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Abstract: Diabetic Retinopathy (DR) is a diabetes-related eye disease that affects the light-sensitive tissue of the retina and can 

lead to vision loss if not detected early. Traditional diagnostic approaches often overlook the value of ophthalmic imaging and 

are typically time-consuming and costly. In this study, we propose an Adaptive Red Panda Optimization-based Deep 

Convolutional Neural Network (ARPO-based DCNN) for effective DR detection. The methodology involves preprocessing retinal 

fundus images with a median filter, segmenting lesions using U-Net, and utilizing both the segmented and original images as 

input to a DCNN, which is trained with the ARPO algorithm-a combination of Red Panda Optimization (RPO) and adaptive 

mechanisms. For robust evaluation, we employed the publicly available Indian Diabetic Retinopathy image Dataset (IDRiD), 

which comprises high-resolution, annotated fundus images representing various stages and lesion types of DR, making it a 

standard benchmark in the field. Experimental results demonstrate that our ARPO-based DCNN achieves superior diagnostic 

performance, attaining an accuracy of 90.582%, sensitivity of 92.016%, and specificity of 90.272%, thereby highlighting its 

potential for reliable and automated DR screening. 
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1. Introduction 

In recent years, diabetes has become a prevalent health 

condition affecting individuals worldwide, 

characterized by elevated levels of glucose in the blood. 

Diabetic Retinopathy (DR) significantly impacts the 

financial well-being of society, particularly within the 

healthcare monitoring system. Prolonged exposure to 

high glucose levels in the blood vessels leads to 

persistent damage to the blood vessels. Early discovery 

of DR is critical for moderating the loss of vision among 

diabetic individuals. Present strategies aid the patients 

with inadequate diabetes ought to be calculated for DR 

every year and the diabetes is controlled by the frequent 

check-ups [1]. Primarily, DRis differentiated into 

proliferative and non-proliferative DR wherein, 

Proliferative DR is caused by the abnormal enlargement 

of vessels in the eye and leads to strike the circulation 

of blood [14, 5]. Likewise, the improper expansion of 

these vessels causes Non-Proliferative Diabetic 

Retinopathy (NDPR) [3]. Fundus image-based scanning 

has been emerged as a superior tool for DR diagnosis in 

its early stages. Regular screening for DR in individuals 

with long term diabetes is crucial for minimizing the 

risk of vision loss and slowing down the disease 

progression [4]. Owing to the sympathetic scenery of 

DR illness, fundus imaging is more preferred for early-

stage screening [10]. The fundus image reveals different 

 
retinal structures of the eye [3, 4]. 

The rapid advancements of imaging schemes offer 

timely screening and diagnosis for individuals with DR. 

The psychoanalysis of micro-vascular lesions is an 

imperative idea of early treatment. In retinal images, 

classic indications of DR include Hemorrhages (HEs), 

Micro Aneurysms (MAs), as well as hard and soft 

exudates are the key lesions in the retinal surface [33]. 

Recently, Deep learning (DL) has achieved more 

attraction in diverse of technical appliances, such as 

semantic understanding and image recognition, and has 

been utilized for the characterization of DR in the earlier 

period. The feature learning for DR classification 

leveraged DL techniques for automatic characterization 

[30]. Specifically, Deep Convolutional Neural Network 

(DCNN) efficiently performed automated depiction of 

fundus photography due to its wider applicability in 

various recognition tasks. The utilization of 

Convolutional Neural Network (CNN) structure for 

image categorization has fascinated by various 

researchers for the segmentation of blood vessels [1]. 

DL based detection models are assisted in the risk 

stratification and early detection of DR, make 

appropriate interference and preventing loss of sight. 

Through the automation of the early screening process, 

DL algorithm reduces the burden in healthcare 

applications, particularly in area with limited number of 

ophthalmologists. Moreover, the implementation of DL 
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technologies for the automatic detection of DR holds 

promising functionalities for enhancing outcomes of 

individuals and moderates the global burden of 

blindness [27]. 

The primary goal of this paper is to present an 

Adaptive Red Panda Optimization-based (ARPO) 

DCNN for DR detection. Here, the median filter is used 

to pre-process the input fundus image. After that, lesions 

are segmented by utilizing U-Net. Finally, DR detection 

is conducted through DCNN by considering segmented 

image and the input image as input. Here, DCNN is 

trained with ARPO. 

The primary objective of this study is to present an 

Adaptive Red Panda Optimization-based Deep 

Convolutional Neural Network (ARPO-based DCNN) 

for DR detection. The main contributions of this work 

are summarized as follows: 

 Development of a novel ARPO-based DCNN 

framework: an ARPO-based DCNN is introduced for 

automated detection of DR from retinal fundus 

images. 

 Integration of U-Net for lesion segmentation: the 

framework incorporates U-Net for precise 

segmentation of retinal lesions, thereby enhancing 

feature extraction and improving the accuracy of DR 

detection. 

 Optimization with ARPO: the DCNN is trained using 

the ARPO algorithm, which combines Red Panda 

Optimization (RPO) with adaptive mechanisms to 

achieve improved convergence and classification 

performance. 

 Comprehensive evaluation on a benchmark dataset: 

the proposed method is rigorously evaluated using 

the publicly available Indian Diabetic Retinopathy 

image Dataset (IDRiD), demonstrating superior 

accuracy, sensitivity, and specificity compared to 

existing approaches. 

The finest part of this article is listed as: In section 2, the 

review of diverse conventional approaches related to 

DR screening is presented. Section 3 derives the ARPO-

based DCNN with mathematical modelling. Section 4 

deliberates the accomplishments of developed approach 

and the conclusion and further development of the 

ARPO-based DCNN is discussed in section 5. 

2. Motivation 

DR is a significant difficulty of diabetes that leads to 

visual impairments. It occurs due to the expansion of 

cracks and leak of blood in the retinal region. Therefore, 

early-stage screening of DR is vital in preventing 

individuals from experiencing loss of vision.  

2.1. Literature Review 

Bansode et al. [2] designed a Shark Smell-Jaya 

Optimization (SS-JO) algorithm for enhanced DR 

detection. The method had an ability to detect the DR 

accurately and it efficiently performed blood vessels 

segmentation. Moreover, this approach failed to employ 

ensemble-based learning module for improving the 

effectiveness of the system. Mujeeb Rahman et al. [15] 

designed a Deep Neural Network (DNN) for Automatic 

Screening of DR. The model produced accurate 

detection with reduced time and cost. But the model 

neglected to deploy user-friendly DR classifier for home 

treatment. Al-Omaisi et al. [1] introduced a ResNet-101 

for early DR recognition. The method conducted 

automated screening of DR and enabled earlier and 

more efficient analysis for big database. Moreover, it did 

not consider more CNN layers to categorize and detect 

DR at real time. Bilal et al. [3] invented a Visual 

Geometry Group Network (VGGNet) for automatic 

screening of DR. The model was employed in clinical 

applications and accurately differentiated different 

stages of retinopathy and abnormalities. Moreover, this 

scheme failed to detect other retinal illness, like cataract 

and glaucoma. Table 1 shows comparison of traditional 

approaches on Diabetic Retinopathy Detection (DRD). 

Several optimization algorithms have been utilized in 

the context of DR detection and related medical image 

analysis tasks, including Particle Swarm Optimization 

(PSO), Genetic Algorithms (GA), and Artificial Bee 

Colony (ABC). These techniques have demonstrated 

effectiveness in global search and feature selection; 

however, they are often limited by issues such as 

premature convergence, sensitivity to parameter 

settings, and suboptimal performance in high-

dimensional or complex search spaces. More recently, 

RPO has been introduced as a nature-inspired approach 

that improves the balance between exploration and 

exploitation, but it can still face challenges in 

adaptability and convergence speed. The ARPO 

method, as introduced in this study, extends the RPO 

framework by incorporating adaptive mechanisms that 

dynamically adjust search strategies according to the 

problem landscape. This adaptation enhances 

convergence rates, robustness, and classification 

performance, making ARPO more suitable for training 

DL models in DR detection compared to previous 

optimization approaches. 

2.2. Major Challenges 

The major issues faced by the existing DR detection 

techniques is listed below, 

 The developed module by Mehboob et al. [14] was 

appropriate for early DR detection and protected the 

individuals from vision loss. However, it failed to 

offer the details about the severity of disease. 

 The model was implemented by Bilal et al. [3], in 

dissimilar clinical setting, like remote or rural areas. 

But the method failed to improve the efficiency of 

classification by using ensemble learning schemes. 
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 DR is a medical state occurs on the individuals 

distressed from enduring diabetes. This causes vision 

loss due to the absence of early screening. Elevated 

sugar level in the blood is the major resource of DR. 

Manual recognition of DR is a tricky task because it 

influences the retinal region, leading to structural 

transformation. 

3. Proposed Adaptive-RPO for Diabetic 

Retinopathy Detection 

Diabetes is a chronic illness that arises due to the 

insufficient secretion of insulin by the pancreas. Over a 

period of time, this influenced the blood circulation 

system together with the retinal region. DR is a 

medicinal condition occurred because of the damage in 

retinal region and fluid leakage from blood vessels in 

the retina. Moreover, DR causes vision loss and the 

early screening by clinical experts is aided for avoiding 

blindness and other complications. To alleviate these 

problems, this paper presents an ARPO-based DCNN 

for diagnosing DR. At first, the input image is obtained 

from the specific database [23] and it is preprocessed 

with median filtering [11]. 

Table 1. Comparative discussion. 

Reference 
Research problem and 

significance 
Methodology 

Key findings and 

results 
Contributions Strengths Weaknesses 

Yaqoob et al. 
[34] 

DR detection using optimized 
deep residual networks. 

Deep residual network 
architecture with 

feature optimization. 

Enhanced accuracy in 
detecting DR. 

Development of an 
optimized deep residual 

network for detection. 

High detection 
accuracy with 

optimized features. 

Potential 
computational 

complexity. 

Nazir et al. [21] 
DR detection through hybrid 

feature extraction. 

Hybrid feature 

extraction with SVM 
for classification. 

Improved detection 

accuracy using hybrid 
features. 

Integration of hybrid 

feature extraction with 
SVM. 

Effective feature 

extraction and 
classification. 

May not generalize 
well to all datasets. 

Liu et al. [12] 
Novel approach for detecting 
DR using symmetric CNN. 

Deep symmetric CNN. 
High detection accuracy 
with symmetric CNN. 

Introduction of a novel 

symmetric CNN for 
detection. 

High performance 

with innovative 
network design. 

Computationally 
intensive. 

Sharma et al. 

[28] 

Improved pre-processing 

techniques for DR detection. 

Machine learning with 

enhanced pre-

processing methods. 

Increased detection 

accuracy with better pre-

processing. 

Enhanced pre-processing 

techniques. 

Improved detection 

with advanced pre-

processing. 

Dependent on pre-

processing quality. 

Hari et al. [7] 
Detection of DR with 

enhanced features. 

Feature enhancement 

with DL. 

Improved detection 

accuracy through feature 

enhancement. 

Use of feature 

enhancement techniques 

with DL. 

High detection rates 

with enhanced 

features. 

May require fine-

tuning for different 

datasets. 

Yazhini and 
Loganathan 

[35] 

DR diagnosis using integrated 

fusion-based model. 

Fusion-based feature 
extraction and 

classification model. 

High accuracy in 
diagnosis using fusion 

techniques. 

Integration of fusion 
techniques for improved 

diagnosis. 

Accurate and robust 

diagnosis model. 

Complexity in fusing 

multiple features. 

Lahmar and Idri 

[9] 

Detection of referable DR 

using deep features. 

Deep feature extraction 

combined with random 

forest. 

High accuracy in 

detecting referable DR. 
Combination of DL with 

random forest. 

Effective in 

detecting referable 

cases. 

May require large 

datasets for training. 

Mukherjee and 

Sengupta [16] 

Detection and gradation of 

DR using hybrid CNN. 

Hybrid CNN for deep 

feature extraction and 

classification. 

Accurate detection and 

grading of DR. 

Development of a hybrid 

CNN for robust feature 

extraction. 

High performance in 

feature extraction 

and classification. 

Complexity in CNN 

architecture design. 

Ishtiaq et al. [8] 
DR detection using hybrid 
ensemble-optimized CNN. 

Ensemble-optimized 
CNN with texture 

feature extraction. 

Improved detection 
accuracy using hybrid 

techniques. 

Integration of CNN and 
texture features for 

enhanced detection. 

Effective 
combination of CNN 

and texture features. 

May require extensive 
computational 

resources. 

Nahiduzzaman 

et al. [18] 

DR identification using 

parallel CNN and Extreme 

Learning Machine (ELM). 

Parallel CNN for 

feature extraction and 

ELM for classification. 

High accuracy in 

identifying DR. 

Parallel CNN approach 

for efficient feature 

extraction. 

High performance in 

feature extraction 

and classification. 

Complex parallel 

processing may 

increase computational 

load. 

Mukherjee and 

Sengupta [17] 

Comparison of deep feature 

extraction strategies for DR 
stage classification. 

Comparative analysis 

of different deep 

feature extraction 
techniques. 

Identification of the most 

effective feature 
extraction strategy. 

Comprehensive 

comparison of multiple 

DL techniques. 

Valuable insights 

into feature 
extraction strategies. 

Results may vary 

depending on dataset 
characteristics. 

Parthiban and 

Kamarasan [22] 

Detection and grading of DR 

using coyote optimization. 

Coyote optimization 

algorithm combined 

with DL. 

Accurate detection and 

grading of DR. 

Application of coyote 

optimization in DL for 

DR detection. 

High accuracy in 

detection and 

grading. 

Complexity in 

optimization and DL 

integration. 

Saranya and 

Umamaheswari 

[26] 

Detection of exudates for non-

proliferative DR. 
DL model for exudate 

detection. 

High accuracy in 

detecting exudates from 

retinal images. 

Application of DL for 

specific DR features. 

Effective in 

detecting early signs 

of DR. 

Limited to non-

proliferative DR 

detection. 

Malhi et al. [13] 
Detection and grading of DR 

using digital retinal images. 

Digital image 
processing and grading 

model. 

Accurate grading of DR 

severity. 

Use of digital image 
processing for DR 

grading. 

Accurate grading 
with digital image 

analysis. 

May require high-

quality retinal images. 

Vijayan et al. 

[32] 

DR recognition using color 

histogram filter. 

Feature selection based 

on color histogram 

filter. 

Improved recognition 

accuracy using simple 

filters. 

Development of a simple 

yet effective feature 

selection method. 

Low computational 

complexity. 

May not perform well 

with complex features. 

Usman et al. 

[31] 

Detection of DR using 

Principal Component 

Analysis (PCA) for multi-

label feature extraction. 

PCA for feature 

extraction and 

classification. 

Accurate detection using 

multi-label feature 

extraction. 

Application of PCA for 

multi-label DR detection. 

Effective in reducing 

feature 

dimensionality. 

May lose important 

information during 

PCA. 

Navaneethan 

and Devarajan 

[20] 

Enhanced detection of DR 

using Modified Generative 

Adversarial-based Crossover 

Salp Grasshopper (MGA-

CSG) algorithm. 

MGA-CSG algorithm 

for preprocessing and 

feature extraction. 

Improved detection 

accuracy with enhanced 

preprocessing. 

Introduction of a novel 

preprocessing algorithm 

for DR detection. 

Effective in 

enhancing detection 

accuracy. 

Complexity in 

algorithm design and 

implementation. 

 

Then, lesion segmentation is executed using U-Net to 

segment the lesions into MAs, hard as well as soft 

exudates and haemorrhages [25]. Finally, the DCNN is 

utilized for detecting DR [24] by considering segmented 

image as well as the input image. Here, DCNN is trained 

by Adaptive-RPO, such that ARPO is modified using 
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adaptive concept with RPO [6]. Figure 1 shows the 

illustration of ARPO-based DCNN for the detection of 

DR. 

 

Figure 1. Block diagram for ARPO-based DCNN, DR detection. 

3.1. Image Acquisition 

A traditional IDRiD is considered with amount of 

sample images. The expression of initialization process 

is given by, 

𝑌 = {𝑌1, 𝑌2, … 𝑌𝑓 …𝑌ℎ} 

Where Y implies the input database, h refers the total 

amount of retinal image samples, in which Yf is used for 

detecting DR. 

3.2. Image Preprocessing with Median Filter 

Image preprocessing is used for enhancing the quality 

of images before the operation of detection tasks. In this 

approach, median filter preprocesses the input image, as 

this replaces the value of pixel in an image with the 

median rate of its neighboring pixels by preserving the 

edges of image while smoothing out unwanted 

variations in pixel intensity. The median filter [11] is the 

well-organized nonlinear filter and it performs effectual 

removal of redundancies. The term of median filter is 

specified as, 

𝐴̂(𝑥, 𝑦) = Med(𝑝,𝑞)∈𝑊𝑥𝑦
{𝑌𝑓} 

Where Yf represents the input data. The accomplished 

preprocessed image is indicated as. 

The application of the median filter as a 

preprocessing step is critical for enhancing the quality 

of retinal fundus images prior to subsequent 

segmentation and classification. The median filter 

effectively suppresses impulse noise while preserving 

important edge information, which is essential for 

accurate delineation of retinal lesions. This preservation 

of structural details directly contributes to improved 

segmentation outcomes and, consequently, more 

reliable DR detection. Compared to other common 

preprocessing techniques such as mean or Gaussian 

filtering, the median filter is particularly advantageous 

in medical imaging because it reduces noise without 

introducing significant blurring, thereby maintaining 

the integrity of fine anatomical features. Although 

guided filters are also recognized for their edge-

preserving properties and have been explored in retinal 

image enhancement, they typically involve higher 

computational complexity and parameter tuning, which 

may not yield substantial benefits for the specific noise 

characteristics present in the IDRiD dataset. The choice 

of the median filter in this study is thus motivated by its 

balance of simplicity, effectiveness, and its proven 

ability to enhance image quality for robust downstream 

analysis. 

3.3. Lesion Segmentation with U-Net 

Lesion segmentation performs the automated detection 

of outline areas of interest within the images and 

provides precise and reliable information about the 

location, size, and characteristics of lesions. This 

approach identifies abnormal lesions from the given 

preprocessed image Pf. Here, the lesions are segmented 

by the utilization of U-Net [25, 29]. This network 

contains contracting path, as well as expanding path. 

The contracting path includes the generic structure of 

CNN with convolution, max pooling and activation 

functions. Likewise, the expanding path up samples the 

feature map and perform cropping and concatenation. 

Finally, the convolution function is emerged for 

minimizing the feature map size. The energy function of 

the U-Net is taken as, 

𝐸𝑈 = ∑  

𝑑∈𝐾

𝐶(𝑑)𝑙𝑜𝑔⁡(𝑄𝐽(𝑑)(𝑑)) 

Where QJ represents Softmax function applied over the 

feature map, this function is specified as, 

𝑄𝐽 = 𝐸𝑋𝑃(𝑠𝐽(𝑑))/∑  

𝐸

𝑔=1

𝐸𝑋𝑃(𝑠𝐽(𝑑)
′) 

Where sJ represents the activation function of channel J. 

The accomplished segmented image from the U-Net is 

specified as Uf. Figure 2 shows the structural design of 

U-Net. 

 

Figure 2. Structure of U-Net. 

U-Net is widely preferred for medical image 

segmentation tasks, including DR lesion segmentation, 

due to several key advantages over other architectures. 

Its encoder-decoder structure with skip connections 

enables the network to capture both global context and 

fine-grained spatial details, which is critical for 

accurately delineating small and scattered lesions in 

fundus images. The skip connections help preserve 

high-resolution features that might otherwise be lost 

(1) 

(2) 

(3) 

(4) 
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during down-sampling, resulting in more precise 

segmentation boundaries. Additionally, U-Net performs 

well even with limited annotated data, a common 

scenario in medical imaging, thanks to its efficient use 

of data augmentation and fully convolutional design. 

Compared to other models such as Fully Convolutional 

Network (FCN) or SegNet, U-Net consistently achieves 

higher segmentation accuracy and better delineation of 

lesion boundaries in DR datasets. These characteristics 

make U-Net particularly well-suited for the precise and 

reliable segmentation required in automated DR 

detection. 

3.4. DCNN for Detecting Diabetic Retinopathy 

In this phase, the input Rf is subjected to the DCNN for 

DR detection. Such that Rf∈{Uf, Yf}; here Uf represents 

segmented image and Yf denotes the input image. By 

leveraging the hierarchical structure of CNNs, these 

networks automatically capture both low-level and 

high-level features and extract intricate features from 

the segmented fundus image.  

3.4.1. Structure of DCNN 

The multi-layered architecture of CNNs [24] enables 

them to discern subtle patterns and variations in the 

input Rf for early detection of DR disease. Initially, the 

input Rf is given to the first layer. Here, convolution 

layer contains dissimilar kernel size and convolution 

strides for feature extraction and the pooling layer is 

integrated for sampling the feature maps. Furthermore, 

the FC layer is a classifier and it is presented in the final 

stage of the network. The layers of the DCNN are 

explained below, 

a) Convolutional layer: this layer is featuring extractors, 

and it has an ability to learn the feature 

representations of real image images. The presented 

neurons in the layer are grouped as feature maps. The 

accomplished final feature map is formulated by, 

𝑎𝛼 = 𝐻(𝐺𝛼 ∗ 𝑅𝑓) 

Where aα denotes the resulting feature map, Rf implies 

the input image, H(.) represents the nonlinear activation 

function, and Gα indicates the convolution filter. 

b) Pooling layer: this layer is employed to moderate the 

spatial solution of feature maps. Therefore, it 

accomplishes spatial invariance to input distortions. 

The selection of larger elements is conducted in this 

layer based on the following expression, 

𝑎𝛼(𝑝,𝑞) = 𝑀𝐴𝑋
(𝑥,𝑦)∈𝜌𝑝𝑞

𝑅𝑓(𝑥, 𝑦) 

Where ρpq specifies the pooling region, aα(p, q) and Rf (x, 

y) represents the elements in region (x, y). 

c) Fully Connected (FC) layer: the FC layer interprets 

the feature representations and performs the function 

of high-level reasoning. The achieved detected result 

from the DCNN architecture is specified by Df. 

Figure 3 displays the graphical representation of 

DCNN. 

 

Figure 3. The structural design of DCNN. 

3.4.2. ARPO for Training the DCNN 

This part details the employed ARPO for tuning the 

DCNN. Here, the APRO is employed by combining 

RPO and Adaptive concept with the inspiration of the 

activities of red panda. Moreover, the food searching 

and sleeping behaviors are clever actions that have an 

ability to develop a global optimization. The 

arithmetical modeling of ARPO is explained below. 

a) Solution Ancoding 

The main goal of this process is to accomplish optimum 

decision in an exploration space with size I, such that 

and I∈[1×ζ] is the learning measure of DCNN. 

b) Fitness Function 

The fitness is determined for accomplishing better 

solution in the searching area. The expression of fitness 

function is given by, 

𝑈𝐹𝑖𝑡 =
1

𝑓
∑  

𝑓

ℎ=1

[𝜂 − 𝐷𝑓]
2
 

Where h refers the total samples, f refers the range of η 

samples, specifies the target feature and Df represents 

the output of DCNN. The algorithmic flow of ARPO is 

explained below, 

 Step 1: Initialization. 

In RPO, the members in the population are a number of 

red pandas. The population of panda in the specific 

search space is initialized as follows, 

𝑃 = {𝑃1, 𝑃2, … , 𝑃𝑙 , … , 𝑃𝑜} 

Where P refers the population of red panda, and Pl 

represents the lth red panda utilized for the exploration 

of RPO. 

 Step 2: Fitness function. 

The fitness is served as a quantifiable measure of how 

well a solution is utilized for achieving the desired 

objective function. Here, the fitness is determined with 

Equation (7). 

 Step 3: Exploration phase. 

The location of pandas is modeled through its foraging 

strategy. Here, the position is randomly calculated based 

(5) 

(6) 

(7) 

(8) 
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on the location of food position selected by the optimum 

panda. 

𝑇 = {𝑍𝑇|𝑇 ∈ {1, 2,… , 𝑜}⁡𝑎𝑛𝑑⁡𝐿𝑇 < 𝐿𝑙}⋃{𝑍𝑜𝑝𝑡} 

Where Tiu indicates the determined food source for red 

panda l and Zopt is the location of panda for optimum 

resolution. 

Subsequently, the location of panda is updated as 

follows, 

𝑍𝑙
𝑇1 : 𝑧𝑙,𝑣

𝑇1 = 𝑧𝑙,𝑣 + 𝑉 ∙ (𝐼𝑙,𝑣 − 𝐸 ∙ 𝑧𝑙,𝑣) 

Where V is made adaptive and the expression of V based 

on adaptive concept is given by, 

𝑉 =
(𝐶𝑢𝑝(𝑣) − 𝐶𝑙𝑜𝑤(𝑣)) ∙ Ψ

𝑍
 

Where, Z refers the maximum iteration count, Cup(v), 

Clow(v) represents the upper and lower boundaries of 

problem variable v, Ψ, specifies the random number 

selected from set {1, 2}. 

𝑍𝑙 = {
𝑍𝑙
𝑇1 , ⁡⁡⁡⁡⁡⁡⁡⁡𝑃𝑙

𝑇1 < 𝑃𝑙⁡⁡⁡⁡⁡⁡⁡

𝑍𝑙 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝑍𝑙
𝑇1 indicates the new location of lth panda,  

 Step 4: Exploitation phase. 

The behavior of pandas in climbing trees is modeled 

based upon the following attributes. Initially, a new 

space of each panda is determined. After that, the 

objective function is enhanced and the previous area of 

panda is replaced. The mathematical modeling of above 

process is given as follows, 

𝑧𝑙,𝑣
𝑇2 = 𝑧𝑙,𝑣

(𝐶𝑙𝑜𝑤(𝑣) + 𝑉 ∙ (𝐶𝑢𝑝(𝑣)−𝐶𝑙𝑜𝑤(𝑣))

𝑍
, 𝑙 = 1,2, . . 𝑜, 𝑣

= 1,2, . . 𝑔, 𝑍 = 1,2, . . 𝑦 

𝑍𝑙 = {
𝑍𝑙
𝑇2 , ⁡⁡⁡⁡⁡⁡⁡⁡𝑃𝑙

𝑇2 < 𝑃𝑙⁡⁡⁡⁡⁡⁡⁡

𝑍𝑙 ,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 𝑍𝑙
𝑇2 indicates the new location of the red panda l, 

𝑃𝑙
𝑇2 refers the relative objective function. Algorithm (1) 

demonstrates the pseudo code of ARPO. 

 Step 5: Re-evaluation of fitness function. 

The Fitness of the above execution is recalculated to 

attain optimal result in the search space by using 

Equation (7). 

 Step 6: Termination. 

The above procedure is iteratively executed till 

achieving the finest decision. Algorithm (1) represents 

the pseudo code of ARPO. 

Algorithm 1: Pseudo code of ARPO. 

Input: 𝑍𝑙
𝑇1 

Output: 𝑍𝑙,𝑣
𝑇2  

Initialize the populace P 

     For l=1 to o 

        Determine objective function using Equation (7) 

        Exploration phase: Update the location of lth red panda 

based on first phase using Equation (11) 

        Determine the position of panda using Equation (12) 

        Exploitation phase: Update the area of lth panda based on 

second stage using Equation (13) 

        Determine the location of panda using Equation (14) 

     End For 

Termination 

4. Result and Discussion 

The performance of ARPO-based DCNN is evaluated in 

this part. Here, the evaluation of devised module is 

performed on the experimental settings along with the 

effectiveness of ARPO-based DCNN is validated with 

its conventional systems for revealing its effectiveness. 

This study utilizes the publicly available IDRiD, which 

comprises a total of 516 high-resolution retinal fundus 

images. The dataset is divided into 413 images for 

training and 103 images for testing, with each image 

annotated for DR severity as well as specific lesion 

types, including microaneurysms, HEs, hard exudates, 

and soft exudates. All images are provided at a 

resolution of 4288×2848 pixels, ensuring the 

preservation of fine anatomical details necessary for 

accurate analysis. Prior to model training, each image 

underwent preprocessing with a median filter to 

suppress noise while retaining essential edge 

information, followed by resizing to a standardized 

dimension suitable for the DL models. To improve 

model robustness and address potential class imbalance, 

data augmentation techniques such as random rotations, 

horizontal and vertical flipping, and brightness 

adjustments were applied during training. These steps 

collectively enhance the reproducibility of the study and 

provide a comprehensive foundation for the reported 

results. 

4.1. Experimental Setup 

The ARPO-based DCNN for detecting DR is tested in 

Python with Personal Computer (PC) that contains 

Windows 10-Operating System (OS). 

4.2. Dataset Description 

The IDRiD [23] constitutes classic DR lesions and 

standard structure of eye annotated at a pixel range. This 

database offers information about DR severity, and 

macular edema for all retinal images. 

4.3. Experimental Outcomes 

Figure 4 demonstrates the stepwise outcomes of the 

proposed ARPO-based DCNN approach. The original 

fundus Figure 4-a) and (b) are initially preprocessed 

using a median filter to enhance image quality and 

suppress noise, as shown in Figure 4-c) and (d). 

Subsequent lesion segmentation using U-Net yields the 

segmented in Figure 4-e) and (f), highlighting the 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 



992                                                    The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025 

effectiveness of the proposed method in accurately 

isolating relevant retinal features. These results 

illustrate the capability of the ARPO-based DCNN to 

process raw fundus images and produce clear, clinically 

meaningful segmentations, which are essential for 

reliable DR detection. 

 

  

a) Input fundus image-1. b) Input fundus image-2. 

  

c) Preprocessed result of image-1. d) Preprocessed result of image-2. 

  

e) Segmented result of image-1. f) Segmented result of image-2. 

Figure 4. Experimental outcomes of the ARPO-based DCNN. 

4.4. Evaluation Metrics 

The significant performance metrics used for the 

validation of presented model is deliberated in this part. 

To ensure a comprehensive and clinically meaningful 

assessment of the model’s performance, this study 

employs key evaluation metrics including accuracy, 

sensitivity, and specificity. Accuracy reflects the overall 

proportion of correctly classified cases, providing a 

general measure of the model’s predictive capability. 

Sensitivity, also known as the true positive rate, 

evaluates the model’s ability to correctly identify cases 

of DR, while specificity measures the ability to correctly 

recognize non-diseased cases. By reporting these 

established metrics, the evaluation of the proposed DR 

detection framework remains robust, transparent, and 

directly relevant to clinical diagnostic standards. 

The evaluation of DR detection performance is based 

on accuracy, sensitivity, and specificity, which are 

regarded as the most clinically relevant and widely 

accepted metrics in both medical and machine learning 

communities. These measures provide a clear and direct 

assessment of diagnostic capability and facilitate 

straightforward interpretation by healthcare 

practitioners. Although additional metrics such as Area 

Under the Curve-Receiver Operating Characteristic 

(AUC-ROC) and F1-score can offer further analytical 

perspectives, the focus on accuracy, sensitivity, and 

specificity ensures alignment with established clinical 

standards and supports transparent comparison with 

existing literature. Inclusion of supplementary metrics 

may be considered in future research to enable a more 

comprehensive evaluation framework. 

4.4.1. Accuracy 

Accuracy [19] is typically deliberated as the range of 

exact categorization DR disease among entire cases. 

This is measured using the following expression, 

𝑘1 =
𝐿𝛿 + 𝑆𝛾

𝐿𝛿 + 𝐿𝛾 + 𝑆𝛿 + 𝑆𝛾
 

Where Lδ, Ly denotes true positive and negative, and Sδ, 

Sy indicates false positive and negative. 

4.4.2. Sensitivity 

Sensitivity [19] represents the proportion of true 

positive cases from total number of patients with DR 

disease. The calculation of sensitivity is done by,  

𝑘2 =
𝐿𝛿

𝐿𝛿 + 𝑆𝛾
 

4.4.3. Specificity 

The percentage of true negative results among the total 

amount of patients who do not have DR is referred as a 

specificity [19]. The expression of specificity is given 

by,  

𝑘3 =
𝐿𝛾

𝐿𝛾 + 𝑆𝛿
 

4.5. Comparative Methods 

The assessment of ARPO-based DCNN is carried out to 

reveal the efficiency of the presented DR detection 

model. Herein, the classical detection schemes, such as 

Shark Smell-Jaya Optimization with Convolutional 

Neural Network-Long Short-Term Memory (SS-JO-

CN-LSTM) [2], DNN [15], ResNet-101 [1], and 

VGGNet [3] are utilized for evaluation. 

4.6. Comparative Evaluation 

The evaluation of ARPO-based DCNN is explained in 

this part. The analysis of ARPO-based DCNN is 

conducted based on classical detection approaches with 

specified evaluation metrics. 

4.6.1. Analysis of ARPO-Based DCNN with 

Training Data 

Figure 5 displays the evaluation of ARPO-based DCNN 

with training data. Figure 5-a) exhibits the validation of 

ARPO-based DCNN based on accuracy. The ARPO-

based DCNN attained accuracy as 90.278% and the 

typical models gained accuracy as 80.397%, 83.505%, 

84.543%, and 87.555%. The improved efficiency 

obtained by the developed model is 10.945%, 7.502%, 

6.353%, and 3.017% than its conventional detection 

modules. In Figure 5-b), the assessment of ARPO-based 

DCNN with sensitivity is exposed.  

(15) 

(16) 

(17) 
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a) Accuracy. 

 
b) Sensitivity. 

 
c) Specificity. 

Figure 5. Assessment of ARPO-based DCNN. 

The sensitivity accomplished by the devised model 

and its traditional schemes is 92.734%, 80.858%, 

83.001%, 85.172%, and 86.635% while using training 

data=90%. The ARPO-based DCNN accomplished 

improved efficiency than its prior schemes as 12.806%, 

10.495%, 8.155%, and 6.577%. Figure 5-c) displays the 

examination of ARPO-based DCNN with specificity. 

The specificity achieved by the presented module is 

90.066% and its classical schemes attained specificity 

as 80.178%, 81.385%, 83.297%, and 86.956% with 

training data as 90%. The enhanced effectiveness gained 

by the developed method is 10.978%, 9.638%, 7.515%, 

as well as 3.453% than SS-JO-CN-LSTM, DNN, 

ResNet-101, and VGGNet. 

 
a) Accuracy. 

 
b) Sensitivity. 

 
c) Specificity. 

Figure 6. Assessment of ARPO-based DCNN for different epochs. 

The analysis in Figure 6, of the ARPO-based DCNN 

with the training data demonstrates its superior 

performance across all evaluated Quality of Service 

(QoS) metrics-accuracy, sensitivity, and specificity-

compared to SS-JO-CN-LSTM, DNN, ResNet-101, and 

VGGNet models over five epochs. In terms of accuracy, 

the ARPO-based DCNN consistently outperforms all 

other models, starting at 90.278% in the first epoch and 

progressively increasing to 91.1% in the fifth epoch. 

This improvement is notably higher than VGGNet, the 

second-best performer, which achieves a maximum 

accuracy of 88.15%, while ResNet-101, DNN, and SS-

JO-CN-LSTM exhibit comparatively lower values, with 

SS-JO-CN-LSTM lagging the most. Similarly, the 

ARPO-based DCNN demonstrates exceptional 

sensitivity, increasing from 92.734% in the first epoch 

to 93.55% in the fifth epoch, indicating its robust ability 

to detect positive cases effectively. In contrast, 

VGGNet, ResNet-101, and other models show 

relatively lower sensitivity levels, with VGGNet 

achieving a maximum of 87.215%, emphasizing the 

superior generalization capability of the proposed 

model. Regarding specificity, the ARPO-based DCNN 

achieves the highest values, progressing from 90.066% 

to 90.87%, maintaining a significant margin over 

competing models, with VGGNet trailing at 87.535% 

by the final epoch. These results highlight the ARPO-
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based DCNN’s efficiency in minimizing false positives 

and ensuring precise classification. Overall, the 

consistent improvement across all metrics validates the 

effectiveness of the ARPO-based DCNN in handling 

complex training data and underscores its potential for 

practical deployment in real-world scenarios. 

4.6.2. Analysis of ARPO-Based DCNN with K-Fold 

Figure 7, illustrates the evaluation of ARPO-based 

DCNN with K-fold.  

 
a) Accuracy. 

 
b) Sensitivity. 

 
c) Specificity. 

Figure 7. Analysis of ARPO-based DCNN. 

In Figure 6-a), the evaluation of presented method 

with accuracy is displayed. The accuracy achieved by 

the presented scheme is 90.582% and the typical 

approaches achieved accuracy as 79.640%, 82.308%, 

85.011%, and 87.466%. The superior performance 

gained by the developed approach is 12.079%, 9.133%, 

6.149%, and 3.440% than its typical detection modules. 

In Figure 6-b), the validation of ARPO-based DCNN 

with sensitivity is illustrated. The sensitivity obtained by 

the devised model and its traditional model is 92.016%, 

79.460%, 83.514%, 84.471%, and 88.599% with 90% 

of training data. The ARPO-based DCNN obtained 

improved efficiency than its prior schemes as 13.646%, 

9.240%, 8.200%, and 3.714%. Figure 6-c) exhibits the 

evaluation of ARPO-based DCNN using specificity. 

The specificity achieved by the ARPO-based DCNN is 

90.272% and its classical schemes attained specificity 

as 80.749%, 83.929%, 84.718%, and 87.557% using 

training data as 90%. The enhanced effectiveness 

conquered by the developed method is 10.549%, 

7.027%, 6.152%, and 3.008% than SS-JO-CN-LSTM, 

DNN, ResNet-101, and VGGNet. 

 
a) Accuracy. 

 
b) Sensitivity. 

 
c) Specificity. 

Figure 8. Analysis of ARPO-based DCNN for different epochs. 

The performance analysis in Figure 8, of the ARPO-

based DCNN with K-fold=9 cross-validation 

demonstrates its superior capability across all QoS 

metrics accuracy, sensitivity, and specificity-compared 

to SS-JO-CN-LSTM, DNN, ResNet-101, and VGGNet 
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over five epochs. In terms of accuracy, the ARPO-based 

DCNN starts with an impressive 90.582% in the first 

epoch and steadily increases to 91.4% by the fifth 

epoch, outperforming VGGNet, which achieves a 

maximum accuracy of 88.07%, and significantly 

surpassing ResNet-101, DNN, and SS-JO-CN-LSTM, 

which remain below 85.82%. This demonstrates the 

proposed model’s superior learning capability and 

robustness. Regarding sensitivity, the ARPO-based 

DCNN consistently achieves the highest values, 

beginning at 92.016% in the first epoch and reaching 

92.83% in the fifth epoch, reflecting its excellent ability 

to correctly identify positive cases. In contrast, VGGNet 

follows with a peak sensitivity of 89.2%, while ResNet-

101 and other models display lower sensitivity values, 

highlighting their relatively reduced effectiveness in 

detecting positive instances. The specificity results 

further confirm the effectiveness of the ARPO-based 

DCNN, starting at 90.272% and increasing to 91.08% 

by the fifth epoch, indicating its strong ability to 

correctly identify negative cases with minimal false 

positives. This outperforms VGGNet, which attains a 

maximum specificity of 88.135%, while the remaining 

models lag behind, with SS-JO-CN-LSTM showing the 

lowest specificity values. The consistent improvements 

across all metrics reinforce the reliability and 

generalization capability of the ARPO-based DCNN, 

demonstrating its robustness in handling variations 

within the dataset under K-fold=9 validation, ensuring 

comprehensive model evaluation and improved real-

world applicability. 

4.7. Comparative Discussion 

Table 2, reviews the evaluation results of ARPO-based 

DCNN. The accuracy attained by the presented model is 

90.582% and the typical models achieved accuracy by 

79.640%, 82.308%, 85.011%, and 87.466%. The 

achieved high accuracy makes the developed approach 

more accurate for early screening. The sensitivity 

achieved by the devised model and its traditional model 

is 92.016%, 79.460%, 83.514%, 84.471%, and 

88.599%. This allows the system for the identification 

of greater true positive cases by reducing the risk of 

missing any potential instances of DR. The specificity 

attained by the ARPO-based DCNN is 90.272% and its 

classical schemes attained specificity as 80.749%, 

83.929%, 84.718%, and 87.557%. The system with high 

specificity accurately distinguishes between DR and 

other retinal abnormalities. The assessment of ARPO-

based DCNN attained accuracy, sensitivity and 

specificity as 90.582%, 92.016%, and 90.272% 

respectively. 

Table 2. Comparative discussion using different QoS metrics. 

Data Methods/Metrics SS-JO-CN-LSTM DNN ResNet-101 VGGNet Proposed ARPO-based DCNN 

Training data=90% 

Accuracy (%) 80.397 83.505 84.543 87.555 90.278 

Sensitivity (%) 80.858 83.001 85.172 86.635 92.734 

Specificity (%) 80.178 81.385 83.297 86.956 90.066 

K-fold=9 

Accuracy (%) 79.640 82.308 85.011 87.466 90.582 

Sensitivity (%) 79.460 83.514 84.471 88.599 92.016 

Specificity (%) 80.749 83.929 84.718 87.557 90.272 

Table 3. Comparative discussion on different epochs by considering the training Data=90%. 

QoS Metric Epochs SS-JO-CN-LSTM DNN ResNet-101 VGGNet Proposed ARPO-based DCNN 

Accuracy (%) 

1 80.397 83.505 84.543 87.555 90.278 

2 80.6 83.7 84.75 87.7 90.5 

3 80.8 83.9 84.95 87.85 90.7 

4 81 84.1 85.15 88 90.9 

5 81.2 84.3 85.35 88.15 91.1 

Sensitivity (%) 

1 80.858 83.001 85.172 86.635 92.734 

2 81.06 83.2 85.38 86.78 92.95 

3 81.26 83.4 85.58 86.925 93.15 

4 81.46 83.6 85.78 87.07 93.35 

5 81.66 83.8 85.98 87.215 93.55 

Specificity (%) 

1 80.178 81.385 83.297 86.956 90.066 

2 80.38 81.58 83.5 87.1 90.27 

3 80.58 81.78 83.7 87.245 90.47 

4 80.78 81.98 83.9 87.39 90.67 

5 80.98 82.18 84.1 87.535 90.87 

 

The comparative analysis of the performance metrics 

presented in Table 3, demonstrates the superiority of the 

proposed ARPO-based DCNN model across all QoS 

metrics accuracy, sensitivity, and specificity compared 

to SS-JO-CN-LSTM, DNN, ResNet-101, and VGGNet. 

In terms of accuracy, the ARPO-based DCNN 

consistently outperforms other models, achieving the 

highest accuracy of 91.1% at the 5th epoch, which is 

significantly higher than the next best-performing 

model, VGGNet, at 88.15%, and far surpassing SS-JO-

CN-LSTM at 81.2%. A similar trend is observed in 

sensitivity, where the proposed model achieves 93.55%, 

outperforming VGGNet (87.215%) and ResNet-101 

(85.98%) at the 5th epoch, indicating its enhanced 

ability to correctly identify positive cases. Additionally, 

the ARPO-based DCNN achieves the highest specificity 

of 90.87%, reflecting its effectiveness in correctly 

identifying negative cases, compared to VGGNet at 
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87.535% and SS-JO-CN-LSTM at 80.98%. Across all 

epochs, the ARPO-based DCNN consistently 

demonstrates an increasing performance trend, 

highlighting its robustness and efficiency in improving 

classification outcomes over training iterations. The 

performance gap between the proposed model and 

existing architectures becomes more pronounced with 

additional epochs, affirming the effectiveness of the 

ARPO optimization technique in enhancing DL-based 

liver tumor classification. 

Table 4. Comparative discussion on different epochs by considering the K-Fold=9. 

QoS metric Epochs SS-JO-CN-LSTM DNN ResNet-101 VGGNet Proposed ARPO-based DCNN 

Accuracy (%) 

1 79.64 82.308 85.011 87.466 90.582 

2 79.84 82.51 85.22 87.62 90.8 

3 80.04 82.71 85.42 87.77 91 

4 80.24 82.91 85.62 87.92 91.2 

5 80.44 83.11 85.82 88.07 91.4 

Sensitivity (%) 

1 79.46 83.514 84.471 88.599 92.016 

2 79.66 83.72 84.68 88.75 92.23 

3 79.86 83.92 84.88 88.9 92.43 

4 80.06 84.12 85.08 89.05 92.63 

5 80.26 84.32 85.28 89.2 92.83 

Specificity (%) 

1 80.749 83.929 84.718 87.557 90.272 

2 80.95 84.13 84.93 87.7 90.48 

3 81.15 84.33 85.13 87.845 90.68 

4 81.35 84.53 85.33 87.99 90.88 

5 81.55 84.73 85.53 88.135 91.08 

 

The comparative analysis of the models presented in 

Table 4, reveals that the proposed ARPO-based DCNN 

consistently outperforms the other methods across all 

QoS metrics accuracy, sensitivity, and specificity over 

five epochs. In terms of accuracy, the ARPO-based 

DCNN achieves a steady increase from 90.582% in the 

first epoch to 91.4% in the fifth epoch, outperforming 

VGGNet, which follows as the second-best model with 

accuracy values ranging from 87.466% to 88.07%. 

Similarly, ResNet-101, DNN, and SS-JO-CN-LSTM 

demonstrate lower performance, with SS-JO-CN-

LSTM achieving the least accuracy across all epochs. A 

similar trend is observed in sensitivity, where the 

ARPO-based DCNN shows the highest values, starting 

at 92.016% in the first epoch and reaching 92.83% by 

the fifth epoch, surpassing VGGNet’s maximum 

sensitivity of 89.2%. ResNet-101 and DNN also 

demonstrate steady improvement but remain 

significantly lower than the proposed model. Regarding 

specificity, the ARPO-based DCNN consistently 

achieves the highest values, increasing from 90.272% to 

91.08% across epochs, with VGGNet again being the 

second-best performer, followed by ResNet-101, DNN, 

and SS-JO-CN-LSTM. Overall, the superior 

performance of the ARPO-based DCNN across all QoS 

metrics highlights its effectiveness and robustness in 

comparison to conventional DL models. 

While the proposed ARPO-based DCNN framework 

demonstrates strong diagnostic performance, it is 

important to acknowledge several limitations inherent 

to the approach. Firstly, the integration of deep 

convolutional layers, U-Net segmentation, and the 

adaptive optimization process contributes to 

considerable computational complexity. This increased 

complexity can lead to longer training times and 

necessitates access to high-performance computing 

resources, which may pose challenges for deployment 

in resource-limited clinical environments. Secondly, the 

effectiveness of the framework is sensitive to the quality 

and consistency of input fundus images. Variations in 

image quality due to noise, suboptimal illumination, or 

imaging artifacts can adversely impact both the 

segmentation and classification stages, potentially 

resulting in less reliable predictions. Furthermore, 

although the model achieves robust results on the IDRiD 

dataset, its generalizability to other datasets or real-

world clinical settings may be affected by differences in 

imaging protocols or patient demographics. Addressing 

these limitations-such as by optimizing computational 

efficiency and incorporating advanced data 

augmentation or domain adaptation strategies-will be 

essential for facilitating broader clinical adoption in 

future work. 

5. Conclusions 

The early detection of DR moderates the serious 

complication of diabetes and offers timely treatment and 

prevents further progression of the disease and reduces 

the possibility of vision loss and complexities related to 

the disease, highlighting the importance of regular 

screening and monitoring for individuals with diabetes. 

However, the conventional detection approaches were 

limited by the inconsistencies in diagnosis and delays in 

treatment for patients with DR. To mitigate these issues, 

this study presents an ARPO-based DCNN for detecting 

DR disease. Firstly, the median filtering is utilized to 

preprocess the input fundus image. Afterward, the 

lesions are segmented with U-Net. At last, DR detection 

is done with DCNN by considering segmented image 

and the input image as input. Here, DCNN is trained 

with ARPO. The assessment of ARPO-based DCNN has 

obtained accuracy as 90.582%, sensitivity as 92.016% 

and specificity as 90.272%. In the future, the presented 

approach will be further enhanced by utilizing advanced 

hybrid neural networks to extract more detailed 
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information for the identification of subtle changes for 

the detection and classification of different stages of 

disease with even greater precision.  
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