposed SD-DAB is a novel innovative CS method 

designed for the optimization of the measurement 

matrix, thereby enhancing image recovery and efficient 

compression. The proposed SD-DAB is based on the 

principle of CS, a signal and image processing 

technique that acquires and reconstructs data efficiently 

by determining the solutions for underdetermined 

systems. SD-DAB outperforms traditional CS by 

proposing a measurement matrix that adapts the spectral 

properties of image blocks. The adaptiveness of SD-

DAB collects essential pixel information from the 

image with fewer measurements by reducing the data 

required for accurate reconstruction. Spectral 

decomposition refers to the ability to analyse an image 

by decomposing its constituent spectral components. 

Decomposition identifies the features of the image more 

significantly, which in turn informs the adaptive block 

formation and process. Typically, spectral 

decomposition involves transforming the image data 

into a frequency or eigenspace, where the components 

are linearly uncorrelated. The adaptive block-based 

concept involves dividing the image into smaller blocks 

and measuring them separately. SD-DAB focuses on the 

blocks and modifies the measurement method with 

specific characteristics of every block, such as the 

sparsity or energy distribution. The localized approach 

provides more precise control of the measurement 

process by enhancing the efficiency of data acquisition 

and reconstruction. The measurement matrix with SD-

DAB was designed to dynamically adapt to the block 

size using spectral analysis. The other static 

measurement matrices did not change based on the 

signal content. The adaptive measurement matrix SD-

DAB was adjusted to optimize data acquisition from 

each block. Adaptiveness reduces redundancy and 

focuses on acquiring significant data, thus enabling a 

more efficient CS. 

In practical terms, SD-DAB involves several steps: 

the block division divides the image into blocks of a 

specified size, each block indicates the spectral 

decomposition that identifies the key features to be 

preserved, and the image is divided into blocks of a 

specified size. Matrix adaption optimally captures 

essential information as a measurement matrix based on 

the analysis. The adapted matrix is used to measure the 

blocks, and these measurements are then used to 

reconstruct the image by utilizing sparse recovery 

algorithms, such as OMP or CoSaMP. 

3.1. Proposed Spectral Decomposition Driven 

Adaptive Block (SD-DAB) 

The proposed SD-DAB on the image pixels processes 

the image with the minimum pixel information. SD-

DAB is a highly efficient method for processing pixels 

that contain minimal information. The effectiveness of 

the proposed SD-DAB was evaluated through a 

thorough performance comparison with established 

measurement matrices, including Gaussian, Bernoulli 

random, and Toeplitz matrices. The proposed SD-DAB 

was analysed using various measurement parameters to 

satisfy the requirements of time-constrained 

applications. The performance of different images of 

varying sizes was evaluated. Utilizing a hybrid 

transformation technique combining the Haar Matrix 

Transform and Fast Walsh Hadamard Transform 

(HMT+FWHT), the proposed method achieves a sparse 

representation of images, ensuring efficient image 

recovery using the OMP and CoSaMP algorithms. 

 

 

Figure 1. Proposed SD-DAB for CS. 
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Figure 1 presents an introductory visualization of the 

proposed SD-DAB, with an overview of the conceptual 

diagram. The block diagram provides the details of the 

key components and steps involved in SD-DAB, 

starting with the initial acquisition of the input image 

and its division into blocks, the application of spectral 

decomposition for the analyses of each block, the 

adaptation of the measurement matrix based on the 

results, and finally the reconstruction of the image in 

CS. 

The performance of the results was compared and 

analysed for two different types of existing 

measurement matrices, random structured and 

deterministic matrices. In random structured matrices, 

such as BM and GM, the Probability Density Function 

(PDF) is randomly selected and obeys the RIP and 

mutual coherence. On the other hand, the deterministic 

matrix used as a measurement matrix is the TM. By 

evaluating the outcomes obtained from these different 

types of matrices using the proposed method, this study 

provides valuable insights into their respective 

performances. The proposed SD-DAB divides the 

image into blocks and applying spectral decomposition 

to analyse the sparsity and information pixels of each 

block, and then using the information of each block to 

adapt the measurement matrix accordingly. 

A novel CS method proposes SD-DAB techniques 

that split the input matrix into smaller blocks that select 

only a limited number of samples from the measurement 

matrix. SD-DAB permits the effective processing of 

images by breaking down the matrix into B×B non-

overlapping blocks and obtains the measurement using 

an appropriately sized matrix. This block-wise approach 

is equivalent to utilizing a whole-image measurement 

matrix Φ that bears a constrained structure, and the 

integrity of the data is maintained by simplifying the CS 

process. The depiction is crucial for collecting and 

adjusting the specific characteristics of various image 

segments of SD-DAB, optimizing the CS process to 

enhance the efficiency and image reconstruction quality. 

Algorithm (1) provides the algorithm of the proposed 

SD-DAB in detail. 

Algorithm 1: The Proposed SD-DAB. 

//Parameters are Initialized// 

                Set the block size. 

                Initialize the variable 𝛷'(0). 

                Set the subrate. 

                Calculate N = block size * block size. 

                Calculate M = subrate * N. 

//Perform Spectral Decomposition-Driven Adaptive Block (SD-

DAB)// 

        Decompose the input image into U, S, and V using SD-DAB. 

        Factorize the input image with ASV as follows: 

        X ≈ U * S * V' 

//The image with varying Singular values is compressed(N)// 

        Loop For each N in the range [5, 30, ..., 300]: 

          The singular value Matrix S is truncated to collect the first 

          N Singular values. 

          Truncate the singular value matrix S to retain only the first  

          N singular values. 

          Create a new diagonal matrix S' with the retained singular 

          values. 

          Reconstruct the compressed approximation of the original  

          image using: 

          D ≈ U * S' * V' 

      The value of N is chosen to vary from 5 to 300 in increment  

      of 25 

//Initialize Additional Parameters// 

         Set 𝛷'(0) for the following steps. 

//While N < Max Iteration// 

         Enter a loop that continues until N reaches the maximum 

         allowed iterations. 

        Updation on the value of 𝛷'(t+1): 

        Calculate 𝛷^(t+1) with the formula: 

                        𝛷'(t+1) = argmin || (𝛷𝜓)' H (𝛷𝜓) - N || N2 

//End While: Exit the loop when N reaches the maximum allowed 

iterations// 

3.2. Hybrid Sensing  

The sensing matrix performs the transforms on the CS, 

and the hybrid transformation of the HMT and FWHT 

reduces the computational complexity. The elapsed time 

required for processing was minimized using the hybrid 

process. 

3.2.1. Haar Matrix Transform (HMT) 

The linear orthogonal transform used in signal 

processing is HMT, owing to its simplicity and 

efficiency in representing data, even with sudden 

changes, such as the image edges. HMT is well suited 

for image compression because of its effectiveness in 

capturing the hierarchical structure of spatial 

information, making it a more powerful tool for image 

processing in CS [24]. In the proposed SD-DAB, the 

HMT achieves sparsity using the decorrelation method 

on the image data, which is difficult for efficient CS. 

The coefficients are transformed, resulting in fewer and 

more significant data points required for image 

reconstruction. 

The transformation is defined using the Haar matrix 

Hn, which is a 2n*2n matrix used to transform a data 

vector, x of length 2n. Matrix is constructed recursively. 

For n=1, the Haar matrix H1is given in Equation (6) 

𝐻1 =  
1

√2
[
1 1
1 −1

] 

For any n>1, the matrix Hn can be constructed from Hn-

1 as stated in Equation (7) 

𝐻𝑛 =  
1

√2
[

𝐻𝑛−1 𝐻𝑛−1

𝐻𝑛−1𝐷𝑛−1 −𝐻𝑛−1𝐷𝑛−1
] 

where Dn-1 is a diagonal matrix with diagonal elements 

alternating between 1 and -1, starting at 1. Equation (8) 

describes the Haar matrix to compute the Haar 

transform of vector x by multiplying 

𝑦 = 𝐻𝑛𝑥 

where y is the transformed vector, containing both low-

frequency and high-frequency components. This 

(6) 

(7) 

(8) 
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process is particularly useful in image processing and 

data compression, where Haar transforms can 

efficiently reduce the data dimensionality and 

emphasize features. Figure 2 shows HMT applied to the 

image used for processing. 

 

Figure 2. HMT on image. 

Equation (9) computes inverse Haar transform using the 

transpose of the Haar matrix, because of its 

orthogonality 

𝑥 =  𝐻𝑛
𝑇𝑦 

This reverses the transformation, reconstructing the 

original vector from the transformed coefficients. 

3.2.2. Fast Walsh Hadamard Transform (FWHT) 

When paired with the HMT, the FWHM provides a 

reliable approach for achieving sparsity in the 

transformed domain. Sparsity is employed in CS to 

reduce the number of measurements required while 

maintaining critical information and boosting the speed 

and efficiency of the image reconstruction process. 

The FWHT algorithm efficiently computes the 

transform without employing matrix multiplication, and 

the Fast Fourier Transform (FFT) improves the discrete 

Fourier transform. The transform of a vector x of length 

n can be computed recursively using the FWHT [39]. 

For each k from 0 to n/2−1 given in Equations (10) 

and (11). 

𝑦[𝑘] =  𝑥0[𝑘] + 𝑥1[𝑘] 

𝑦 [𝑘 +
𝑛

2
] = 𝑥0[𝑘] − 𝑥1[𝑘] 

Figure 3 gives the structure of FWHT with block size of 

8. 

 

Figure 3. FWHT structure. 

The inverse transform of the image performs steps 

similar to the transform with a scaling factor of 1/n to 

normalize the results as in Equation (12) 

𝑥 =
1

𝑛
𝐻𝑛𝑦 

3.3. Recovery Algorithm 

The CS recovery algorithm includes OMP, Greedy 

Algorithm (GA), BP, and CoSaMP. The proposed SD-

DAB compresses the OMP or CoSaMP algorithms and 

outperforms with better values. 

3.3.1. Orthogonal Matching Pursuit (OMP) 

The greedy algorithm used for sparse image recovery is 

OMP, which is an integral tool in the field of CS and is 

given in Algorithm (2). OMP reconstructs sparse images 

with fewer sets of linear measurements, which are 

commonly required for various applications, such as 

image processing, image compression, and machine 

learning.  

Algorithm 2: Orthogonal Matching Pursuit (OMP). 

Input: 

    Initialize support set S, residual r and estimated signal x 

Iterative selection 

    Best matching column 

        Compute correlations between residual and columns of Ф 

c=ΦT r 

j=arg max|c| 

    Update support set 

S=S∪{j} 

    Least Squares 

xS=arg min‖y-ΦS xS ‖2 

 Update residual 

r=y-ΦS xS 

Output 

3.3.2. Compressive Sampling Matching Pursuit 

(CoSaMP) 

CoSaMP is an iterative algorithm used for 

reconstructing sparse signals from compressed 

measurements, and is applicable in fields of CS, image 

reconstruction, and signal processing. CoSaMP is 

known for its robust performance and accurate 

theoretical reconstruction. CoSaMP improves upon the 

basic greedy algorithms by refining the support of the 

sparse signal in a structured manner as given in 

Algorithm (3).  

Algorithm 3: Compressive Sampling Matching Pursuit 

(CoSaMP). 

Input: 

    Sensing matrix Φ, Measurement vector y and sparsity level K 

    Initialize residual r=y and estimated signal x=0 

Iterative selection 

    Best matching column 

        Compute correlations between residual and columns of Ф 

c=ΦT r 

    Select the top 2K indices from |c| 

    Update support set 

S'=S∪T 

(9) 

(10) 

(11) 

(12) 
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    Least Squares 

xS=arg min‖y-ΦS' xS'‖2 〗 

    Prune approximation 

        K largest entries in xS' and update S 

    Update residual 

r=y-ΦS xS 

Output 

3.4. Objective Assessment 

The image was assessed using Full Reference (FR) and 

measured based on various parameters, including 

PSNR, MSE, SSIM, SNR, and computational time. 

MSE is defined in Equation (13) 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

where  

I(i,j)=input image. 

K(i,j)=output image. 

PSNR is given in Equation (14) 

𝑃𝑆𝑁𝑅 = 20 log10 (
MAX. 𝑣𝑎𝑙𝑢𝑒 2

√𝑀𝑆𝐸
) 

Equation (15) gives the SSIM measures image quality 

degradation [30] caused by data compression or 

transmission. 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 

The PSIM [45] for grayscale images is based on 

comparing perceptual differences between the original 

and reconstructed images as given in Equation (16) 

𝑃𝑆𝐼𝑀 =
𝐻𝜏

(
1
𝑁

∑ 𝐼𝑖
𝑁
𝑖=1 ) × 𝑆𝛽 × √1

𝑁
𝛴𝑖=1

𝑁 (𝐼𝑖 − 𝐿𝛼)

 

The Feature Similarity Index Measure (FSIM) given in 

Equation (17) is a perceptual quality metric [48] used to 

evaluate image quality that focuses on perceptual 

significant features like Phase Congruency (PC) and 

GM. 

𝐹𝑆𝐼𝑀 =
∑ 𝑇(𝑥)𝑥∈𝛺 ⋅ 𝑃𝐶𝑚(𝑥)

∑ 𝑃𝐶𝑚(𝑥)𝑥∈𝛺
 

where 

T(x)=similarity measure at pixel x, combining PC and 

GM similarities. 

PCm(x)=maximum PC value at pixel x from the 

reference and distorted images. 

Ω=spatial domain of the image. 

4. Results and Discussions 

The proposed SD-DAB is assessed for efficacy with 

nine distinct images, including Cameraman and Peppers 

images, with sizes ranging from 512×512 to 96×96. The 

research work was conducted using an Intel Core i5 10th 

generation CPU laptop running MATLAB R2024b. The 

range of images with varying sizes and different images 

has been thoroughly examined using the proposed 

measurement matrix, which assesses the performance 

and effectiveness in capturing the accurate measurement 

of those images. 

Figure 4 illustrates a comparison of the original 

images with the reconstructed versions using SD-DAB. 

The visual assessment of the reconstructed image 

clearly shows the fidelity of the image, and the high 

quality of the reconstructed image indicates the 

minimum visual difference between the input image and 

the reconstructed image. The reconstructed images 

closely matched the original input image in terms of 

visual content and quality, confirming the effectiveness 

of SD-DAB in practical applications, such as in clinical 

diagnostics or high-precision industrial imaging. This 

visual demonstration also serves to validate the 

theoretical advantages of using an adaptive block-based 

approach in CS, proving its utility in real-world 

scenarios. 

The proposed measurement matrix evaluates a 

diverse set of images tested under various scenarios by 

capturing different image characteristics, complexities, 

and visual contents to validate the robustness and 

effectiveness of the proposed measurement matrix. 

Figure 4-a) to (i) shows a side-by-side comparison of the 

original and recovered images to make judgments about 

the capability of the proposed method to precisely 

capture and reconstruct the visual information that 

contributes towards the advancement of image 

measurement techniques. 

Figure 5 shows a graphical analysis of the 

performance of SD-DAB with various images, 

highlighting key metrics such as PSNR in Figure 5-a) 

and the MSE in Figure 5-b) The graph shows high 

PSNR values and low MSE values for SD-DAB 

compared with other measurement matrices, suggesting 

that SD-DAB offers superior image quality and 

accuracy in image reconstruction. The PSNR with a 

high dB value proves that the reconstructed images are 

similar to the original input image, and low MSE value 

points to minimize the error between the reconstructed 

and original images. 

Figure 6 shows a comparison of the overall 

effectiveness of the proposed SD-DAB with existing 

measurement matrices. 

The SD-DAB method results in higher PSNR and 

SSIM values compared with traditional methods, 

proving superior image quality. The high PSNR, SNR, 

SSIM, PSIM, and FSIM values in Figure 6-a) to (f) 

indicate that the reconstructed images are very close to 

the original images in terms of both overall intensity and 

structural quality. 

 

 

 

(13) 

(14) 

(15) 

(16) 

(17) 
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Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

a) Peppers. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

b) Vessels. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

c) Boat. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

d) Mandrill. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    
e) Living room. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

f) Cameraman. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

g) Pirate. 

Original Image Proposed SD-DAB measurement matrix Compressed Image Recovered image Proposed SD-DAB 36.4451dB 

    

h) Woman with dark hair. 

Figure 4. Original and recovered images with the proposed SD-DAB measurement matrix. 
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a) PSNR analysis of different images. b) MSE analysis of different images. 

Figure 5. PSNR and MSE comparison of proposed SD-DAB for different images. 

  
a) Average PSNR comparison with existing methods. b) Average SNR comparison with existing methods. 

  
c) Average MSE comparison with existing methods. d) Average SSIM comparison with existing methods. 

  
e) Average PSIM comparison with existing methods. f) Average FSIM comparison with existing methods. 

 

g) Average Elapsed time comparison with existing methods. 

Figure 6. Average PSNR, MSE and SNR, SSIM, PSIM, FSIM, and elapsed time analysis of various images for proposed SD-DAM with the 

existing method. 
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The lower MSE values in Figure 6-c) for SD-DAB 

imply that it is more effective at minimizing the average 

squared differences between the reconstructed and 

original images. SD-DAB is more accurate and reliable 

in preserving the exact pixel values of the original 

image. Higher SNR values indicate that SD-DAB 

enhances image clarity by reducing the amount of noise 

in the reconstructed images. The reduced elapsed time 

is shown in Figure 6-e) required for image recovery of 

the proposed SD-DAB exhibits efficiency in the 

processing and reconstruction of images. 

 

  

a) Comparison of PSNR at different subrates. b) Comparison of SNR at different subrates. 

  

c) Comparison of MSE at different subrates. d) Comparison of SSIM at different subrates. 

  

e) Comparison of PSIM at different subrates. f) Comparison of FSIM at different subrates. 

 

g) Comparison of Elapsed time at different subrates. 

Figure 7. PSNR, SNR, MSE, SSIM, PSIM, FSIM and elapsed time of the proposed SD_DAB with different recovery algorithms. 

Figure 7 provides a comprehensive analysis of the 

different reconstruction algorithms, highlighting the 

enhancements and limitations of the performance of the 

proposed SD-DAB method. 

The elapsed time of the recovery algorithm on 

examination in Figure 7 provides advancements in 

system efficiency. Real-time surveillance or live 

medical imaging techniques require a faster recovery 

time with minimal compromise of image quality. 
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Table 3. Analysis of proposed SD-DAB at various subrate. 

Recovery algorithm Input Subrate 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

C
o

S
a

M
P

 

W
o

m
a

n
 w

it
h

 d
a
r
k

 

h
a

ir
 

PSNR 10.98 13.54 17.83 21.76 25.36 29.04 31.94 34.87 

SNR 4.73 7.29 11.59 15.51 19.11 22.79 25.69 28.62 

MSE 5.19e+03 2.88e+03 1.07e+03 433.28 189.23 81.12 41.62 21.21 

SSIM 0.01 0.03 0.08 0.14 0.21 0.31 0.39 0.46 

PSIM 0.05 0.1 0.25 0.3 0.38 0.45 0.56 0.64 

FSIM 0.44 0.46 0.54 0.62 0.68 0.77 0.80 0.83 

CR 9.85 5.02 3.33 2.51 2 1.66 1.43 1.25 

Time 4.90 7.72 16.04 25.30 39.1 88.19 111.56 190.64 

M
a

n
d

r
il

l 

PSNR 14.23 15.00 16.19 17.41 18.86 19.74 21.76 26.38 

SNR 8.64 9.42 10.60 11.82 13.28 14.16 16.18 20.80 

MSE 2.46e+03 2.06e+03 1.56e+03 1.10e+03 845.35 690.33 433.20 149.58 

SSIM 0.01 0.03 0.07 0.12 0.17 0.24 0.32 0.50 

PSIM 0.08 0.15 0.29 0.39 0.5 0.56 0.62 0.71 

FSIM 0.56 0.59 0.62 0.65 0.69 0.72 0.76 0.82 

CR 9.85 5.02 3.32 2.51 2 1.66 1.43 1.2 

Time 12.79 14.23 20.42 29.90 46.84 68.83 113.06 260.27 

L
iv

in
g

 R
o

o
m

 

PSNR 12.56 14.95 15.43 17.57 20.43 22.86 26.67 29.56 

SNR 6.60 8.99 9.48 11.61 14.47 16.90 20.71 23.60 

MSE 3.61e+03 2.08e+03 1.86e+03 1.14e+03 588.54 336.50 140.10 72.05 

SSIM 0.01 0.03 0.06 0.11 0.18 0.27 0.37 0.46 

PSIM 0.09 0.1 0.32 0.4 0.48 0.54 0.63 0.7 

FSIM 0.50 0.54 0.56 0.60 0.67 0.72 0.78 0.81 

CR 9.85 5.02 3.32 2.51 2 1.66 1.43 1.25 

Time 12.63 16.36 21.06 42.55 51.75 73.93 131.25 202.29 

P
e
p

p
e
r
s 

PSNR 11.21 12.82 15.06 18.05 22.26 26.20 30.13 32.73 

SNR 5.43 7.04 9.28 12.27 16.48 20.42 24.34 26.95 

MSE 4.92e+03 3.40e+03 2.03e+03 1.01e+03 386.79 155.94 63.19 34.68 

SSIM 0.01 0.03 0.07 0.12 0.21 0.31 0.40 0.47 

PSIM 0.09 0.12 0.35 0.43 0.5 0.58 0.67 0.75 

FSIM 0.43 0.45 0.49 0.56 0.66 0.74 0.78 0.82 

CR 9.85 5.02 3.33 2.51 2 1.66 1.43 1.25 

Time 13.57 14.93 22.01 30.05 47.80 72.10 114.32 196.02 

O
M

P
 

W
o

m
a

n
 w

it
h

 d
a
r
k

 

h
a

ir
 

PSNR 13.21 17.43 23.67 26.69 29.25 31.53 33.48 35.28 

SNR 6.96 11.18 17.43 20.44 23.0 25.28 27.23 29.03 

MSE 3.1e+03 1.17e+03 279.04 139.33 77.34 45.77 29.2 19.29 

SSIM 0.02 0.06 0.15 0.22 0.28 0.35 0.41 0.46 

PSIM 0.1 0.17 0.32 0.4 0.48 0.56 0.63 0.7 

FSIM 0.49 0.55 0.66 0.72 0.75 0.78 0.81 0.83 

CR 9.85 5.02 3.32 2.51 2 1.66 1.43 1.25 

Time 3.43 4.05 4.93 5.73 7.48 9.53 11.8 16.06 

M
a

n
d

r
il

l 

PSNR 15.27 16.97 18.21 19.40 20.67 22.17 23.54 25.22 

SNR 9.69 11.39 12.62 13.81 15.09 16.59 17.95 19.63 

MSE 1.93e+03 1.31e+03 983.02 747.27 557.10 394.57 287.92 195.63 

SSIM 0.02 0.06 0.10 0.16 0.22 0.30 0.37 0.45 

PSIM 0.09 0.13 0.34 0.43 0.52 0.62 0.68 0.74 

FSIM 0.54 0.63 0.67 0.69 0.73 0.76 0.78 0.81 

CR 9.85 5.02 3.32 2.51 2 1.66 1.43 1.25 

Time 10.79 11.81 12.37 13.32 15.12 15.85 18.35 26.61 

L
iv

in
g

 r
o
o

m
 

PSNR 15.13 16.85 18.95 21.37 23.96 26.16 28.15 30.12 

SNR 9.17 10.89 12.99 15.41 18.00 20.20 22.19 24.16 

MSE 2.0 1.34e+03 827.71 474.33 261.10 157.39 99.47 63.20 

SSIM 0.01 0.05 0.11 0.18 0.27 0.34 0.40 0.47 

PSIM 0.09 0.18 0.34 0.45 0.52 0.58 0.68 0.74 

FSIM 0.54 0.58 0.63 0.68 0.73 0.77 0.79 0.81 

CR 9.85 5.02 3.32 2.51 2 1.66 1.43 1.25 

Time 10.42 11.15 11.69 12.54 15.05 16.08 19.40 24.62 

P
e
p

p
e
r
s 

PSNR 12.93 15.86 18.72 23.04 25.86 28.8 30.87 32.95 

SNR 7.15 10.08 12.94 17.26 20.07 23.02 25.09 27.16 

MSE 3.31e+03 1.69e+03 872.69 323.15 168.89 85.64 53.22 33.01 

SSIM 0.02 0.06 0.12 0.20 0.29 0.36 0.41 0.47 

PSIM 0.1 0.15 0.35 0.42 0.51 0.54 0.62 0.72 

FSIM 0.46 0.52 0.58 0.68 0.73 0.76 0.80 0.81 

CR 9.85 5.02 3.32 2.51 2 1.66 1.43 1.25 

Time 10.91 11.22 12.30 13.09 17.23 18.15 18.92 24.50 

 

Figure 7-a) to (g) depicts the variation in PSNR, 

MSE, SNR, SSIM, PSIM, FSIM, and recovery times 

between algorithms, indicating trade-offs to be 

addressed when selecting an algorithm. SD-DAB 

performs well across different recovery algorithms 

(high PSNR and SSIM, low MSE), it demonstrates that 

it is a resilient method that can be used in various 

computational strategies. Figure 7 provides insights that 

can be used to influence the selection of recovery 

algorithms depending on application needs. For 

example, if one solution performs very well in SSIM, it 

may be preferred for applications requiring image 

structural integrity, such as structural engineering and 

art restoration The figure not only compares the current 
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level of SD-DAB performance with various algorithms, 

but also serves as a baseline for future algorithmic 

strategy improvements or SD-DAB technique upgrades. 

The evaluation of the proposed SD-DAB algorithm is 

provided by extending the analysis beyond a single 

woman with dark hair image to additional images with 

varying characteristics. Mandrill, Living Room, and 

Peppers images pose unique challenges to test the 

robustness of the algorithm, under different conditions. 

The Mandrill image has a high texture and complicated 

details evaluating the algorithm’s capability to preserve 

fine structures and handle complex frequency data. The 

low contrast and smooth gradient-based living room 

image assess the ability of the SD-DAB algorithm to 

recover subtle variations in intensity without artifacts. 

Peppers image known for its vibrant and distinct edges 

highlights the algorithm’s performance in maintaining 

edge sharpness and fidelity. Comparative metrics 

including PSNR, SNR, MSE, PSIM, and FSIM, were 

computed for all four images across varying subrates in 

Table 3. 

 

  

a) Analysis of PSNR at different subrate for various images. b) Analysis of SNR at different subrate for various images. 

  

c) Analysis of MSE at different subrate for various images. d) Analysis of SSIM at different subrate for various images. 

  

e) Analysis of FSIM at different subrate for various images. f) Analysis of PSIM at different subrate for various images. 

  

g) Analysis of CR at different subrate for various images. h) Analysis of elapsed time at different subrate for various images. 

Figure 8. Comparison of PSNR, MSE, SNR, SSIM, FSIM, PSIM, CR, and elapsed time at different subrates for the sroposed SD-DAB. 

The analysis shows an increase in PSNR and a 

decrease in MSE values, proving that higher subrates 

lead to higher measurements and better reconstruction 

quality. The data can be used to find the minimal subrate 



1014                                                  The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025 

that achieves a satisfactory level of quality in terms of 

PSNR and SSIM. The performance of the recovery 

algorithms at various subrates indicated their 

robustness. The recovery algorithm with high PSNR and 

SSIM with various subrate ranges is suitable for 

versatile applications. The comparison between the 

elapsed time and subrates results in a trade-off between 

the computational speed and accuracy of the 

measurements. The smaller subrates result in reasonable 

image quality with a faster elapsed time and might be 

suitable for real-time appliances with a limited speed of 

recovery. The tabulation demonstrates that the proposed 

SD-DAB outperforms baseline methods, and maintain 

high reconstruction quality even in challenging 

scenarios like high texture Mandrill and low contrast 

living room images. 

Figure 8 focuses on two different recovery 

algorithms CoSaMP and OMP performed on different 

textured images and subrates ranging from 0.1 to 0.8. 

various metrics like PSNR, SNR, FSIM, SSIM, PSIM, 

Compression Ratio, and elapsed time are considered for 

assessment. The analysis concludes that OMP 

outperforms CoSaMP for most of the metrics in terms 

of image quality and computational efficiency while 

CoSaMP provides competitive structural and feature 

preservation at higher rates. Both algorithms improve 

the reconstruction quality with increased subrates but at 

the cost of longer recovery time. 

 
Image output using 5 SD-DAB Image output using 55 SD-DAB Image output using 105 SD-DAB Image output using 155 SD-DAB Image output using 205 SD-DAB Image output using 208 SD-DAB 

      

a) Output image at 5th 

iteration. 

b) Output image at 55th 

iteration. 

c) Output image at 105th 

iteration. 

d) Output image at 155th 

iteration. 

e) Output image at 205th 

iteration. 

f) Output image at 280th 

iteration. 

Figure 9. Output image of woman with dark hair at different SD-DAB subrate values. 

  

a) Overall PSNR comparison. b) Overall MSE comparison. 

Figure 10. Overall comparison of PSNR and MSE of proposed SD-DAB with existing methods. 

Figure 9 provides vital insights into the scalable 

performance of the SD-DAB method at different 

subrates, thus making it a useful tool for examining the 

practical limits and capabilities of this adaptive CS 

strategy. The figure shows the subrate range in which 

SD-DAB performs effectively. SD-DAB consistently 

shows better performance across a wide range of 

subrates compared to traditional methods, which 

indicates the robustness and versatility of the method in 

various operational contexts. 

Figure 10, compares the performance of SD-DAB 

against traditional measurement matrices using metrics 

such as PSNR and MSE. Figure 10-a) shows higher 

PSNR values for SD-DAB compared to GRM, BRM, 

and TM, indicating that SD-DAB provides superior 

image quality. Figure 10-b) indicates the measurement 

of MSE for different measurement matrix with low 

MSE indicating better image quality. The high value of 

PSNR and low MSE implies the efficiency of the 

proposed SD-DAB in handling sparse image data more 

effectively than the existing methods. The superior 

performance of SD-DAB over traditional fixed matrices 

such as GRM, BRM, and TM validates the adaptive 

approach used in SD-DAB. Adaptation to images allows 

for more tailored and efficient data capture and 

reconstruction, affirming the benefits of using dynamic 

and context-sensitive measurement matrices in CS. The 

computational load is reduced with fewer samples, 

which demonstrates the effectiveness of SD-DAB in 

providing high-quality reconstructions. 

Tables 4 provides a detailed analysis of the data 

compared to the performance of the proposed SD-DAB 

with different images and varying subrates with 

different recovery algorithms and values. The proposed 

algorithm outperforms existing methods in terms of 

PSNR, SSIM, and FSIM, demonstrating its 

effectiveness in image recovery. FSIM highlights the 

algorithm’s ability to preserve perceptually significant 

features, further validating its suitability for practical 

applications. The PSNR and MSE values for the 
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proposed SD-DAB resulted in better image fidelity and 

accuracy in the reconstructed image. The different 

recovery algorithms, OMP and CoSaMP, resulted in 

varying effectiveness with the proposed SD-DAB. For 

instance, the OMP recovery algorithm results in a faster 

recovery time and better image quality, resulting in a 

trade-off between speed and accuracy. The elapsed time 

required for the image reconstruction tabulated in the 

table indicates the computational demands of the 

proposed SD-DAB. Real-time systems advocate for 

practical applications that prefer faster recovery with 

better image quality. The varying subrates in the SD-

DAB measurement matrix show promising results in 

various scenarios, it is important to recognize some 

limitations and potential failure cases. The method’s 

effectiveness depends on the division of block size. The 

proposed SD-DAB performs better for images, while it 

may be difficult for images with fine texture where the 

block size should be very small to capture the details 

leading to computational overhead and loss of data. The 

subrates below 0.1 decrease the recovery performance 

significantly but low subrates are desirable for reducing 

storage and transmission cost. 

 

Table 4. Analysis of proposed SD-DAB with existing methods. 

Recovery algorithm CoSaMP OMP 

Measurement matrix Proposed SD-DAB BRM TM GRM Proposed SD-DAB BRM TM GRM 

Peppers 

512×512 

PSNR (dB) 36.45 23.70 25.21 23.57 36.45 23.77 33.29 23.97 

SNR (dB) 30.67 17.92 19.43 17.78 30.67 17.99 27.51 18.19 

MSE 14.74 277.69 196.04 286.17 14.74 273.13 30.46 26.53 

SSIM 0.56 0.24 0.44 0.24 0.56 0.24 0.51 0.24 

PSIM 0.81 0.72 0.79 0.71 0.82 0.78 0.79 0.75 

FSIM 0.85 0.69 0.79 0.68 0.85 0.69 0.84 0.70 

Time(secs) 388.09 34.27 215.23 34.01 21.99 14.28 23.68 6.11 

Vessels 

96×96 

PSNR (dB) 36.38 23.90 27.57 23.90 36.38 24.04 33.27 24.35 

SNR (dB) 28.73 16.25 19.92 16.24 28.73 16.38 25.61 16.69 

MSE 14.64 264.64 113.67 264.95 14.94 256.78 30.64 238.91 

SSIM 0.57 0.28 0.47 0.27 0.57 0.27 0.52 0.28 

PSIM 0.72 0.68 0.69 0.67 0.78 0.75 0.77 0.75 

FSIM 0.88 0.72 0.84 0.73 0.88 0.73 0.87 0.73 

Time(secs) 322.67 33.98 237.23 33.38 23.06 12.91 21.52 6.19 

Boat 

512×512 

PSNR (dB) 33.09 20.96 26.20 21.23 33.09 22.29 29.48 22.19 

SNR (dB) 27.73 15.60 20.83 15.86 27.73 16.92 24.12 16.83 

MSE 31.90 521.20 156.16 490.31 31.90 384.02 73.29 392.33 

SSIM 0.58 0.20 0.45 0.21 0.58 0.23 0.51 0.22 

PSIM 0.68 0.65 0.67 0.64 0.75 0.7 0.73 0.69 

FSIM 0.81 0.65 0.76 0.64 0.81 0.67 0.80 0.66 

Time(secs) 319.40 33.95 222.47 35.93 21.79 12.60 21.33 6.30 

Mandrill 

512×512 

PSNR (dB) 28.82 19.12 23.34 19.02 28.82 19.99 24.83 20.22 

SNR (dB) 23.24 13.54 17.76 13.44 23.24 14.41 19.25 14.64 

MSE 85.35 796.37 301.23 814.83 85.35 651.54 213.49 617.86 

SSIM 0.57 0.18 0.43 0.18 0.57 0.20 0.48 0.20 

PSIM 0.78 0.72 0.71 0.72 0.82 0.75 0.8 0.71 

FSIM 0.84 0.70 0.80 0.70 0.84 0.72 0.82 0.72 

Time(secs) 319.05 38.47 224.53 33.68 24.77 11.50 21.23 6.25 

Living 

room 

512×512 

PSNR (dB) 33.43 21.50 26.84 21.70 33.43 22.53 29.80 22.24 

SNR (dB) 27.47 15.54 20.88 15.74 27.47 16.57 23.84 16.29 

MSE 29.57 460.67 134.70 439.43 29.57 362.89 68.10 387.84 

SSIM 0.56 0.21 0.44 0.21 0.56 0.22 0.50 0.22 

PSIM 0.78 0.71 0.72 0.7 0.8 0.74 0.78 0.73 

FSIM 0.84 0.69 0.80 0.69 0.84 0.71 0.83 0.71 

Time(secs) 338.76 36.47 216.93 33.98 22.78 11.30 21.65 6.09 

Camerama

n 512×512 

PSNR (dB) 36.74 23.66 28.65 24.01 36.74 24.51 33.38 24.58 

SNR (dB) 31.12 18.04 23.02 18.39 31.12 18.88 27.76 18.96 

MSE 13.77 279.73 88.76 258.24 13.77 230.31 29.84 226.35 

SSIM 0.50 0.23 0.42 0.23 0.50 0.25 0.46 0.24 

PSIM 0.7 0.68 0.69 0.67 0.74 0.7 0.72 0.71 

FSIM 0.76 0.65 0.76 0.67 0.76 0.68 0.79 0.68 

Time(secs) 313.55 38.34 220.39 38.37 22.42 12.62 21.07 6.20 

Pirate 

512×512 

PSNR (dB) 33.40 22.10 27.92 21.85 33.40 22.79 29.79 22.82 

SNR (dB) 26.93 15.63 21.45 15.38 26.93 16.32 23.32 16.35 

MSE 29.70 401.03 105.08 424.60 29.70 342.19 68.29 339.81 

SSIM 0.58 0.22 0.46 0.21 0.58 0.23 0.50 0.23 

PSIM 0.68 0.65 0.67 0.63 0.7 0.68 0.7 0.69 

FSIM 0.85 0.68 0.80 0.68 0.85 0.70 0.83 0.70 

Time(secs) 340.28 32.97 215.27 33.69 24.42 6.39 21.54 6.32 

Woman 

with dark 

hair 

512×512 

PSNR (dB) 38.49 27.0 30.24 26.58 38.49 27.75 35.05 27.40 

SNR (dB) 32.24 20.74 23.99 20.33 32.24 21.50 28.81 21.15 

MSE 9.20 130.15 61.49 143.05 9.20 109.09 20.31 118.43 

SSIM 0.56 0.25 0.43 0.24 0.56 0.25 0.50 0.24 

PSIM 0.75 0.71 0.72 0.7 0.78 0.75 0.77 0.73 

FSIM 0.86 0.72 0.80 0.73 0.86 0.73 0.85 0.74 

Time(secs) 336.5 37.29 221.55 33.45 22.41 18.92 21.34 6.30 
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5. Conclusions and Future Work 

The proposed method achieves state-of-the-art results in 

terms of PSNR, SSIM, PSIM, and FSIM. The FSIM as 

a metric underscores the algorithm’s capability to 

maintain perceptual quality and structural details, 

making it highly effective for real-world image recovery 

applications. The performance evaluation of the 

proposed SD-DAB with different images of varying 

sizes was compared with that of a traditional 

measurement matrix. The evaluation of the comparison 

results concludes that the dark hair image shows better 

performance in terms of PSNR values and 

computational time. To conduct further assessments, a 

woman with a dark hair image was selected, with a size 

of 512×512 pixels. The performance of the proposed 

system was analyzed using two recovery algorithms, 

CoSaMP and OMP, at different sub-rates. The analysis 

reveals that a sub rate of 0.9 produces the best results 

among the tested sub-rates. The image recovered using 

the OMP algorithm in conjunction with the proposed 

SD-DAB and hybrid transform achieves a PSNR value 

of 38.49 dB, MSE of 9.2, SNR of 32.24 dB, SSIM of 

0.56, and requires a low computational time of 22.41 

seconds. The proposed SD-DAB method evaluation 

metrics justify that the combination of the OMP 

algorithm and hybrid transform was effective with high 

fidelity in reconstructing a woman with a dark hair 

image. The recovered image closely resembles the 

original image with a high PSNR value and low MSE, 

whereas the high and obtained SSIM values indicate 

good signal quality and similarity, respectively, with 

less computational time. In conclusion, the proposed 

SD-DAB method, along with OMP as well as hybrid 

transformation, yields competent performance for a 

woman with a dark hair image with a size of 512×512 

pixels with a sub-rate of 0.9. The proposed SD-DAB 

demonstrates effective recovery across various images 

with few limitations such as block size, low subrates, 

and computational burden. Future work will focus on 

addressing these limitations by enhancing the 

algorithm’s efficiency. Furthermore, the integration of 

deep learning models, like CNNs or transformer-based 

architectures, can be used for improving reconstruction 

quality. Deep learning can also be used to learn optimal 

measurement matrices and adaptive sampling strategies, 

potentially replacing traditional techniques. Similarly, 

generative models like Generative Adversarial 

Networks (GANs) or diffusion models could be 

investigated to enhance perceptual realism and 

robustness in extremely low sub-rate. Finally, a 

lightweight deep learning framework could be designed 

for real-time CS recovery on edge devices with limited 

computational resources. 
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