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Abstract: Traditional methods for assessing tourist ecological capacity in forest parks often use single indicators or static 

models, failing to capture dynamic ecological changes. This study introduces a novel approach leveraging fusion Attention 

Mechanisms (AM) and Remote Sensing (RS) images to evaluate the ecological capacity of visitors in forest parks. The method 

uses high-resolution RS images and deep learning to accurately measure the impact of tourist activities on the ecological 

environment. The proposed method includes an image reconstruction technique that integrates AM with RS data. Performance 

analysis and validation are conducted, showing an average accuracy of 98.76%, a recall rate of 98.17%, and an F1 score 

ranging from 96.23% to 98.25% in the Fujian Regional Remote Sensing Image Dataset for Scene classification (FJ-RSIDS). 

Applying this method to Qilian Mountain Park, the study predicts ecological capacities of 31.43 million for the environment, 

104.83 million for space, 115.74 million for tourist psychology, 334,200 for facilities, and 64.84 million for tourism. These 

predictions closely align with observed values. This research provides a scientific basis and technical support for ecological 

protection and tourist management in forest parks, contributing significantly to the sustainable development of the tourism 

industry. 
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1. Introduction 

As the global tourism industry experiences rapid 

growth, forest parks, which are vital natural tourism 

assets, not only shoulder the crucial responsibility of 

ecological conservation but also encounter a surge in 

tourist demand [12]. Tourism environmental capacity, 

also referred to as tourism ecological capacity, denotes 

the maximum number of tourists that a tourist 

destination or area’s environmental space can 

accommodate without inflicting irreversible harm on 

the ecosystem [29]. From past research, traditional 

methods for studying tourist ecological capacity mainly 

rely on field investigations and simple mathematical 

model construction. Early research focused on roughly 

estimating ecological capacity through field 

observations of tourist distribution and activity 

intensity, combined with basic data such as park area 

and number of attractions [18]. However, this method is 

time-consuming and labour-intensive, and is greatly 

affected by human factors, making it difficult to 

comprehensively and accurately reflect the true 

situation of the complex and changing park ecosystem 

in carrying tourists. As Remote Sensing (RS) 

technology booms, it has gradually been applied to the 

study of ecological capacity in forest parks due to its 

advantages such as large-scale synchronous observation 

and fast data acquisition [19]. By using RS images, 

 
researchers can obtain key information such as park land 

use types and vegetation coverage, and evaluate the 

health status and carrying capacity of park ecosystems 

at a macro level [22]. For example, Su et al. [23] 

provided strong data support for the dynamic 

assessment of ecological capacity by analyzing RS 

images from different periods to monitor changes in 

park vegetation. Liu et al. [16] innovatively proposed an 

efficient image analysis algorithm in the study of RS 

image change subtitles based on dual branch 

transformers, which can more sensitively capture the 

subtle changes in the park ecological environment at 

different time periods, providing a new technical path 

and method reference for in-depth analysis of the 

influencing factors of ecological capacity, greatly 

expanding the application depth and breadth of RS 

technology in forest park ecological capacity research. 

However, relying solely on RS image data for feature 

extraction and information mining in complex scenes 

still has certain limitations, making it difficult to 

effectively distinguish the impact of different ecological 

elements on tourist capacity. 

Attention Mechanisms (AMs) is a resource allocation 

scheme whose core idea is to dynamically allocate 

“attention” based on the current context when 

processing input data, in order to highlight key 

information [3]. Introducing AM in ecological capacity 

research can enable the model to pay more attention to 
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key ecological features closely related to tourist 

ecological capacity, such as rare species habitats, 

ecologically fragile areas, etc. A comparative study by 

Zhang et al. [32] on wheat yield estimation using 

attention-based deep learning and transfer strategies 

showed that incorporating AMs into ecological 

environment assessment models can significantly 

improve the ability to identify and analyze important 

ecological factors. Ai et al. [1] successfully improved 

the ability to precisely identify and delineate 

aquaculture regions in complex coastal ecological 

environments through the use of self AMs in their 

research on assisted loss of coastal aquaculture area 

extraction. Although some progress has been made in 

evaluating the ecological capacity of forest park visitors, 

there is still a lack of a comprehensive research method 

that can fully integrate the rich information and AM 

advantages of RS images. Based on this, this study 

integrates AM and RS imaging technology to deeply 

explore the ecological capacity of forest park visitors, to 

furnish a more rigorous and precise scientific 

foundation and practical direction for fostering 

sustainable tourism growth in forest parks. The 

innovation of the research lies in utilizing the spectral 

similarity of the spectral grouping attention module to 

group the fused gradient features, calculating attention 

within the group to enhance the correlation between 

features, and then outputting reconstructed features. The 

cross layer non-local attention module inputs multiple 

layers of features, calculates non-local attention through 

cross layer interaction, effectively captures global 

dependencies, and integrates the results with spectral 

grouping results. The collaborative application of two 

AMs can efficiently process features, capture global and 

local information from all angles, and significantly 

improve the analysis and processing capabilities of 

complex ecological information compared to traditional 

models. This research only takes the content of the 

relevant literature review as the theoretical basis and has 

no overlap with the above-mentioned works. 

2. Methods and Materials 

2.1. Fusion of GGS and SGA for RS Image SR 

Reconstruction Method 

Spatial Attention Mechanisms (SAM) is an AM that 

focuses on the spatial dimension of Feature Maps 

(FMs). It is mainly used to highlight the regions in 

images or FMs that contribute the most to the task, while 

suppressing irrelevant or redundant regions, thus 

enhancing the model’s efficacy [9]. The illustrative 

representation of SAM is in Figure 1. 

 

Figure 1. Illustrative representation of SAM. 

In Figure 1, the input FM is represented by the feature 

extracted by the convolutional layer. The query vector is 

represented by symbol Q, the feature identification of 

the FM is represented by symbol K, and the actual 

features of the FM are represented by symbol V. The 

calculation of SAM is in Equation (1). 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑠𝑜𝑓𝑡max (
𝐾𝑇𝑄

𝑑𝑘
) 𝑉 

In Equation (1), the transpose of feature identification is 

represented by symbol KT. The dimension of feature 

identification is represented by symbol dk. To improve 

the performance of hyper-spectral image processing, the 

Spectral Group Attention (SGA) is studied and 

introduced. SGA is specifically designed for hyper-

spectral image analysis. It enhances the model’s ability 

to capture spectral features by implementing grouping 

and normalization strategies [8]. The schematic diagram 

of SGA structure is in Figure 2. 
 

Figure 2. SGA architectural depiction. 

(1) 
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In Figure 2, XBG1 and XBG2 refer to the spectral 

weighted FMs of two different spectral information 

contents. The mechanism groups input FMs by channel 

dimensions and processes each cluster via SAM [25]. 

The mechanism applies both global average pooling and 

global max pooling operations to the FMs within each 

cluster, and concatenates the results of global average 

pooling and global max pooling by channel to obtain the 

spectral vectors ZS1 and ZS2 [4]. The mechanism uses 

1×1 convolution to compress the concatenated FMs, and 

normalizes the convolved FMs to the range of [0, 1] 

using the sigmoid activation function (AF) to obtain the 

spectral weight vector ZS. The calculation formula for ZS 

is in Equation (2). 

𝑍𝑆 = σ ((𝐿2𝑟𝑒𝑙𝑢(𝐿1𝑓𝑆))) 

In Equation (2), σ represents the sigmoid AF. The 

weights of the first Fully Connected Layer (FCL) are 

represented by symbol L1, and the weights of the second 

FCL are represented by symbol σ. The expression for 

the spectral vector ZS1 of the first group is in Equation 

(3). 

𝑍𝑆1 = 𝑟𝑒𝑙𝑢(𝑍𝑆 − β) 

In Equation (3), β represents a constant vector. The 

expression for the spectral vector ZS2 of the second 

group is in Equation (4). 

𝑍𝑆2 = 𝑟𝑒𝑙𝑢(β − 𝑍𝑆) 

Finally, the spectral attention weight matrix is 

multiplied element by element with the original grouped 

FM to obtain the weighted FM [15]. In the traditional 

single-branch Super Resolution (SR) network, there is 

usually only one main branch, which is responsible for 

restoring high-resolution images from low-resolution 

images. However, this method has limitations in detail 

restoration and edge sharpening. To overcome these 

limitations, the study introduces an additional gradient 

branch in the network architecture. This branch acts as 

a feature selector, capable of adaptively extracting 

structural features in the image and providing gradient 

prior information for the super-resolution branch [7]. 

The Gradient-Guided Strategy (GGS) is an innovative 

method. It utilizes gradient maps to guide the network 

to restore sharper edges and richer texture details in 

specific areas of the image, thereby significantly 

improving the quality of the recon-structed image [30]. 

The expression of the gradient graph g(ILR) is in Figure 

5. 

𝑔(𝐼𝐿𝑅) = ‖𝐼𝐿𝑅 ∗ 𝑀𝑥, 𝐼𝐿𝑅 ∗ 𝑀𝑦‖
2
 

In Equation (5), the image to be reconstructed is 

represented by symbol ILR, horizontal convolution is 

expressed as symbol Mx, and vertical convolution is 

represented by symbol My. The calculation formula for 

Mx and My is in Equation (6). 

𝑀𝑥 = (
0 0 0
1 0 −1
0 0 0

) , 𝑀𝑦 = (
0 1 0
0 0 0
0 −1 0

)  

This study uses convolution operation to extract shallow 

gradient feature 𝐹0
𝑔𝑟𝑎𝑛𝑑

, and the calculation of 𝐹0
𝑔𝑟𝑎𝑛𝑑

 

is in Equation (7). 

𝐹0
𝑔𝑟𝑎𝑛𝑑

= 𝑓𝑐𝑜𝑛𝑣(𝑔(𝐼𝐿𝑅)) 

The k-th gradient module of the gradient branch is a key 

component used to enhance image edges and texture 

details, as presented in Figure 3. 

 

 

Figure 3. Illustrative representation of the kth gradient module of the gradient branch. 

In Figure 3, 𝐹𝑘−1
𝑔𝑟𝑎𝑛𝑑

 and 𝐹𝑘
𝑔𝑟𝑎𝑛𝑑

 are input 

simultaneously, and then 𝐹𝑘−1
𝑔𝑟𝑎𝑛𝑑

 and 𝐹𝑘
𝑔𝑟𝑎𝑛𝑑

 are 

concatenated. The gradient information of the fused 

features is calculated using gradient calculation method, 

and further feature extraction is performed on the 

gradient FM through convolution operation [21]. 

Gradient guided loss is calculated to ensure effective 

utilization of gradient information. The FM processed 

by the gradient module 𝐹𝑘−1
𝑔𝑟𝑎𝑛𝑑

 will be used as the input 

for the k+1th gradient module. 𝐹𝑘
𝑔𝑟𝑎𝑛𝑑

 provides 

structural prior information for super-resolution 

reconstruction, helping to restore sharp edge and texture 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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features [11]. The calculation formula for 𝐹𝑘
𝑔𝑟𝑎𝑛𝑑

 is in 

Equation (8). 

𝐹0
𝑔𝑟𝑎𝑛𝑑

= 𝑓𝑐𝑜𝑛𝑣 (𝑓𝑠𝑢𝑏𝑝𝑖𝑥 (𝐻𝐺𝐸(𝐹𝑘−1
𝑔𝑟𝑎𝑛𝑑

, 𝐹𝑑𝑒,𝑘
1 , 𝐹𝑑𝑒,𝑘

2 , … , 𝐹𝑑𝑒,𝑘
𝑀 ))) 

In Equation (8), 𝐹𝑑𝑒,𝑘
𝑀  represents the output function. 

The illustrative representation of the SR network 

integrating GGS and SGA is in Figure 4. 

 

 

Figure 4. SR network diagram of fusion gradient guidance and grouping attention. 

In Figure 4, the introduction of gradient information 

boosts the network’s capacity for perceiving image 

edges and texture details [33]. The group AM divides 

feature channels into multiple groups and applies AMs 

independently within each group, allowing for more 

flexible processing of feature information from different 

channels. To better handle image features of various 

scales, the network designs a multi-scale fusion module. 

By integrating features of various scales, it can more 

comprehensively capture global and local information 

of the image, thereby improving the quality of recon-

structed images. 

2.2. Ecological Capacity Assessment of Forest 

Park Tourists Based on SGA and RS 

The study enhances image edge and texture detail 

perception by introducing gradient information, flexibly 

processes feature channel information using group AM, 

and comprehensively captures global and local 

information of the image through multi-scale fusion 

module, thereby significantly improving the quality of 

reconstructed images. To achieve better image SR 

performance, a model construction of an SR network 

that integrates gradient guidance and group attention is 

studied, as shown in Figure 5. 

 

Figure 5. SR network model integrating gradient guidance and grouping attention. 

(8) 
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In Figure 5, the study enhances the network’s ability 

to perceive details by extracting multiple sub-pixel 

information from the image. Meanwhile, utilizing 

Transformer architecture to enhance feature 

representation further improves the network’s global 

perception capability. Extracting structural details of the 

image through gradient branches and fusing them with 

the features of the main branch can enhance the 

preservation of edge information in the process of SR 

reconstruction [26]. In RS image SR tasks, utilizing self-

similarity can significantly improve the quality of 

reconstructed images [27]. Self-similarity refers to the 

characteristic of similar patterns in an image repeatedly 

appearing at different scales or within the same scale. 

Gated units serve as a pivotal mechanism, extensively 

employed within Recurrent Neural Networks (RNNs) 

and their diverse variants to enable meticulous 

regulation of information flow [13]. By introducing gate 

control mechanisms, gate units can dynamically 

determine which information needs to be retained, 

updated, or forgotten, effectively solving the challenges 

of gradient disappearance and explosion encountered by 

conventional RNNs when dealing with extended 

sequence data [14]. Therefore, the study introduces the 

sub-unit and utilizes its repeated appearance 

characteristics at different scales to generate fused 

feature Z. Assuming that the dimension of N input FMs 

for different layers are N×H×W, the input FM is (xi, xj), 

i and j represent the indices of the input FMs, and the 

expression for the fused feature Z is in Equation (9). 

𝑍 = 𝑓𝑔𝑎𝑡𝑒([𝑥1, 𝑥2, … , 𝑥𝑁 ]) 

The formula for calculating the weighted sum yi of 

features in the input FM (xi, xj) is in Equation (10). 

𝑦𝑖 =
1

θ(𝑍𝑖 , 𝑋)
∑ ∑ exp

∀𝑗𝑥∈𝑋

(𝜇(𝑍𝑖 , 𝑥𝑗)) ϕ(𝑥𝑗) 

In Equation (10), θ(Zi, X) is the normalized 

normalization quantity, and its computation is in 

Equation (11). 

θ(𝑍𝑖 , 𝑋) = ∑ ∑ exp

∀𝑗𝑥∈𝑋

(𝜇(𝑍𝑖 , 𝑥𝑘)) 

The single pixel of RS images usually covers a large 

actual area, leading to the erosion of fine details in the 

image, making SR reconstruction particularly difficult 

[10]. Therefore, the research integrates features from 

different depth levels through cross layer non local 

AMs, fully utilizing global and local information, and 

enhancing the capacity to express features in intricate 

scenes. The flowchart of the cross layer non local AM is 

in Figure 6. 

 

Figure 6. Flow chart of cross-layer non-local AM. 

In Figure 6, in the cross layer non-local AM, the first 

step is to embed the input FM into a new space, which 

is achieved through 1×1 convolution to modify the 

channel count in the FM to a smaller dimension. Non-

local AM is applied on the fused FM to capture global 

contextual information. Three FMs are generated for the 

fused FM through convolution or FCLs, Q, K, and V. 

The similarity matrix between Q and K is calculated, 

and residual connections between non-local attention 

features and the original fusion features are performed 

to obtain the final FM. As an important ecological 

tourism destination, the evaluation of tourist ecological 

capacity in forest parks is crucial for achieving 

environmental protection and sustainable development. 

(10) 

(9) 

(11) 
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Tourist ecological capacity is a complex comprehensive 

indicator, and current calculations mainly focus on 

spatial capacity, neglecting other aspects of 

measurement. Therefore, the RS images are analyzed 

using a fusion of cross layer non-local AM and group 

AM. The process of the research model is in Figure 7. 

 

Figure 7. Model flow chart. 

In Figure 7, the input module includes low resolution 

RS images, ecological capacity related data, and high-

resolution reference images. The feature extraction 

module includes image feature extraction, ecological 

capacity feature fusion, and spectral feature extraction. 

The fusion gradient guidance module includes fusion 

gradient information and feature extraction output, 

enhanced detail perception, and output fusion gradient 

features. The spectral grouping attention module 

combines gradient features by grouping based on 

spectral similarity, calculates attention enhancement 

associations within the group, and outputs reconstructed 

features. The cross layer non-local attention module 

takes multiple layers of features as input, captures 

global dependencies through cross layer interaction and 

non-local attention, and integrates the fusion results 

with spectral grouping results. The SR reconstruction 

module includes input recombination features, 

upsampling amplification, and refinement through a 

reconstruction network to generate high-resolution 

images for ecological capacity assessment. Root Mean 

Square Error (RMSE) serves as a statistical measure to 

quantify the discrepancy between observed and actual 

values [24]. The study uses RMSE to measure the 

capability of the research model, and the computation is 

in Equation (12). 

𝑅𝑀𝑆𝐸 = √
1

𝑎𝑏𝑐
∑(𝐼𝑆𝑅 − 𝐼𝐻𝑅)2

𝑖,𝑗,𝑘

 

In Equation (12), ISR represents the input hyper-spectral 

RS image, IHR represents the output hyper-spectral RS 

image, a represents the length of the hyper-spectral RS 

image, b is the width of the hyper-spectral RS image, 

and c represents the number of bands in the hyper-

spectral RS image. Peak Signal to Noise Ratio (PSNR) 

refers to the evaluation of image quality by comparing 

the disparities between the initial and processed images 

[28]. The PSNR calculation formula is in Equation (13). 

𝑃𝑆𝑁𝑅 = 20log10

𝑀𝑎𝑥(𝐼𝐻𝑅)

√𝑀𝑆𝐸(𝐼𝐻𝑅, 𝐼𝑆𝑅 )
 

In Equation (13), Max represents the maximum value of 

the real RS image. The Structural Similarity Index 

(SSIM) is an image quality assessment index based on 

the human visual system, used to measure the similarity 

between two images in terms of brightness, contrast, and 

structure. The calculation formula for SSIM is in 

Equation (14). 

(13) 

(12) 
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𝑆𝑆𝐼𝑀 = 20log10

2ρgρ𝑜 + 𝐷1

ρg
2 + ρ𝑜

2 + 𝐷1
∗

2ηgη𝑜 + 𝐷2

ηg
2 + η𝑜

2 + 𝐷2
 

In Equation (14), the average brightness of images g and 

o is expressed as symbols ρg and ρo, the standard 

deviation of images g and o is expressed as symbols ηg 

and ηo, and the constants used to stabilize the 

denominator are expressed as symbols D1 and D2. SAM 

is a commonly used RS image classification method, 

which is based on the basic idea of maintaining 

consistent spectral information of the same type of land 

cover. The SAM expression is in Equation (15). 

𝑆𝐴𝑀 = 𝑎𝑟𝑐𝑐𝑜𝑠 (
𝐼𝑆𝑅

𝑇 − 𝐼𝐻𝑅

√𝐼𝑆𝑅
𝑇 𝐼𝑆𝑅 . √𝐼𝐻𝑅

𝑇 𝐼𝐻𝑅

) 

3. Results 

3.1. Performance Testing of RS Image SR 

Network Integrating SGA and GGS 

The Aerial Image Dataset (AID) dataset is a large 

benchmark dataset for RS image scene categorization, 

issued by Huazhong University of Science and 

Technology (HUST) and Wuhan University (WHU) in 

2017 [5]. The dataset collected and annotated over 

10000 high-resolution aerial scene images from Google 

Earth imagery [2]. To confirm the capability of the 

raised algorithm, the training ratios of the dataset were 

set to 20% and 50%, respectively, and the corresponding 

results were recorded, as shown in Figure 8. 

 

  

a) 20 percent training ratio. b) 50 percent training ratio. 

Figure 8. Loss curve generated by the research algorithm on AID dataset. 

Figure 8-a) indicates the loss curve of the algorithm 

on the AID dataset under a 20% training ratio. From 

Figure 8-a), as the iteration count rose, both the training 

loss and validation loss of the algorithm showed a 

steady downward trend. When the iteration count was 

200, the training loss and real loss reached a minimum 

of 0.4 and 0.9, respectively. Figure 8-b) shows the loss 

curve of the algorithm on the AID dataset under a 50% 

training ratio. From Figure 8-b), when the iteration 

count reached 200, the training loss reached the lowest 

value of 0.1, while the validation loss dropped to 0.5. To 

visually display the distribution of different categories 

of images in the feature space and explore the impact of 

AMs on different levels of features, ResNet18 was 

selected as the backbone network to extract features. On 

the AID dataset, different levels of feature vectors V1, 

V2, V3, and V4 were visualized using research 

algorithms and research algorithms without AMs. V1 

represents the highest level feature vector, followed by 

V2, while V3 and V4 represent lower and lowest level 

feature vectors, respectively. The outcomes are in Figure 

9. 

 

    

a) V1 in the comparison algorithm. b) V2 in the comparison algorithm. c) V3 in the comparison algorithm. d) V4 in the comparison algorithm. 

    

e) Study V1 in the algorithm. f) Study V2 in the algorithm. g) Study V3 in the algorithm. h) Study V4 in the algorithm. 

Figure 9. Visualization of feature distribution at different scales of AID dataset. 

Figure 9-a) is an illustrative representation of the V1 visualization of the comparative method, which showed 

(15) 

(14) 
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significant confusion and overlap in classification 

performance. Figure 9-b) is a visualization diagram of 

the V2 comparison method, which showed an 

improvement in classification performance compared to 

V1. Figure 9-c) is a schematic diagram of the V3 

visualization of the comparative method, with its effect 

located before V2. Figure 9-d) indicates the V4 

visualization diagram of the comparative method, which 

presented a better effect. Figure 9-e) indicates the 

visualization of V1 for the research method, which had 

a classification effect second only to V3 for the 

comparison method. Figure 9-f) indicates the 

visualization of V2 for the research method, which had 

a higher classification effect than V4 for the comparison 

method. Figure 9-g) indicates the visualization of V3 for 

the research method, which had a better classification 

effect; Figure 9-h) indicates the V4 visualization 

diagram of the research method, where the inter class 

distance of samples from different categories 

significantly increased and the intra class clustering was 

stronger. To examine the effects of varying degrees of 

FMs on overall classification accuracy, a comparison 

was made between the classification accuracy of 

different classification algorithms Convolutional Neural 

Network (CNN), ResNet18, ResNet50, and the 

classification accuracy of the research algorithm, as 

shown in Figure 10. 

Figure 10-a) indicates the comparison results of the 

classification accuracy of different classification 

algorithms on low-level feature dimension maps. From 

Figure 10-a), the research algorithm had the highest 

classification accuracy, with an average of about 93.2%. 

Figure 10-b) indicates the comparison results of the 

classification accuracy of different classification 

algorithms on the mid-level feature dimension map. 

From Figure 10-b), the CNN algorithm had the lowest 

classification accuracy, with an average classification 

accuracy of about 86.5%, while the research algorithm 

had the highest average classification accuracy, at 

92.8%. Figure 10-c) shows the comparison results of the 

classification accuracy of different classification 

algorithms on high-level feature dimension maps. From 

Figure 10-c), although the classification accuracy of the 

research algorithm in high-level feature dimension 

maps was lower than that in low to medium dimensions, 

it was much higher than the average classification 

accuracy of CNN, which was 89.3%. The Fujian 

Regional Remote Sensing Image Dataset for Scene 

classification (FJ-RSIDS) is a professional dataset 

focusing on the classification research of regional RS 

images. With Fujian region as the core research object, 

it provides rich high-resolution image resources for 

geospatial information analysis. This dataset contains 

approximately 5,000 RS images in total. The resolution 

of the original images’ ranges from 0.5 to 2 meters per 

pixel, which can clearly capture the detailed features of 

ground objects. The data collection covers the entire 

seasonal cycle of spring, summer, autumn and winter. 

The vegetation coverage shows significant 

spatiotemporal variation characteristics in different 

phenological periods, providing diverse samples for the 

dynamic monitoring and classification research of 

vegetation. To verify the performance of the research 

algorithm in terms of classification performance, 

classification tests were conducted on the FJ-RIDS 

dataset, and the test results are in Figure 11. 

 

   

a) Low level. b) Mesolevel. c) High level. 

Figure 10. Accuracy difference of classifiers at different layers on the AID dataset. 

  

a) Obfuscation matrix results. b) Accuracy, recall and F1 values. 

Figure 11. The classification results of FJ-RSIDS dataset. 
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Figure 11-a) indicates the confusion matrix of the 

research algorithm on the FJ-RIDS dataset. From Figure 

11-a), the confusion matrix values of playground 2, 

forest land 9, and salt field 12 were the highest, all at 

99.7. Figure 11-b) shows the accuracy, recall rate and F1 

value of the research algorithm in the FJ-RSIDS dataset. 

From Figure 11-b), the average accuracy of the research 

algorithm in the FJ-RSIDS dataset was 98.76, of which 

the accuracy of No. 11 coastal mudflat was the lowest, 

95%. The average recall rate of the research algorithm 

in the FJ-RIDS dataset was 98.17%. The F1 value of the 

research algorithm was highest at 98.25% and lowest at 

96.23. The research results indicated that the algorithm 

performed well on the FJ-RIDS dataset and could 

effectively handle SR classification tasks of hyper-

spectral images. 

3.2. Model Performance and Application Effect 

Analysis 

To confirm the performance of the raised model, 

Bicubic and RCAN were used as comparative models 

for experiments, and the experimental out-comes are in 

Table 1. 

According to Table 1, the RMSE index of the 

research model was lower than that of Bicubic and 

RCAN models in all datasets. In the Pavia Centre 

dataset, the RMSE value was only 0.0334, which was 

lower than Bicubic’s 0.0432 and RCAN’s 0.0352, 

indicating that the deviation between the forecasted 

outcomes of the research model and the true values was 

smaller and the accuracy was higher. For park 

management decisions, more accurate predictive data 

can help managers assess the current situation and 

changing trends of the ecological environment more 

accurately, thereby formulating more scientific and 

reasonable resource allocation and protection strategies 

and avoiding decision making mistakes caused by data 

deviations. In terms of PSNR index, the research model 

achieved 45.727 on the Houston dataset, higher than 

Bicubic’s 40.672 and RCAN’s 44.333, indicating that 

the image quality restored by the research model was 

higher and the noise impact was smaller. In the 

management of ecological parks, high-quality image 

data helps managers observe the vegetation coverage, 

topography and other conditions within the park more 

clearly, and then plan ecological tourism routes more 

effectively and assess the carrying capacity of the 

ecological environment, providing strong support for 

the balance between ecological protection and tourism 

development. In terms of SSIM indicators, the research 

model achieved 0.8495 on the Pavia Centre dataset, 

which was higher than Bicubic’s 0.7353 and RCAN’s 

0.8329, indicating that the research model could better 

preserve the structural information of images. In the 

SAM index, the research model had a value of 2.7525 

on the Chikusei dataset, which was lower than Bicubic’s 

3.6372 and RCAN’s 4.1815, indicating that the research 

model was more accurate in spectral feature matching. 

For park managers, images that retain complete 

structural information can help them more accurately 

identify the ecosystem structure within the park, such as 

the distribution of wetlands, forests and other areas, 

thereby formulating more targeted ecological protection 

measures to safeguard the integrity and stability of the 

ecosystem. The computational complexity of different 

models is in Figure 12. 

Table 1. Performance of various models on various datasets. 

Data set Pavia centre Houston Chikusei 

Model Bicubic RCAN 
Research 

model 

Increase by 

percentage 
Bicubic RCAN 

Research 

model 

Increase by 

percentage 
Bicubic RCAN 

Research 

model 

Increase by 

percentage 

RMSE 0.0432 0.0352 0.0334 22.69% 0.0112 0.0075 0.0064 42.86% 0.0168 0.0170 0.0124 26.19% 

PSNR 28.085 29.908 30.387 8.19% 40.672 44.333 45.727 12.43% 38.148 37.672 40.905 7.23% 

SSIM 0.7353 0.8329 0.8495 15.53% 0.9568 0.9690 0.9779 2.20% 0.8942 0.8788 0.9348 4.54% 

SAM 7.4967 6.7311 6.1359 18.15% 2.2782 2.1076 1.8356 19.43% 3.6372 4.1815 2.7525 24.33% 

 

 

Figure 12. Computational complexity of various models. 

As shown in Figure 12, the UTNet model had high 

time and space complexity, and its accuracy was 

substantially lower than the others. The SegNet model 

had a high prediction accuracy of 64, but had low time 

and space complexity, while the Deeplab v3+model had 

the fastest prediction speed. The research model not 

only had the lowest time and space complexity, but also 

had the highest prediction accuracy, at 69. In RS 

observation, the apearance of land phenomena in RS 

images presents different patterns with different scale 

units, and their spatial structure and information 

extraction accuracy also vary accordingly. Therefore, 

scale effect is a crucial factor that cannot be ignored 

when extracting land cover information from RS 

images. The study selected RS image data with 

resolutions of 0.75m, 3m, and 8m, and used maximum 

likelihood method and support vector method as 

comparison methods to explore the impact of scale 

effects on the extraction of ecological capacity 
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information for forest park visitors. The comparison of 

the extraction effects of various approaches on the 

ecological capacity information of forest park visitors is 

in Figure 13. 

 

  

a) Overall Precision comparison diagram. b) Kappa coefficient comparison chart. 

Figure 13. Comparison of the extraction effects of different methods on the ecological capacity information of tourists in forest parks. 

Figure 13-a) shows a comparison of the over-all 

accuracy of extracting ecological capacity information 

for forest park visitors using different methods. From 

Figure 13-a), regardless of at 0.75m, 3m, or 8m, the 

research method had the highest overall accuracy in 

extracting ecological capacity information for forest 

park visitors compared to the comparison algorithm. 

When the resolution was 3m, the overall accuracy of the 

research algorithm in extracting ecological capacity 

information for forest park visitors was 91.2%. Figure 

13-b) shows a comparison of Kappa coefficients for 

extracting ecological capacity information of forest park 

visitors using different methods. From Figure 13-b), at 

a 3-meter resolution, the Kappa coefficients of the three 

methods all reached the highest values, which were 

0.94, 0.79, and 0.84, respectively. Among them, the 

method proposed in the study had the highest Kappa 

coefficient, further verifying the superiority of the 

research method in extracting ecological capacity 

information of forest park visitors. Ecological 

environment capacity pertains to the upper limit of 

tourists that a tourist area can carry without disrupting 

ecological balance. The spatial environmental capacity 

pertains to the upper limit of tourists that a tourist area 

can carry in space. The psychological environment 

capacity of tourists refers to the comfort and satisfaction 

they feel during the tourism process. Facility 

environmental capacity pertains to the upper limit of 

tourists that the facilities in a tourist area can serve. To 

confirm the effectiveness of the raised approach in 

forest parks, the Qilian Mountain Park was taken as an 

example to apply the research method to predict the 

ecological tourism environmental capacity of the park. 

The prediction outcomes are in Table 2. 

According to Table 2, the research method 

demonstrated good predictive ability in predicting the 

ecological tourism environmental capacity of Qilian 

Mountain Forest national park. From the perspective of 

ecological environment capacity, the predicted value 

was 31.4268 million people. The predicted spatial 

environment capacity reached 104.8325 million people, 

which was highly consistent with the number of tourists 

that the park’s vast geographic space could 

accommodate, reflecting the scientific and accurate 

consideration of spatial factors in the research method. 

The predicted psychological environment capacity of 

tourists was 115.7436 million, and the predicted facility 

environment capacity was 334200, which was closely 

related to the actual service capacity of the current 

facilities in the park, further verifying the reliability of 

the research method in predicting the facility dimension. 

The comprehensive calculation showed that the tourism 

environment capacity was 64.8402 million people, 

which was the result of the synergistic effect of accurate 

prediction of capacity in various dimensions. This 

strongly proved the validity and advantage of the 

research method in comprehensively predicting the 

ecological tourism environment capacity. 

Table 2. Prediction outcomes of eco-tourism environmental capacity 
in Qilian Mountain Forest national park. 

Ecotourism environmental 

capacity name 

Real capacity 

(10,000 people) 

Forecast capacity 

(10,000 people) 

Ecological environmental capacity 3142.65 3142.68 

Space environment capacity 10483.94 10483.25 

Tourist psychological environment 

capacity 
11574.75 11574.36 

Facility environmental capacity 33.45 33.42 

Tourism environmental capacity 6484.83 6484.02 

4. Discussions 

In the realm of studying the ecological capacity of 

visitors in forest parks, RS images offer a wealth of 

surface-related data. This invaluable information 

facilitates a precise assessment of various dimensions, 

including the ecological environment capacity, spatial 

environment capacity, tourists’ psychological 

environment capacity, and facility environment 

capacity. However, how to extract effective features 

from complex and diverse RS images remains an 
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important challenge in current research. The study 

proposes a research method that integrates AMs, aiming 

to improve the accuracy of predicting the ecological 

capacity of forest park visitors by optimizing the feature 

extraction process. 

From the perspective of algorithm performance, the 

research algorithm demonstrated good convergence in 

AID dataset testing. At different training ratios, as the 

number of iterations increased, both the training loss 

value and the validation loss value steadily decreased. 

When the training ratio was 20%, the training loss 

reached 0.4 after 200 iterations, and the validation loss 

was 0.9. When the training ratio was 50%, the training 

loss decreased to 0.1 after 200 iterations, and the 

validation loss was 0.5, indicating that the algorithm 

could effectively converge under different training 

conditions, providing a guarantee for its stability in 

practical applications. This is consistent with the results 

obtained by Peng et al. [20] in the study of the 

spatiotemporal feature extraction classification 

framework for arrhythmia grounded on the Seq2Seq 

model with AM. In terms of feature vector visualization, 

compared with the comparison method without AM, the 

research method significantly improved the inter class 

distribution and intra class distance of different levels of 

features by introducing residual attention module, 

making the discrimination between samples of different 

categories higher. In V4 feature vector visualization, the 

inter class distance was significantly increased, and the 

intra class aggregation was stronger, further enhancing 

the separability of features, fully demonstrating the 

effectiveness of AM in improving feature extraction and 

classification performance. Yu et al. [31] also obtained 

similar results in hyper-spectral feature extraction 

research based on deep spectral spatial feature fusion 

multi-scale adaptive attention network. 

In tests on different datasets, the research model 

outperformed Bicubic and RCAN models in metrics 

such as RMSE, PSNR, SSIM, and SAM, fully 

demonstrating its outstanding performance in image 

reconstruction and feature extraction. This result is 

consistent with Chen et al.’s [6] research on digital 

elevation model SR in CNNs. The research method had 

significant advantages in extracting ecological capacity 

information for forest park visitors. In the prediction of 

ecological tourism environmental capacity in Qilian 

Mountain Forest national park, research methods 

showed good predictive ability. The predicted values of 

ecological environment capacity were 31.4268 million 

people, spatial environment capacity was 104.8325 

million people, tourist psychological environment 

capacity was 115.7436 million people, and facility 

environment capacity was 334200 people, all of which 

closely mirrored the actual conditions of the park. The 

comprehensive calculation of the tourism environment 

capacity was 64.8402 million people, providing a key 

reference for park tourism planning. This aligns with the 

findings obtained by Lu et al. [17] in evaluating the 

sustainable development of the middle and lower 

reaches of the yellow river basin using multiple data 

sources. 

In summary, the research method of integrating AM 

and RS images performed well in the study of ecological 

capacity of forest park visitors. By introducing residual 

attention module, the separability and classification 

accuracy of features were significantly improved, and 

its effectiveness and robustness were verified on 

multiple datasets. The research outcomes provided a 

scientific basis for the tourism planning and 

management of forest parks, demonstrating the 

enormous potential of this method in practical 

applications. 

5. Conclusions 

A method for measuring the ecological capacity of 

forest park tourists by integrating AM and RS imaging 

technology was proposed to address the balance 

between ecological protection and tourist carrying 

capacity in the current development of ecotourism. The 

method was tested, and the test results showed that in 

terms of classification accuracy for different levels of 

feature dimension maps, the average classification 

accuracy of the research algorithm for low-level feature 

dimension maps was about 93.2%. In the mid-level 

feature dimension map, the average classification 

accuracy of the research algorithm was still the highest, 

at 92.8%. On the high-level feature dimension map, the 

classification accuracy of the research algorithm also 

reached 89.3%. In the comparison of the extraction 

effect of ecological capacity information for forest park 

visitors, when the resolution was set to 3m, the overall 

accuracy of the research method for extracting relevant 

information was as high as 91.2%. At this resolution, the 

Kappa coefficients of the three methods reached their 

respective highest values, with the Kappa coefficient of 

the research method being 0.94. From a practical 

standpoint, research methods can offer valuable 

reference approaches and innovative ideas for 

investigating tourist ecological capacity within 

ecotourism regions. However, in some complex 

ecological scenarios, the ability of research methods to 

capture the dynamic changes of ecological factors still 

needs to be improved. The ecological environment of 

the ecotourism area changed significantly with the 

change of seasons. The research method failed to 

capture these dynamic characteristics that changed over 

time, resulting in the assessment results of ecological 

capacity being inconsistent with the actual situation. 

Tourist flow and behavioral patterns may fluctuate due 

to holidays, special events, or policy changes. Research 

methods cannot reflect these changes in real time, 

thereby affecting the accurate prediction of tourism 

environmental capacity. Future research can combine 

various data sources such as RS data, ground 

observation data, meteorological data and 
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socioeconomic data to obtain a more comprehensive 

and accurate assessment of ecological capacity. 
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