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Abstract: Medical image fusion improves diagnosis accuracy and reliability by combining images from several modalities. It is 

gaining prominence for many clinical applications. This paper implements an unsupervised model to fuse gray-scaled Magnetic 

Resonance Imaging (MRI) with colored Positron Emission Tomography/Single Positron Emission Computed Tomography 

(PET/SPECT) medical image fusion to locate tumor-affected portions and dead cells clearly. This paper’s main goal is in 

determining how well an autoencoder’s encoder component can extract features from MRI and PET/SPECT images of brain 

tumor problems. The autoencoder’s decoder component then uses the features to reconstruct the fused image. The autoencoders 

are tuned accordingly to get a low Mean Squared Error (MSE) with good structural similarity. It is trained with the dataset of 

MRI and PET/SPECT images in the whole brain atlas dataset, Harvard University. Our suggested approach has been objectively 

assessed using four distinct image assessment metrics: Feature Mutual Index (FMI), Structural Similarity Index Measure (SSIM), 

gradient-based Quality index (Qab/f) and Visual Information Fidelity Factor (VIFF) are compared to four other methods 

currently in use. In both subjective and objective assessments, our method has outperformed well compared to the existing 

methods in comparison. 
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1. Introduction 

Medical images are vital for diagnosis as well as 

treatment in the medical field. Imaging methods include 

Computed Tomography (CT), Positron Emission 

Tomography (PET), Magnetic Resonance Imaging 

(MRI), and Single Photon Emission Computed 

Tomography (SPECT). These images represent diverse 

organ details. CT scans are used to view the structure of 

the bone, whereas MRI images show internal or soft 

organ properties. Although the CT scan is more precise 

and can give precise information about bones, it 

excludes parenchyma and Cerebrospinal Fluid (CSF). 

high-fat tissues (parenchyma); yet, T1 and T2 weighted 

MRI scans can reveal the CSF; depending on the 

modality, the latter may seem darker or brighter. 

Similarly, PET and SPECT pictures provide low-

resolution metabolic information of organs and are more 

accurate in capturing tumors. 

Human abnormalities can be detected using the two 

oldest techniques namely PET and MRI. MRI scanning 

works well for soft tissues, while PET imaging works 

well for bone structures. For early abnormality detection 

PET imaging is recommended. Moreover, MRI imaging 

cannot show calcium anomalies also cough distorts MRI 

image output. Combining MRI and PET scans allows  

 
for a more accurate diagnosis of brain disease by 

examining the metabolism in specific regions of the 

cortex function compatibility [25]. 

For radiologist it may be required to view two 

modality images for better or clear diagnosis of a 

disease. If both images are integrated, the doctor will be 

able to accurately diagnose the ailment. The information 

in both images when combined either using image 

processing and latest advancement techniques in 

machine learning ML will aid the doctor’s community. 

Medical images integration or combining is 

popularly seems as image fusion in literatures It seeks 

to increase the use of medical images and assist 

physicians in deducing the information they contain. 

The fused images will provide additional information 

than a single medical scans image. It can assist medical 

professionals in making more thorough, timely, and 

accurate diagnoses and treatments [15]. 

Reviewing on the conventional methods for images 

fusion, two broader categories are spatial and transform 

domain. Transform domain methods has been 

commonly referred as Multi-Scale Transform (MST) 

techniques which includes Laplace Pyramid (LP), 

Wavelet Transform (WT) and Nonsubsampled 

Contourlet Transform (NSCT) and Stationary Wavelet 

Transform (SWT). These methods execute the 
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following actions: The source images will be separated 

into coefficients and merged using fusion rules. The 

final image will then be recreated by executing an 

inverse transform. 

Feature space-based methods such as independent 

component analysis, sparse representation, etc., have 

been developed recently under MST technique. An 

appropriate fusion rule is necessary to combine 

information acquired from each image, which has an 

impact on the reconstruction of single-image quality. 

Primarily used methods are weight distribution and 

activity level assessment. Creating a weight map that 

incorporates pixel activity information from several 

sources is important for image fusion. Conventional 

transform domain fusion techniques use a decomposed 

coefficient’s absolute value (or the sum of its values 

over a given time period) to determine its activity. An 

appropriate maximum or weighted-average fusion rule 

was employed by Zhou et al. [30].  

Furthermore, after developments in Deep Learning 

(DL), a number of popular DL networks were 

introduced for image fusion, including Convolutional 

Neural Networks (CNNs), Visual Geometry Group 

Networks (VGGs), Recurrent Neural Networks 

(RNNs), and Generative Adversarial Networks (GANs) 

[10]. 

DL approaches provide robust feature extraction and 

easy implementation to ensure that more detailed 

information is successfully kept in the final fused image 

[1]. Because it performs well in extracting both high-

level and low-level features, DL feature extraction has 

been widely employed in medical image fusion [29].  

Compared to conventional image fusion methods 

discussed, recent, the DL machine methods has more 

obvious benefits. 

1. The DL model improves its ability to express visual 

features by iterative training on larger data sets. 

However, it is more reliant on huge datasets. 

2. Increased flexibility in network architecture. DL-

based image fusion approaches can continually alter 

image quality during training, unlike older methods 

that require manual adjustments to the rules of the 

algorithm.  

3. Traditional image processing needs an appropriate 

fusion rule to combine the image coefficients DL-

based methods can efficiently combine the inherent 

signature of images.  

In summary, though existing DL-based image fusion 

techniques have shown promising results, but they still 

have issues while fusing the information content of both 

the images with respect to noise, requirement of 

standard training reference images for supervised 

learning, and some require the use of irrational image 

fusion weight maps.  

To address the aforementioned issues, we present a 

comprehensive DL model to fuse medical images which 

can take a grayscale image and a colour image directly 

from the Picture Achieve Communication System 

(PACS) and the final single image will be store in the 

PACS itself. We employ an unsupervised method to 

derive the internal features of each image.  

The main contribution of this paper is an effective 

utilization of the unsupervised DL method to learn the 

important features about the image pixels which can be 

functional or anatomy details of scan area in a medical 

image. This is the first autoencoder-structure-based 

suggestion for brain tumor disease medical image fusion 

that we are aware of. Latent features of an input image 

that are smaller in size than the original image have been 

learned by the suggested autoencoder structure. The 

suggested unsupervised model’s performance is 

compared with that of other machine learning models 

and traditional models. 

2. Related Works 

Image fusion has grown more quickly as a result of 

recent advancements in DL methods like autoencoders, 

GANs. The quality of fused images can be effectively 

influenced by DL networks’ exceptional ability to 

express information and extract features. Image fusion 

aims in creating an informative fused image by first 

extracting and then integrating the most significant 

information from the source input images. Image fusion 

has advanced significantly with DL, and the fused 

findings are promising due to neural networks’ 

enhanced feature extraction and reconstruction 

capabilities [30]. 

A convolutional network was used in building weight 

map which integrates information on pixel activity from 

two input source images as part of Liu et al. [15] 

medical image fusion. CNN-based image fusion was 

introduced by Liu et al. [16] who saw that task as a 

classification issue and used CNN to create decision 

maps and classified image regions., The most efficient 

technique for feature extraction and image 

reconstruction at that time was CNN. Pulse Coupled 

Neural Network (PCNN) is global fusion technique 

which uses signal processing techniques akin to those of 

the human visual nerve system while preserving precise 

information [5]. 

Sub-band fusion rules serve as the foundation for 

transform-based approaches. While adaptive transforms 

have a somewhat long execution time, first-generation 

transforms fail to achieve good directional 

decomposition. Approaches based on sparse 

representation rely on a compact dictionary that is 

challenging to create with strong representational 

capabilities. These approaches are not appropriate for 

real-time applications because of their high costs. DL 

techniques necessitate a large training set and high-

performance computers. In this case, it is quite difficult 

task to design an appropriate network architecture. 

Consequently, Vajpayee et al. [23] suggested fusion 

technique in the domain of non-subsampled Shearlet 
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transform that combines high-pass sub-bands using 

cutting-edge Adaptive Gaussian Pulse Coupled Neural 

Network (AGPCNN) and low-pass sub-bands using 

enhanced Robert’s operator (edge detection-based 

system). Li et al. [12] suggested novel image fusion 

technique using Coupled Neural P systems (CNP). CNP 

systems regulate the fusing of the low-frequency 

coefficients of NSST by using two CNP systems. A 

unique technique for fusing Visible (VI) and Infrared 

(IR) images utilizing Stacked Sparse Auto-Encoders 

(SSAE) and NSCT was suggested by Luo in order to 

successfully incorporate the infrared item into fused 

image [17]. 

The medical image fusion technique utilizing the 

NSCT and PCNN techniques was proposed by Ibrahim 

[8]. Low and high frequency subbands were extracted 

from the input source images using the NSCT approach. 

These subbands are integrated by the PCNN, a fusion 

rule. In order to reproduce the fused image, the inverse 

NSCT method was applied.  

For NSST, Sebastian and King [22] suggested a 

CNN-based MRI and PET image fusion technique. 

First, the PET image is converted to the YUV color 

space. CNN creates a weight map using the Y element 

of the MRI and PET. The generated weight map is 

decomposed using NSST into MRI and Y PET 

components. To fuse the deconstructed bands, 

similarity-based fusion criteria are used. Inverse NSST 

is used to restore the fused image. 

Panigrahy et al. [19] suggested Weighted Parameter 

Adaptive Dual Channel PCNN (WPADCPCNN) for 

medical fusion using non-subsampled shearlet 

transform for combining SPECT and MRI of patients 

with Alzheimer’s disease and aids dementia complex. 

Fractal dimension is used in estimating the parameters 

of suggested WPADCPCNN model extracted from the 

sources. End-to-end image fusion techniques use a DL 

network from source to fused images. The network’s 

inputs are the source images, while its outputs are the 

fused images. Zhang et al. [27] suggested the Image 

Fusion Convolutional Neural Network (IFCNN), an 

end-to-end image fusion.  

DL-based technique for merging multispectral and 

panchromatic images in remote sensing applications 

was presented by Azarang et al. [2]. Training of 

convolutional autoencoder network is carried out in 

creating original panchromatic images from spatially 

degraded ones using this technique, which is 

categorized as a component replacement method. 

Li et al. [14] suggested a supervised learning-based 

CNN-based multimodal medical image fusion method 

in addressing the real-world problem of medical 

diagnosis. In order to meet medical diagnosis criteria, Li 

et al. [11] suggested multi-mode medical image fusion 

with DL, taking into consideration the features of multi-

modal medical images, practical implementation, 

medical diagnostic technology. Wang et al. [24] 

suggested medical image fusion technique utilizing 

CNN with distinct structural elements along with 

excellent visual qualities. 

Weighted average fusion technique was presented by 

Bavirisetti et al. [3] for combining brain CT and MRI 

images. A weighted average approach based on guided 

filter that utilizes spatial consistency was proposed by 

Li et al. [13] to seamlessly merge base and detail layers.  

The proposed technique separates an image into two 

scales: a detail layer for small details and a base layer 

for large intensity fluctuations. Munawwar and Rao [18] 

proposed a novel enhanced MMIF technique for 

medical image fusion. The proposed research used two 

upgraded DL algorithms to extract and merge relevant 

and distinguishing characteristics from source images. 

This method combined the benefits of both feature sets 

to produce high-quality, contextually and technically 

rich images. Cheng et al. [4] proposed a self-

evolutionary training approach using a novel Memory 

Unit Fusion architecture (MUFusion). In this unit, 

interim fusion was used for training procedure to 

supervise the merged image.  

Zhang et al. [28] presented a self-supervised system 

for multi-modal medical fusion problems that uses 

contrastive auto-encoding and convolutional 

information sharing. Multi-modal medical images share 

common features, which can lead to information 

redundancy when extracted in pairs. Xu and Ma [26] 

presented an unsupervised enhanced medical picture 

fusion network. Surface-level and deep-level limitations 

were applied to preserve information effectively. The 

surface-level constraint relies on saliency and 

abundance measurements to maintain subjective and 

intuitive qualities. Deep-level constraints objectively 

specify unique information based on a pretrained 

encoder’s channels. 

3. Unsupervised Learning-Based MRI-

PET/SPECT Fusion 

The goal of any unsupervised learning model is to find 

any interesting patterns in the dataset with no labels. We 

approached the medical image fusion as an 

unsupervised learning which can provide essential 

features of two images. For example: suppose the inputs 

image is of size 10x10 the pixel (100 pixels intensity 

values) and hidden nodes of size 50, then the network is 

forced to learn the compressed representation of the 

input and with the size of 50 and we need to train the 

neural network model to get the latent feature through 

which the original image of size 100 can be 

reconstructed. This approach has been employed for 

image compression, noise removal etc., in computer 

vision applications.  

Our objective in this work is to use a DL-based 

unsupervised approach for medical picture fusion called 

convolutional autoencoder. Silent information of input 

image has to be learnt as features by the proposed 

autoencoder model. Figures 1 and 2 picture the 
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complete framework of our proposal. Source images 

each of size NxN from the PACS system or in the 

storage space of respective imaging instrument is 

considered as input to the processing blocks and the 

output final image will be a single image of size NxN. 

Autoencoders A and B based on CNN help in getting the 

interesting and useful latent vector space of images in 

grey scale and colour. The use of RGB channels may 

result in significant color distortion; therefore, 

separating the luminance component using YUV color 

space transform techniques has been a proven strategy 

because it considers human perception and is suitable 

for fusing functional and anatomical images. The YUV 

method divides a color image into one luminance 

component (Y), U channel and V channel chrominance 

components. 

 

Figure 1. Framework for medical image fusion using autoencoder: 

training phase. 

 

Figure 2. Framework for medical image fusion using autoencoder: testing phase. 

Autoencoder includes two CNN networks: an 

encoder and a decoder. They were trained on images 

from the standard datasets of MRI and PET/SPET, as 

explained in the following sections. The encoded 

features of each image were blended using the weighted 

average technique. The combined vector space of the Y 

component of a color and grey image is then mixed with 

the U and V channels. On the RGB color space, we shall 

get a single image of size NxN. 

 

 
Figure 3. Proposed method. 
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Figure 3 depicts the outline of our proposed 

unsupervised autoencoder for MRI-PET/SPECT fusion 

with encoder and decoder part. Two Encoders were 

utilized one to extract the features of grayscale MRI 

images of size 256x256 and the other one to extract the 

features of y-channel of colored PET/SPECT images of 

size 256x256. The latent vector representation of MRI 

and PET/SPECT images with dimensionality reduction 

to 64x64 are obtained as the outputs of respective 

encoders. 

 

 

Figure 4. Detailed architecture of encoder and decoder of our proposed method. 

Two decoders were used and they are trained with 

grayscale images and colored images respectively. 

These latent vectors are given as inputs to the respective 

decoders and MRI and PET/SPECT images are 

reconstructed with the original size of 256x256. Then 

appropriate fusion rule is utilized to obtain the fused 

image. Figure 4 depicts the detailed architectures of 

encoder and decoder parts of our proposed fusion 

method. 

3.1. Encoder 

It is anticipated that n convolution filters will produce n 

intermediate features in order to collect the structural 

properties of the input image data. An intermediate 

feature maps represent the input image’s compressed 

form. It is common practice to concatenate many 

convolution layers. The encoder part consists of four 

convolutional layers of stride (2, 2) along with batch 

normalization and dropout of 15%. 

Convolution layers extract local patterns, like edges, 

textures, or particular features, from the input image by 

applying a collection of learnable filters, called kernels. 

Every convolution process entails: 

𝑂𝑢𝑡𝑝𝑢𝑡 =∑𝑖𝑛𝑝𝑢𝑡 (𝑖, 𝑗) 𝑥 𝑘𝑒𝑟𝑛𝑒𝑙 (𝑖, 𝑗)

𝑖,𝑗

 

Batch normalization helps preventing the overfitting 

and speed up the training of the network. The activations 

of every layer are normalized by statistical analysis. 

Through the introduction of noise or unpredictability 

into the network, dropout reduces the probability of 

overfitting and the co-adaptation of neurons. Activation 

Function provides non-linearity and enable the model to 

learn more complex features, an activation function 

(such as ReLU) is frequently used to the convolution 

output:  

𝑓(𝑦) = 𝑚𝑎𝑥(0 , 𝑦) 

A 2x2 Maxpooling are used to reduce the spatial 

dimension of feature maps thereby retaining important 

features and reducing computational load. The 

dimensionality of the input image by progressively 

extracting prominent features gets reduced while 

discarding less significant ones. The encoder finally 

maps the input to a lower-dimensional feature vector 

(bottleneck layer), z, which represents compressed or 

encoded information: 

𝑧 = 𝑓(𝑊𝑦 + 𝑏) 

where b is the bias, W is the weight matrix, and y is the 

input. 

3.2. Decoder 

The decoder part consists of six convolution layers with 

2x2 upsampling and skip connections. The upsampling 

layers increase the spatial dimension of the feature map 

to its original size, often using methods like nearest-

neighbor interpolation, bilinear interpolation, or 

transposed convolutions. Transpose convolution layers 

are used similar to convolution but works in reverse, 

reconstructing the image by spreading out features over 

a larger space. Mathematically, this is performed by 

“convolving” the feature map with a set of transposed 

filters.  

LeakyRelu is used as non-linear activation function 

to enable complex mappings and gradual 

reconstruction. The final layer of the decoder aims in 

reconstructing the image by mapping the feature 

(1) 

(2) 

(3) 
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representation back to the original input dimensions. If 

the goal is grayscale image reconstruction, a sigmoid 

activation is typically applied to constrain the output 

values between 0 and 1: 

𝑥 =  𝜎(𝑊𝑧 + 𝑏) 

where σ is sigmoid function, b is the bias, z is the latent 

code and W is weight matrix. 

The encoder encodes input data into a compressed 

feature vector, while the decoder applies inverse 

operations to reconstruct the original image from this 

compact representation. A total of over 7 lakhs trainable 

parameters and over 700 non-trainable parameters are 

taken into consideration for each source image for 

feature extraction and final reconstruction of fused 

image. Tables 1 and 2 show the number of parameters 

involved in extracting the features and reconstruction of 

MRI and PET/SPECT 

Table 1. Number of parameters involved for feature extraction of given images in encoder part. 

Layers Output shape Parameters Connected to 

input_layer (None, 256, 256,1) 0 - 

conv2d(Conv_2D) (None, 256, 256,64) 640 input_layer [0][0] 

batch_normalization (None, 256, 256,64) 256 con2d[0][0] 

dropout (None, 256, 256,64) 0 batch_normalization [0][0] 

conv2d_1(Conv_2D) (None, 256, 256,64) 36,928 dropout [0][0] 

max_pooling2d (None, 128, 128,64) 0 conv2d_1[0][0] 

Batch_Normalization_1 (none, 128, 128,64) 256 max_pooling2d[0][0] 

dropout_1 (None, 128, 128,64) 0 Batch_Normalization_1[0][0] 

conv2d_2(Conv_2D) (None, 128, 128,128) 73,856 dropout_1[0][0] 

Batch_Normalization_2 (None, 128, 128,128) 512 conv2d_2[0][0] 

dropout_2 (None, 128, 128,128) 0 Batch_Normalization_2[0][0] 

conv2d_3(Conv_2D) (None, 128, 128,128) 147, 584 dropout_2[0][0] 

max_pooling2d_1 (None, 64, 64,128) 0 conv2d_3[0][0] 

Batch_Normalization_3 (None, 64, 64,128) 512 max_pooling2d_1[0][0] 

dropout_3 (None, 64, 64,128) 0 Batch_Normalization_3[0][0] 

conv2d_4(Conv_2D) (None, 64, 64,64) 73, 792 dropout_3[0][0] 

Table 2. Number of parameters involved for reconstruction of images using extracted features of given images in decoder part. 

Layers Output shape Parameters Connected to 

conv2d_5(Conv_2D) (None, 64, 64,128) 73, 856 conv2d_4[0][0] 

up_sampling2d (None, 128, 128,128) 0 conv2d_5[0][0] 

leaky_re_lu (LeakyRelu) (None, 128, 128,128) 0 up_sampling2d [0][0] 

add (Add) (None, 128, 128,128) 0 leaky_re_lu [0][0], dropout_2[0][0] 

conv2d_6(Conv_2D) (None, 128, 128,128) 147, 584 add [0][0] 

leaky_re_lu _1 (LeakyRelu) (None, 128, 128,128) 0 conv2d_6[0][0] 

add_1 (Add) (None, 128, 128,128) 0 leaky_re_lu_1[0][0], dropout_2[0][0] 

conv2d_7(Conv_2D) (None, 128, 128,64) 73, 792 add_1[0][0] 

up_sampling2d_1 (None, 256, 256,64) 0 conv2d_7[0][0] 

leaky_re_lu_2 (LeakyRelu) (None, 256, 256,64) 0 up_sampling2d__1[0][0] 

add_2 (Add) (None, 256, 256,64) 0 leaky_re_lu_2[0][0], dropout [0][0] 

conv2d_8(Conv_2D) (None, 256, 256,64) 36, 928 add_2[0][0] 

leaky_re_lu_3 (LeakyRelu) (None, 256, 256,64) 0 conv2d_8[0][0] 

conv2d_9(Conv_2D) (None, 256, 256,64) 36, 928 leaky_re_lu_3[0][0] 

leaky_re_lu_4 (LeakyRelu) (None, 256, 256,64) 0 conv2d_9[0][0] 

conv2d_10(Conv_2D) (None, 256, 256,1) 577 leaky_re_lu_4[0][0] 

 

4. Experimental Results  

In general, most of the medical fusion methods are 

based on PCNN and CNN. We find few works based on 

Unsupervised learning. Moreover, Autoencoders based 

fusion method is more beneficial compared to 

conventional PCNN and CNN-based fusion techniques. 

Autoencoders are better able to adjust to complicated 

and diverse datasets since we have used to two diverse 

input images such as MRI and PET. On the other hand, 

PCNNs are manually constructed models that are built 

on biologically inspired concepts and do not learn from 

data in the same manner. They are more rigid and task-

specific. Autoencoders are useful for classification, 

segmentation, and fusion because they extract more 

compact and informative latent representations. PCNNs 

are not optimized to model such complex interaction 

and they are typically limited to basic features like 

edges, regions, or intensity contrast. 

In image fusion, autoencoders can reconstruct fused 

images from learned joint features (especially in 

encoder-decoder setups). CNNs don’t inherently 

reconstruct inputs and they are mostly discriminative, 

not generative. Autoencoders are better for fusion 

models, especially for MRI+CT or PET+MRI fusion, 

where combining modalities and reconstructing a high-

quality image is key. Since, Unsupervised method offers 

more advantages compared to the conventional 

methods, we emphasized on this technique to implement 

effective implementation of fusion method of two 

diverse medical images such as MRI and PET/SPECT. 

Four existing methods are used to assess the efficacy of 

the suggested approach: Gaussian-PCNN-LP [23], 

Hahn-PCNN-CNN [5], CNP-MIF [12] and GFF [3]. For 

experimentation, a standardized pair of MRI and 

PET/SPECT scans from the whole brain atlas dataset 

were utilized as benchmarks. The suggested approach 

and other methods from the literature were run on an 

(4) 
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Intel Core i3-4010U CPU at 1.70GHz with 4GB RAM 

using python. 

The whole brain atlas [9] is an online resource for 

imaging of brain diseases developed together by the 

American Academy of Neurology, Harvard Medical 

School, Countway Library of Medicine, Radiology 

Department, and the Neurology Departments at 

Brigham and Women’s Hospital. The website is 

structured into six main sections: 

1) An atlas of normal anatomy. 

2) A neuroimaging primer for those who are unfamiliar 

with imaging terminology. 

3) Cerebrovascular illness. 

4) Neoplastic disease. 

5) Inflammatory disease. 

6) Degenerative disease. It contains more than 13,000 

brain images from MRI, CT, SPECT, and PET scans 

of 30 brain disorders. 

Four brain disorders have been taken into consideration 

for our experiments. 

a) Glioma. 

b) Alzheimer’s disease. 

c) Metastatic bronchogenic. 

d) Huntington’s disease. 

4.1. Parameters and Hyper-Parameters 

Analysis 

In the process of fusing MRI and PET/SPECT images 

using an unsupervised autoencoder-based framework, 

accurate spatial alignment of the two modalities is a 

critical pre-processing step. Due to differences in 

acquisition geometry, resolution, and contrast, 

PET/SPECT and MRI images are often not inherently 

aligned. Therefore, we applied multimodal image 

registration prior to feeding the data into the 

autoencoder. Multimodal image registration is the 

process of aligning images from different imaging 

modalities such as MRI (structural) and PET/SPECT 

(functional/metabolic) so that corresponding anatomical 

or functional regions overlap accurately. 

Specifically, the PET/SPECT images were registered 

to the corresponding MRI images using a rigid (or 

affine) registration approach, ensuring that both images 

represent the same anatomical structures in the same 

spatial configuration. We used Mutual Information (MI) 

as the similarity metric, as it is well-suited for 

multimodal registration tasks due to its robustness to 

differences in intensity distributions across imaging 

modalities. In order to achieve corresponding 

overlapping of anatomical and functional regions of 

MRI and PET/SPECT, both the images are resized to 

256x256 and images of same brain tumour disease of 

same slice of the brain are used. 

Regarding dataset, MRI and PET/SPECT images of 

each 2000 were used as dataset for training the network 

with 1240 MRI-PET images and 480 MRI-SPECT 

images of Glioma disease; 400 MRI-PET images of 

Alzheimer’s disease; 440 MRI-SPECT images of 

metastatic bronchogenic disease; 480 MRI-SPECT 

images of hypertensive encephalopathy; 560 MRI-

SPECT images and 400 MRI-SPECT images of motor 

neuron disease and normal aging. Out of these 4000 

MRI-PET/SPECT images, 3200 MRI-PET/SPECT 

images were used for training, 400 MRI-PET/SPECT 

pairs for validation and remaining 400 images for 

testing were used. 

On experimentation, the proposed deep 

convolutional autoencoder architecture is tested with 50 

and 100 epochs and tested with batch sizes of 32, 16, 8 

and 4 with different learning rates such as 0.001 and 

0.0001. Since these are the important hyperparameters 

required for training of autoencoders to get good fused 

image with low loss and good structural similarity, 

experimentation was carried out for different 

hyperparameters and results are saved. The network is 

trained with 2000 MRI and PET images of different 

brain tumour diseases which are available in Whole 

Brain Atlas, Harvard University. 

Changing the number of epochs in training an 

autoencoder directly affects its ability to extract 

meaningful features from images. Here’s how it works 

and what to consider when using 50 epochs vs. 100 

epochs for feature extraction. Lower epochs aid faster 

training time, which is useful for initial testing or when 

computational resources are limited. It prevents 

overfitting if the model starts memorizing the data 

instead of learning generalizable features. The 

autoencoder might underfit, meaning it has not fully 

captured the patterns in the data. Extracted features 

might not be as robust or detailed. 

Training model with higher epochs provides more 

training time for the model to learn and adapt, leading 

to better feature extraction. Useful for more complex 

datasets where patterns are harder to learn. Risk of 

overfitting, especially if there’s no validation set to 

monitor performance. Increased training time and 

computational cost. Ensure the learning rate is 

appropriately tuned. If it’s too high, increasing epochs 

might not improve performance. If it’s too low, training 

might require more epochs to converge. Monitor metrics 

like reconstruction loss during training to determine the 

optimal number of epochs. The learning rate has a major 

impact on how well autoencoders perform when 

extracting features from images. During training, it 

establishes the step size at which the model changes its 

weights. 

Here’s how learning rates of 0.001 vs. 0.0001 can 

impact the training and feature extraction capabilities of 

an autoencoder. The model with higher learning rate 

learns more quickly since the updates to weights are 

larger. Can quickly learn significant patterns in large 

datasets. Rapidly decreases reconstruction loss, 

especially in the first few epochs. The drawbacks are it 

may overshoot the optimal weights, resulting in unstable 
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training or poor convergence. The extracted features 

may be less precise due to insufficient fine-tuning. If 

combined with a large batch size or unnormalized input, 

the training might diverge. 

Model with lower learning rate will reduce the risk of 

overshooting, leading to smoother convergence. The 

model has more time to adjust weights and capture 

subtle patterns in the data. Especially useful for 

sensitive architectures like Variational Auto-Encoders 

(VAEs) or when the data contains high variance. The 

drawbacks are training takes longer to reach the optimal 

solution, increasing computation time. The model might 

converge to a suboptimal solution if the learning rate is 

too small. A minimal number of epochs could prevent 

the model from learning the data distribution 

completely. 
 

  
a) Loss v. batch sizes for different learning rates and epochs/PET/SPECT image. b) Loss v. batch sizes for different learning rates and epochs/MRI image. 

Figure 5. Batch size vs loss curve for different epochs, batch sizes and learning rates [results obtained from program]. 

  
a) Loss v. batch sizes for different learning rates and epochs/PET/SPECT image. b) Loss v. batch sizes for different learning rates and epochs/MRI image. 

Figure 6. Hyperparameter tuning with different epochs, learning rate and batch sizes for MRI and PET/SPECT images. 

Table 3. Search space for optimization of hyperparameter tuning of 

autoencoders for MRI images with different batch sizes and epochs 
for learning rates -0.001 and 0.0001. 

MRI 

Learning rate-0.001 Learning rate-0.0001 

Epochs=50 Epochs=100 Epochs=50 Epochs=100 

Batch 

size 

Loss  Batch 

size 

Loss Batch 

size 

Loss Batch 

size 

Loss 

4 0.00034 4 0.00034 4 0.00036 4 0.00029 

8 0.00023 8 0.00048 8 0.00043 8 0.00033 

16 0.0006 16 0.00049 16 0.0018 16 0.00036 

32 0.00047 32 0.0008 32 0.00914 32 0.0025 

Table 4. Search space for optimization of hyperparameter tuning of 

autoencoders for PET/SPECT images with different batch sizes and 
epochs for learning rates -0.001 and 0.0001. 

PET/SPECT 

Learning rate-0.001 Learning rate-0.0001 

Epochs=50 Epochs=100 Epochs=50 Epochs=100 

Batch 

size 
Loss  

Batch 

size 
Loss 

Batch 

size 
Loss 

Batch 

size 
Loss 

4 0.0012 4 0.00021 4 0.00014 4 0.00012 

8 0.0005 8 0.00043 8 0.00034 8 0.00018 

16 0.0417 16 0.00084 16 0.0033 16 0.00037 

32 0.0005 32 0.2658 32 0.0179 32 0.0099 
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Figure 5 illustrates how loss varies with batch sizes 

for various epochs and learning rates. Figure 6 shows 

the reconstructed images of MRI and SPECT obtained 

for different epochs, learning rates and batch sizes in 

order to achieve optimal values of low loss and good 

structural similarities. Tables 3 and 4 show the search 

space for optimization of hyperparameter tuning of 

autoencoders for MRI and PET/SPECT images with 

different batch sizes and epochs for learning rates -0.001 

and 0.0001. In order to get the optimal values, Table 5 

shows the final optimized values chosen for our 

proposed work. 

Table 5. Finalized parameters of autoencoders after hyper-tuning. 

Parameter Recommended value Reason 

Batch size  4 or 8 Balances computational efficiency, stability in training, and ability to retain fine details. 

Epochs 100 Provides sufficient time for learning intricate medical image details without overfitting. 

Learning rate 0.0001 Ensures stable updates and avoids overshooting, critical for preserving subtle patterns. 

Optimizer Adam Combines benefits of momentum and adaptive learning, improving convergence for complex images. 

Loss function Mean Squared Error (MSE) Ideal for reconstruction tasks to minimize pixel-wise differences. 

Activation function ReLU (encoder), Sigmoid (decoder) ReLU avoids vanishing gradients, Sigmoid ensures output values match grayscale range (0-1). 

 

      
a) Reconstructed MRI image 

with no skip connection.  

b) Reconstructed MRI image 

with skip connection. 

c) Reconstructed SPECT image 

with no skip connection. 

d) Reconstructed SPECT 

image with skip connection. 

e) Final fused image with 

no skip connection. 

f) Final fused image with skip 

connection. 

Figure 7. Ablation study for with and without skip connection in network. 

Table 6. Objective assessments of ablation study with and without 
skip connection. 

 FMI VIFF SSIM Qf
ab 

Without skip connection 0.85 0.50 0.80 0.49 

With skip connection 0.85 0.72 0.85 0.67 

Ablation study was carried out to insist the 

importance of adding skip connections in the network. 

The experiment was carried out by training the network 

with and without skip connections. The subjective 

assessments of these studies are shown in Figure 7. 

Subjectively, the clarity and sharpness of the images are 

improved by including skip connections. This has 

proven using the objective assessments of these studies 

which are presented in Table 6. It is clear that increase 

in Visual Information Fidelity Factor (VIFF) and 

Gradient based Quality Index (Qab/f) indicate that the 

sharpness and visual clarity of the image are enhanced 

by using skip connections. Changing the latent 

dimension have not affected the output. 

4.2. Image Quality Assessment (IQA) 

Subjective and objective assessments are the two 

categories of evaluations available for fused images. 

Human visual perception is the foundation for 

subjective evaluation of image quality. Although its 

benefits, such speed and convenience, cannot be 

overlooked, it can occasionally be subjective and quite 

sensitive to light environments and even human 

emotions. Furthermore, various people have diverse 

opinions about the same image. Evaluating the image in 

accordance with IQA is the objective assessment. 

Despite the obvious limitations of the evaluation results 

and the requirement to apply codes, the benefit is that 

the outcome is objective and unaffected by subjective 

factors. Both of these assessments are used in this paper. 

The metrics used are listed below in Table 7: 

Table 7. IQA metrics for image fusion.  

Metrics Description and formula 

Feature MI [6] 
represents data that corresponds to the attributes of input 

images required in obtaining fused image 
FMIAB=IFA+IFB 

Visual Information Fidelity 

Factor (VIFF) [7] 
relates image information with visual features of fused image. 𝑉𝐼𝐹𝐹(𝐼𝐴, 𝐼𝐹) =  

1

2
 𝑙𝑜𝑔2 (

|𝑔𝑖,𝑛
2 𝑠𝑖,𝑛

2 𝐶𝑢 + (𝜎𝑖,𝑛
 2 + 𝜎𝑁

2)𝐼|

|(𝜎𝑖,𝑛
2 + 𝜎𝑁

2)𝐼|
) 

Structured Similarity Index 

(SSIM) [20] 

used to describe features that show how the brightness and 

contrast of the source as well as fused images are similar. 
𝑆𝑆(𝐴,𝐵) =

(2𝜇𝐴𝜇𝐵 + 𝑟1)(2𝜎𝐴𝐵 + 𝑟2)

(𝜇𝐴
2 +𝜇𝐵

2 + 𝑟1)(𝜎𝐴
2 + 𝜎𝐵

2 + 𝑟2)
 

Qf
ab [21] 

is a measure of image quality that evaluates the sharpness and 
contrast of edges in the image. It is calculated utilizing the 

gradient magnitude of the image. 

𝑄𝑎𝑏/𝑓 = 
∑ ∑ (𝑄𝐴(𝑚, 𝑛)𝑊𝐴(𝑚, 𝑛) + 𝑄𝐵(𝑚, 𝑛)𝑊𝐵(𝑚, 𝑛))𝑁−1

𝑗=1
𝑀−1
𝑖=1

∑ ∑ (𝑊𝐴(𝑚, 𝑛) + 𝑊𝐵(𝑚, 𝑛))𝑁−1
𝑗=1

𝑀−1
𝑖=1

 

 

The effectiveness of the proposed fusion algorithms 

and quality of the fused images may be objectively 

assessed using performance indicators such as Qab/f, 

Feature Mutual Information (FMI), VIFF, and SSIM are 

employed. MSE and SSIM are the quality evaluation 

metrics that, as an output, represents the image quality 

as perceived by human eyes. 

4.2.1. Feature Mutual Information (FMI) 

Measures how much shared information is retained 
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from the source images MRI and PET in the fused 

image. MI is computed as the mutual information 

between image features (e.g., gradient maps or 

Laplacian energy maps) of the fused image and each 

source image. Computation is lightweight (~tens of ms 

per image pair). Memory usage is minimal as only local 

feature maps (e.g., gradients) are stored. 

4.2.2. Visual Information Fidelity Factor (VIFF) 

Evaluates visual fidelity by comparing the information 

content between the source and fused images using 

natural scene statistics. Based on multi-scale analysis of 

wavelet coefficients and human visual system 

modeling. 

It evaluates how much perceptual information is 

preserved. More computationally expensive due to 

multi-scale decomposition. For 256×256 images, 

typical computation time is around 200-400 ms. 

Moderate memory use (~20-30 MB per image pair), 

depending on the number of decomposition levels. 

4.2.3. Structural Similarity Index (SSIM) 

Assesses how well the fused image retains the structure, 

luminance, and contrast of the source images. SSIM is 

computed between the fused image and each source 

image. Very fast (few ms per image), very low memory 

usage and suitable for real-time evaluation. 

4.2.4. Gradient-Based Quality Index (Qab/f) 

Measures edge preservation and contrast sharpness 

using gradient magnitudes. First compute gradients 

(e.g., using Sobel filters) of all images and then measure 

correlation between gradients of fused and source 

images. Slightly more computationally intensive than 

SSIM but efficient. Execution time per image pair: ~50–

100 ms. Suitable for analyzing spatial detail and 

sharpness retention. 

 

        

a) MRI. b) SPECT. c) Gaussian-PCNN-LP. d) Hahn-PCNN-CNN. 

      

e) CNP-MIF. f) GFF. g) Proposed. 

Figure 8. Fusion results of MRI-SPECT pairs of metastatic bronchogenic (slice-10 and slice-13). 

        

a) MRI. b) SPECT. c) Gaussian-PCNN-LP. d) Hahn-PCNN-CNN. 

      

e) CNP-MIF. f) GFF. g) Proposed. 

Figure 9. Fusion results of MRI-SPECT pairs of Huntington’s disease (slice-15 and slice-16). 

Figure 8 shows the MRI-SPECT pairs of different 

slices of Metastatic Bronchogenic (slice 10 and slice 

13). Figure 9 shows the fused images of MRI-SPECT 

pairs of Huntington’s disease (slice 15 and slice 16). 

Figures 10 and 11 show the fused images of MRI-

SPECT pairs of Glioma (slice 36 and slice 38) and MRI-

PET pairs of Alzheimer’s disease (slice 15 and slice 16) 

respectively of existing methods and ours along with 

source images. The fused images are critically reviewed 

by a radiologist, at SRM Medical College Hospital and 

Research Centre, Kattankulathur. Decreased metabolic 

activities are seen clearly as red patches. Clear 

delineation of tumour affected area and a clear view of 

tumour and Edema regions are the salient features of our 

proposed method. 
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a) MRI. b) SPECT. c) Gaussian-PCNN-LP. d) Hahn-PCNN-CNN. 

      

e) CNP-MIF. f) GFF. g) Proposed. 

Figure 10. Fusion results of MRI-SPECT pairs of Glioma (slice-36 and slice-38). 

        

a) MRI. b) SPECT. c) Gaussian-PCNN-LP. d) Hahn-PCNN-CNN. 

      

e) CNP-MIF. f) GFF. g) Proposed. 

Figure 11. Fusion results of MRI-PET pairs of Alzheimer’s disease (slice-15 and slice-16). 

Table 8. Objective Assessments of proposed and existing 
methodologies. 

Alzheimer [MRI-PET pair-slice-16] 

FMI 0.69 0.87 0.88 0.86 0.89 

SSIM 0.63 0.81 0.81 0.85 0.94 

VIFF 0.54 0.38 0.40 0.33 0.63 

Qf
ab 0.53 0.55 0.59 0.46 0.64 

Metastatic Bronchogenic disease [MRI-SPECT pair-slice 10] 

FMI 0.69 0.88 0.88 0.86 0.87 

SSIM 0.76 0.88 0.90 0.84 0.98 

VIFF 0.62 0.52 0.57 0.34 0.72 

Qf
ab 0.57 0.58 0.63 0.44 0.67 

Metastatic Bronchogenic disease [MRI-SPECT pair-slice 13] 

FMI 0.70 0.88 0.89 0.87 0.88 

SSIM 0.85 0.92 0.94 0.86 0.98 

VIFF 0.68 0.56 0.64 0.35 0.74 

Qf
ab 0.57 0.61 0.66 0.47 0.69 

Huntington’s disease [MRI-SPECT pair-slice 11] 

FMI 0.39 0.87 0.87 0.84 0.87 

SSIM 0.79 0.86 0.94 0.86 0.92 

VIFF 0.54 0.60 0.69 0.46 0.80 

Qf
ab 0.55 0.62 0.67 0.53 0.66 

Huntington’s disease [MRI-SPECT pair-slice 12] 

FMI 0.37 0.87 0.88 0.85 0.88 

SSIM 0.76 0.85 0.93 0.86 0.92 

VIFF 0.60 0.60 0.69 0.48 0.80 

Qf
ab 0.57 0.62 0.67 0.54 0.64 

Glioma disease [MRI-SPECT pair-slice 36] 

FMI 0.70 0.87 0.89 0.83 0.88 

SSIM 0.64 0.84 0.96 0.76 0.96 

VIFF 0.70 0.45 0.74 0.12 0.75 

Qf
ab 0.70 0.60 0.78 0.36 0.78 

Glioma disease [MRI-SPECT pair-slice 38] 

FMI 0.69 0.87 0.89 0.84 0.88 

SSIM 0.78 0.85 0.96 0.76 0.95 

VIFF 0.67 0.46 0.76 0.11 0.75 

Qf
ab 0.68 0.60 0.79 0.32 0.78 

Alzheimer [MRI-PET pair-slice-15] 

Metrics Ref [30] Ref [16] Ref [5] Ref [23] Our proposal 

FMI 0.87 0.68 0.88 0.86 0.89 

SSIM 0.76 0.61 0.78 0.85 0.92 

VIFF 0.35 0.45 0.37 0.33 0.61 

Qf
ab 0.52 0.54 0.56 0.43 0.60 

Table 8 presents the objective metrics of the MRI-

PET pair and MRI-SPECT pairs of different brain 

tumour diseases taken into consideration. The suggested 

approach outperforms the others in terms of VIFF, 

SSIM, Qab/f, and FMI. The most valuable and edge 

information was transformed into the final output by our 

method, as evidenced by the highest FMI and Qab/f 

values. The highest SSIM and VIFF values also 

demonstrate the superiority of the suggested approach 

when it comes to structural similarity. 

In the case of MRI-PET pair of Alzheimer’s disease-

slice 15, our proposed method has outperformed well 

with 1% increase in FMI, 82% increase in SSIM, 35% 

increase in VIFF and 7% increase in Qab/f with 

reference to the second highest value achieved by 

existing methods and in the case of Alzheimer’s disease-

slice 16, 1% increase in FMI, 11% increase in SSIM, 

17% increase in VIFF and 8% increase in Qab/f 

respectively. 

In the case of metastatic bronchogenic disease, CNP 

based fusion model has 1% increase in FMI compared 

to proposed method. Our suggested method performed 

well in terms of visual quality, edge retention, and 

structural similarity index, indicating that the image was 

reconstructed similarly to the original source images. In 

the case of Huntington’s disease-slice 12, CNP-based 

fusion model has 1% increase in SSIM and 4% increase 

in Qab/f compared to proposed method. Our suggested 

approach performed better in terms of visual quality and 

information retention, and the CNP-based fusion model 

demonstrated a 2% increase in SSIM and a 1% rise in 

Qab/f in the case of slice 11. 
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In the case of MRI-SPECT pair of glioma slice-36, 

our proposed method outperformed well with respect to 

all metrics but second highest value in the case of FMI 

with marginal decrease of 1% with respect to existing 

CNP model which has exhibited highest values. In the 

case of MRI-SPECT pair of glioma slice-38, our 

proposed method achieved second highest value with 

the difference of 0.001 in the case of FMI, SSIM, VIFF 

and Qab/f with reference with CNP model. 

The effective region of the MRI is the intracerebral 

tissue with the better resolution. PET images highlight 

the region where the blood flow is reduced. The figures 

exhibit the subjective assessment of proposed method 

with the existing methods. The proposed technique 

accurately recognizes and combines the effective 

regions of the two source images, owing to the 

network’s learning during the training phase. Tumour is 

clearly delineated and the metabolic activities are 

clearly correlated. Averagely, our proposed method 

performed well in improving the structural similarity 

index and visual information fidelity for all diseases 

taken into consideration compared to existing methods. 

This implements that our proposed method has 

improved the visual quality of our fused images and 

edges are retained effectively thereby helping the 

radiologists to quick detection of tumour affected 

portions which in turn will result in quicker diagnosis. 

Even though the objective assessments of the 

proposed method are as good as with the existing 

methods, our method has improved the subjective 

assessments of the fused images which will assist the 

radiologists or doctors to locate disease affected 

portions effectively and plan treatment accordingly 

thereby resulting in quicker diagnosis of diseases. For 

instance, in the case of Alzheimer’s disease, highlighted 

blue portions clearly indicates the decrease in metabolic 

activities of cells in the parietal cortex and in our 

proposed method it is clearly delineated. 

5. Computation Costs Analyses 

The number of times the network is used, which is equal 

to the total number of frequency subbands in the 

algorithm, determines the computational complexity of 

our proposed method as well as PCNN and CNN-based 

algorithms. 

Table 9. Computational complexity of proposed and existing 

methods. 

 
Gaussian-

CNN [5] 

Hahn-PCNN-

CNN [23] 

CNP-MIF 

[12] 
GFF [3] 

Our 

proposal 

Number of 

mathematical 

computations 

involved 

25, 493, 

504 
3, 101, 443 

48, 889, 

856 

2, 621, 

440 

1, 530, 

626 

It also requires the loading of multiple network 

weights and parameters. The number of multiplications 

involved for existing and our proposed method are 

shown in Table 9 and our suggested method 

outperformed well both subjectively and objectively 

with less number of computations 3 depicts the detailed 

architectures of encoder-decoder parts of our proposed 

method.  

6. Conclusions 

Our approach effectively preserves anatomical and 

functional image textures, colors, and contrast during 

fusion, according to current studies. Our model is 

significantly good with the other four algorithms across 

four representative evaluation metrics. Our algorithm’s 

robustness is enhanced by the diversity of images used. 

Because of its high quality and low weight, our 

algorithm has several potential uses in intelligent 

medicine. The outcomes of the experiment show that the 

suggested method faithfully captures significant 

features in the original photographs with good 

brightness and contrast. With fewer artifacts, precise 

details are recovered while texture and edge information 

are maintained. According to a comparative analysis, 

the method has good objective indicators. Additional 

picture data sets can be used to improve the model’s 

performance. This work will be expanded further with 

real-time hardware implementation and test cases. 
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