
The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025 873

NS-PPO: A Two-Stage Data Resampling

Framework for the Initial Phase of Software Defect

Prediction

Xiaowei Zhao

School of Computer Science and Engineering

Digital Research Department, South China University

of Technology, China Southern Power Grid, China

zhaoxw@csg.cn

Xuanye Wang
School of Computer Science and Engineering

South China University of Technology, China
202310188991@mail.scut.edu.cn

Siliang Suo

Electric Power Research Institute, China Southern

Power Grid, China

suosl@csg.cn

Lu Lu

School of Computer Science and Engineering

South China University of Technology, China
lul@scut.edu.cn

Abstract: Software Defect Prediction (SDP) is one of the most reliability assurance methods before the delivery of software

projects. However, class imbalance is a common issue in software projects, significantly hindering the ability of SDP methods to

distinguish between defective and non-defective instances. Recently, although several SDP imbalance-handling methods have

achieved certain success, they still exhibit limitations in terms of reliability and applicability. To address this, this paper proposes

Neighborhood cleaning rule and Synthetic minority oversampling technique with Proximal Policy Optimization-based adaptive

sampling (NS-PPO), a two stage-based data resampling framework aimed at mitigating the impact of class imbalance in software

projects. NS-PPO operates in two phases. In the first phase, a hybrid sampler that combines Neighborhood CLeaning rule (NCL)

and Synthetic Minority Oversampling TEchnique (SMOTE) is employed to generate a large number of synthetic samples for

minority instances. In the second phase, a Deep Reinforcement Learning (DRL)-based undersampler is designed to filter high-

quality synthetic samples. These selected samples are then combined with real samples to form the training set for the SDP

methods. Extensive experiments are conducted on 18 software projects from the PRedictOr Models In Software Engineering

(PROMISE) and National Aeronautics and Space Administration (NASA) datasets, with Matthews Correlation Coefficient

(MCC), Area Under the Curve (AUC), and F-measure used as evaluation metrics. The findings demonstrate that, regardless of

whether expert metrics or semantic metrics are used as inputs for SDP methods, NS-PPO exhibits significant advantages over

the state-of-the-art SDP imbalance-handling methods, including Learning-To-Rank UnderSampling (LTRUS).

Keywords: Software defect prediction, class imbalance, deep reinforcement learning.

Received January 18, 2025; accepted June 30, 2025

https://doi.org/10.34028/iajit/22/5/3

1. Introduction

After a software project is released, even a minor defect

can result in serious consequences, including system

crashes, data loss, and reduced user satisfaction [39].

Therefore, identifying software defects early in the

development cycle is essential for ensuring the software

reliability. Existing Software Defect Prediction (SDP)

methods utilize historical data to build machine learning-

based classifiers, aiming to predict the presence of

defects in future datasets [36]. However, software

projects often suffer from significant class imbalance,

where the number of non-defective instances may be

much larger than that of defective ones. This issue results

in an SDP classifier that prioritizes the majority class

while neglecting the minority class, thereby leading to

biased prediction performance [12]. Software

engineering practitioners employ data resampling

techniques to mitigate the class imbalance issue. Data

resampling techniques can be broadly categorized into

two types: Undersampling and oversampling [1].

Undersampling reduces class imbalance by removing a

portion of samples from the majority class, while

oversampling enhances the representation of the

minority class by generating synthetic samples. Together,

these techniques help achieve a balanced class

distribution in the training set.

Common undersampling techniques used in SDP

include Random Under Sampling (RUS) and Edited

Nearest Neighbor (ENN). RUS reduces class imbalance

by randomly removing samples from the majority class,

though this approach may risk discarding valuable

information [4]. ENN leverages the K-Nearest

Neighbors (KNN) algorithm to eliminate noisy or

borderline samples [26]. Typical oversampling

techniques include the Synthetic Minority Oversampling

TEchnique (SMOTE) and cluster centroids. SMOTE

generates synthetic samples by interpolating between

https://doi.org/10.34028/iajit/22/5/3

874 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

existing minority class instances, resulting in a more

balanced class distribution [4]. Cluster centroids

employs the K-means clustering algorithm to compute

cluster centers, which are then used to generate new

samples [11]. Previous SDP methods have typically

tackled the class imbalance issue in software projects by

using common data resampling techniques. Khleel and

Nehez [20] combined SMOTE with Bidirectional Long

Short-Term Memory (Bi-LSTM) and successfully

demonstrated its effectiveness. Feng et al. [11] proposed

a learning-based termination condition for RUS, treating

the undersampling process of software instances as a

ranking task, where instances with lower ranks are

prioritized for removal. Yang et al. [40] conducted a

comparative analysis of data resampling techniques in

SDP methods, and the results suggest that, oversampling

outperform undersampling. Despite the significant

progress made in previous studies, several shortcomings

remain evident:

1. Common data resampling methods used in SDP

studies rely on predefined sampling rules, lacking the

ability to dynamically adjust based on the feature

distribution of software instances or the training

performance [19, 20, 26].

2. Previous SDP imbalance-handling studies have

mainly focused on the expert metrics-based features

of software instances, neglecting the semantic

features [11, 12].

Extensive SDP studies indicate that semantic features,

compared to expert features, contain richer contextual

information, which can achieve superior performance

[31, 36, 42]. Furthermore, even within the same project,

there can be significant differences in the feature

distributions of expert metrics and semantic features.

Therefore, while some SDP imbalance-handling

methods perform well with expert metrics, they often

cannot be directly transferred to semantic features.

To address the above issues, this paper proposes a

two-stage data sampling framework, Neighborhood

cleaning rule and Synthetic minority oversampling

technique with Proximal Policy Optimization-based

adaptive sampling (NS-PPO), to mitigate the class

imbalance in SDP methods. Specifically, NS-PPO

consists of two stages. In the first stage, the framework

leverages prior knowledge from previous SDP studies to

develop a hybrid sampler that combines the

Neighborhood CLeaning rule (NCL) and SMOTE [6].

This sampler first applies NCL to remove overlapping

class samples. Then, based on the cleaned dataset, it uses

SMOTE to generate a large number of synthetic samples

for the minority class. In the second stage, the framework

introduces a Deep Reinforcement Learning (DRL)-

based undersampler, framing the undersampling process

of synthetic samples as a Markov Decision Process

(MDP) to dynamically optimize the sampling strategies.

By constructing a simple SDP classifier, the sampler

iteratively refines the sampling strategy based on the

classifier’s performance on the validation set, allowing

for more effective sample selection. To validate the

effectiveness of NS-PPO, experiments are conducted on

18 open-source software projects from the Predictor

Models in Software Engineering (PROMISE) and

National Aeronautics and Space Administration (NASA)

datasets, using F-measure, Area Under the Curve (AUC),

and Matthews Correlation Coefficient (MCC) as

evaluation metrics and employing Scott-Knott Effect Size

Difference (ESD(tests. The experimental results

demonstrate that the method using NS-PPO for software

instance sampling outperforms baseline methods,

including Learning-To-Rank Under-Sampling (LTRUS).

In summary, the main contributions of this paper are

as follows:

 By introducing DRL theory, this paper models the

undersampling process of synthetic software

instances as a MDP, enabling the sampler to

dynamically adjust based on the characteristics of

instances and the training performance.

 A two-stage sampling framework, NS-PPO, is

proposed to mitigate the imbalance issue in SDP

methods. NS-PPO first generates a large number of

synthetic samples using NCL and SMOTE, then

optimizes the undersampling process using the

Proximal Policy Optimization (PPO) algorithm.

Ablation experiments highlight the essential role of

each step.

 Experimental results on 18 software projects show

that NS-PPO achieves significant performance over

baseline methods in terms of both expert metrics-

based features and semantic features.

The structure of this paper is as follows: Section 2

presents the related work; section 3 provides a detailed

description of the proposed method; section 4 outlines

the experimental setup; section 5 discusses the

experimental results; and section 6 concludes the paper

and offers suggestions for future work.

2. Related Work

In this section, we introduce the previous SDP research

and the background on data resampling techniques.

2.1. The SDP Research

The goal of SDP is to support software development

teams in ensuring software reliability throughout the

development lifecycle [27]. By leveraging historical data,

SDP methods construct defect prediction models that

assist developers in identifying potential defects in pre-

release software [8, 36].

In early SDP research, the community primarily

focused on designing effective expert metrics to

construct machine learning-based classifiers. Okutan

and Yildiz [30] proposed two additional metrics,

Number of Developers (NoD) and Source Code Quality

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 875

(LOCQ), and used a Bayesian network to assess the

impact of metrics on defect prediction. Nam and Kim [28]

focused on the magnitude of expert metrics to determine

the presence of defects in software instances.

With the widespread adoption of deep learning

techniques across various fields, the community has

found that deep representation learning can effectively

capture potential defects from semantic features [24].

Pan et al. [31] designed an Improved Convolutional

Neural Networks (ICNN) model to perform

representation learning for Abstract Syntax Trees (ASTs)

of source code. Zhou et al. [42] introduced a Two-Stage

Encoding (TSE) method to identify defect information

within the code context. Liu et al. [25] employed the pre-

trained UniXcoder to extract defect-prone features from

source code. Yang et al. [38] extracted Program

Dependency Graphs (PDGs) from source code and

constructed a graph convolutional network for fine-

grained defect prediction. Jiang et al. [17] proposed an

enhanced AST-based defect prediction method that

integrates semantic and syntactic information. Although

semantic features provide rich contextual information

from source code, the deep learning techniques need to

extract these features often entail substantial

computational resources. In contrast, expert metrics-

based SDP methods continue to be a popular focus in

current SDP research, owing to their simple model

architecture and rapid training efficiency.

2.2. The Data Resampling Technique

Software projects face the challenge of class imbalance,

which often causes classifiers to prioritize the majority

class while neglecting the minority class. Consequently,

migrating the class imbalance issue has remained a

central focus in SDP research.

At the data level, the community employs data

resampling techniques to migrate the class imbalance

issue. Data resampling techniques can be divided into

two main categories: Undersampling and oversampling

methods. Chen et al. [6] proposed an SDP method that

achieves balanced subsets by performing multiple

rounds of RUS and using the AdaBoost mechanism to

construct an SDP classifier. Goyal [14] introduced a

neighborhood-based undersampling technique, which

outperformed traditional undersampling methods in SDP.

Feng et al. [11] highlighted that RUS could lead to the

loss of critical information. To mitigate this problem,

they proposed an optimized termination condition based

on the differential evolution algorithm, which adapts to

the characteristics of the training set to minimize the

information loss caused by RUS. Liu et al. [26]

employed a random search approach to optimize the

hyperparameters of SMOTE and neural networks.

Khleel and Nehez [19] employed the SMOTE-Tomek

method to generate synthetic samples for the minority

class while removing overlapping instances. Kim and

Chung [22] evaluated the performance of four

oversampling techniques on both machine learning-

based and deep learning-based SDP methods. Their

results indicated that oversampling techniques are more

suitable for machine learning-based SDP methods.

However, in deep learning tasks, they still relied on

expert-based metrics as inputs, overlooking the

importance of semantic metrics. Gupta et al. [15] utilized

the SMOTE-tomek method to mitigate class imbalance

and employed a genetic algorithm-optimized SDP

classifier.

3. Methodology

This section offers a comprehensive explanation of each

step within the NS-PPO framework. Specifically, NS-

PPO consists of two key stages: in the first stage, a

hybrid sampler is constructed to generate a large number

of synthetic samples for the minority class instances. In

the second stage, a DRL-based undersampler is designed

to filter synthetic samples based on the feature

distribution and the training performance. The filtered

samples are then combined with the original training set

to serve as the training data for SDP methods. The

overall framework of NS-PPO is shown in Figure 1.

Figure 1. The overall framework of NS-PPO.

876 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

(1)

3.1. Data Preprocessing

As described in section 2, SDP methods rely on expert

metrics or semantic features extracted from instances.

Expert metrics are derived through the manual analysis

to assess various aspects, including code quality,

complexity, and readability. For example, cyclomatic

complexity, which quantifies the number of branches

and loops in the code, aids software engineers in

evaluating the logical structure of instances. Lower

cyclomatic complexity indicates simpler logic,

enhancing the code's readability and ease of

understanding. However, extracting these metrics relies

heavily on expert knowledge, making the process both

time-consuming and costly. Additionally, these metrics

mainly capture structural information and offer limited

representation of the richer contextual semantics [25, 42].

Both the PROMISE and NASA datasets provide expert

metrics for each instance, eliminating the need for

additional preprocessing and allowing for direct use.

Moreover, a detailed description of the expert metrics

used in this study can also be found in [18].

Semantic features represent the logical meaning and

functional information embedded within the instance. In

SDP methods, static analysis of the source code is

employed to extract its structured representations, such

as the ASTs. AST is a tree-like structure where each

node represents a specific syntactic element of the source

code. An example of an AST is shown in Figure 2.

Compared to handcrafted metrics, AST-based semantic

features not only capture the structural details of the code

but also provide richer contextual information, leading

to superior prediction performance. Building on the

preprocessing methods described in ICNN and TSE, this

study utilizes the javalang tool to extract the ASTs as

semantic features. Specific node types are retained and

transformed into vectorized sequences [31, 42].

Figure 2. An example of an AST Structure. Black arrows represent

the data flow between AST nodes, while red arrows indicate the

extraction order of nodes in SDP methods.

3.2. Hybrid Sampler for Synthetic Sample

Generation

The bias caused by differences in sample sizes across

classes is not the only factor that makes the challenge of

model learning in the class imbalance issue [9]. In fact,

even with balanced datasets, the presence of class

overlap can still lead to a significant drop in classifier

performance. In previous SDP studies, data resampling

techniques have primarily focused on balancing sample

quantities, while the issue of class overlap has often been

overlooked [2, 10].

The class overlap issue occurs when samples from

different classes share the same region within the feature

space. In this region, samples originate from distinct

classes but exhibit similar feature distributions. Due to

the high similarity, SDP classifiers struggle to

distinguish between them during the training process.

Figure 3 contrasts an ideal balanced data distribution

with one that exhibits the class overlap phenomenon.

a) Imbalanced dataset.

b) Overlap between classes.

Figure 3. A comparative example of an ideal balanced dataset versus

a dataset with the class overlap issue.

To mitigate the issue of feature overlap between

software instances, the first phase of hybrid sampler

integrates a domain-cleaning approach based on the

KNN algorithm, specifically the NCL [23]. The cleaning

process of NCL includes the following steps:

 Neighborhood construction: the neighborhood of

each sample under evaluation is determined by

arranging other known samples in ascending order

based on the Euclidean distance. The neighborhood

consists of k-nearest samples, which may include

samples from both majority and minority class. The

Euclidean distance is calculated as follows:

𝑑(𝑥𝑖 , 𝑥𝑗) = √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑛

𝑘=1

where xi and xj are the feature vectors of the samples, and

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 877

(2)

(3)

(4)

(5)

(6)

n is the dimensionality of the feature space.

 Classification assessment: for the sample under

evaluation, if the KNN classifier identifies it as

misclassified or finds that its presence causes

neighboring minority class samples to be

misclassified as majority class samples, the sample is

deemed detrimental to classification performance.

 Sample cleaning: all samples labeled as boundary

samples are removed from the training set to reduce

redundant features.

SMOTE generates synthetic samples for the minority

class by interpolating within its feature space [29].

Following the resolution of inter-class overlap, the

hybrid sampler employs the SMOTE to produce a

substantial number of synthetic samples. The detailed

steps are as follows:

 Neighborhood construction: for each minority class

sample, the KNN algorithm is used to find its

neighbors in the feature space.

 Synthetic sample generation: a synthetic sample is

generated by randomly selecting one neighbor from

the nearest neighbors of each minority class sample

and performing linear interpolation based on the

distance between the sample and the selected

neighbor. The process is illustrated as follows:

𝑥𝑛𝑒𝑤 = 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜆 × (𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙)

Wher λ e a value randomly generated in the range [0, 1],

xoriainal is the current sample, and xneighor is the selected

neighbor.

In the first stage of NS-PPO, the hybrid sampler

generates synthetic samples until the number of minority

class samples reaches five times that of the majority class.

The purpose of generating a large number of synthetic

samples is to enable the undersampler in the second satge

to thoroughly learn the feature distribution of the

software instances.

3.3. DRL-Based Undersampler

Reinforcement Learning (RL) focuses on training an

agent to discover the optimal action policy for a specific

task through trial-and-error interactions and feedback

from its environment. The principle of RL lies in

enabling an agent to interact with its environment by

observing its state, taking actions, and receiving rewards

or penalties, thereby continuously optimizing its

decision-making process [37]. Notably, RL consists of

the following key components:

 Agent: the agent is the decision-maker that interacts

with the environment, performs actions, and learns

from the feedback it receives.

 State (st): st represents the agent’s perception of the

environment at a specific time step.

 Action (at): at represents the decision the agent makes

in a given state.

 Reward (rt): rt is the feedback signal provided by the

environment after the agent takes an action.

 Policy (π): π defines the agent’s action-selection

strategy, represented as a probability distribution

π(a∣s).

The goal of the agent is to learn an optimal policy

through continuous interaction with the environment,

maximizing the long-term accumulated rewards. RL

introduces state value functions and action value

functions to evaluate the effectiveness of a policy. The

state value Vπ(s) evaluates the expected cumulative

reward that the agent can obtain by following policy π

from state s, as shown in the following Equation (3):

𝑉 𝜋(𝑠) = 𝐸𝜋 [∑ 𝛾𝑡𝑟𝑡|𝑠𝑡

∞

𝑡=0

= 𝑠]

Where 𝛾 is the discount factor, which is used to measure

the importance of future rewards. The action value

function Q𝜋(s, a) evaluates the expected cumulative

reward of an agent starting from state s, taking action a,

and then following policy π. This can be expressed as

follows:

𝑄 𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑟𝑡+1 + 𝛾 ∙ 𝑄 𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]

DRL combines the decision-making capability of RL

with the representational power of deep neural networks,

leveraging neural networks to approximate value

functions or policies. In the second stage of NS-PPO, the

undersampling process of synthetic samples is

formulated as a MDP, and the undersampler is optimized

using the PPO algorithm. PPO [34] is a classic RL

algorithm designed for policy optimization. It employs

the concept of importance sampling to evaluate the

performance of a new policy based on experiences

gathered from the old policy. At each time step, the

importance sampling ratio is calculated as the probability

ratio between the new policy and the old policy, as

shown below:

𝑟𝑡(𝜃) =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)

where 𝜋𝜃(at\st) represents the probability of selecting

action at in state st under the new policy 𝜋𝜃. In policy

optimization, PPO introduces a “clipped” objective

function to constrain the magnitude of policy updates

during each iteration, ensuring that the updated policy

stays close to the current policy. This function enhances

the stability of the agent throughout the training process

and is defined as follows:

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡]

Where 𝜖 is a clipping hyperparameter that constrains the

range of policy updates to ensure stability. In NS-PPO, 𝜖

is set to 0.2.

In this framework, the synthetic samples generated in

the first phase constitute the state space for undersampler.

These samples are divided into five batches, which are

878 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

(7)

sequentially fed into the agent as input states. The input

states are first passed through a shared network, whose

feature extraction layers consist of two fully connected

layers and two ReLU functions, resulting in a 4-

dimensional feature vector. Subsequently, two

independent linear layers are used to generate the state

value 𝑉θ and the action probability 𝐴θ. The structure of

the shared network is shown in Figure 4. The action

probability 𝐴θ guides the agent in sample selection: when

𝐴θ=0, the sample is discarded; when 𝐴θ=1, the sample is

retained. Additionally, the agent’s reward mechanism is

based on the MCC values, calculated on the validation

set using a lightweight SDP method. A Random Forest

(RF) classifier is employed for expert metric-based

features, while the ICNN method is used for semantic

features. The MCC value is treated as the action value Qθ

while the difference between Qθ and Vθ is regarded as the

reward for the action, as expressed in the following

Equation (7):

𝑅𝑒𝑤𝑎𝑟𝑑𝑁𝑆−𝑃𝑃𝑂 = 𝑄𝜋𝜃
− 𝑉𝜋𝜃

Figure 4. The structure of the shared network.

After iterative optimization, all the synthetic samples

generated from the hybrid sampler are provided to the

agent, and the number of selected samples is determined

by the agent based on its learned policy. Finally, the

high-quality samples selected by the agent are combined

with the original training data to construct the final

training set for SDP methods.

4. Experimental Setup

This section provides an overview of the experimental

setup for this study, including the datasets used, baseline

methods, and evaluation metrics applied.

4.1. Research Questions

This paper seeks to address on the following Research

Questions (RQs) to fill the gaps left by previous SDP

imbalance-handling studies:

 RQ1: how does the performance of NS-PPO compare

to baseline methods when handling expert metrics?

Motivation: previous SDP imbalance-handling studies

have often relied on static environments [19, 20, 26],

making it challenging to adjust based training

performance. To address this limitation, this paper

introduces NS-PPO. RQ1 conducts a comparative

analysis against baseline methods, including LTRUS, to

demonstrate the effectiveness of NS-PPO.

 RQ2: how does the performance of NS-PPO compare

to baseline methods when handling semantic features?

Motivation: previous SDP imbalance-handling studies

have predominantly focused on expert metrics,

overlooking the potential of semantic features [11, 12,

19, 20, 26]. However, semantic features-based SDP

methods tend to achieve superior performance. RQ2

aims to evaluate the applicability of NS-PPO in handling

semantic features by comparing it with baseline methods.

 RQ3: does each component of NS-PPO contribute

positively to its overall performance?

Motivation: RQ3 designs an ablation study to evaluate

the effectiveness of each component within NS-PPO. By

systematically removing the NCL and the DRL-based

undersampler from the framework, the study analyzes

their impact on prediction performance, providing

valuable insights for practitioners in the SDP field.

4.2. Dataset

The experimental datasets are sourced from 15 open-

source software projects from PROMISE and 3 open-

source projects from NASA. As two of the most widely

used SDP datasets, PROMISE and NASA frequently

appear in previous SDP studies [12, 36, 39]. Detailed

information about the selected projects is provided in

Table 1. It is important to note that the NASA dataset

does not include semantic features. Therefore, RQ2 is

conducted exclusively using the PROMISE dataset.

Table 1. Description of 18 projects.

Dataset Project Instance Defect ratio

PROMISE xerces-1.2 439 16.17%

PROMISE lucene-2.4 330 61.52%

PROMISE velocity-1.4 195 75.38%

PROMISE ant-1.4 177 22.60%

PROMISE poi-3.0 438 61.16%

PROMISE camel-1.4 848 17.10%

PROMISE synapse-1.1 222 27.03%

PROMISE lucene-2.0 186 48.92%

PROMISE xalan-2.5 762 50.79%

PROMISE velocity-1.6.1 229 34.06%

PROMISE ivy-2.0 352 11.36%

PROMISE xerces-1.3 452 15.27%

PROMISE xerces-1.4.4 331 64.35%

PROMISE camel-1.6 935 20.11%

PROMISE jedit-4.3 487 2.26%

NASA JM1 9591 18.34

NASA KC1 2095 15.51%

NASA PC3 1099 12.56%

4.3. Baseline Methods

To evaluate the performance of NS-PPO in SDP

methods, this paper compares it with six baseline

methods: RUS, borderline, cluster, SMOTE-ENN,

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 879

(9)

(10)

(11)

(12)

(8)

LTRUS, and LTRUS-ratio. RUS, borderline, cluster,

and SMOTE-ENN are widely used data resampling

techniques in previous SDP studies [11, 12], while

LTRUS and its variant LTRUS-ratio represent State-Of-

The-Art (SOTA) data resampling methods specifically

designed to address the class imbalance issue in SDP. A

brief description of each method is provided below.

 RUS: is a data undersampling technique that achieves

class balance by randomly removing samples from

the majority class [21].

 Borderline: is a boundary-based oversampling

technique that generates minority class samples near

the decision boundary, improving the classifier's

ability to discriminate between classes [16].

 Cluster: is a data undersampling technique that

employs a clustering algorithm, such as K-means, to

group majority class samples. It then substitutes each

cluster with its centroid, effectively reducing the

number of majority class instances [11].

 Smote-ENN: generates synthetic samples using

SMOTE and then removes noisy instances through

ENN, thereby enhancing the quality of the training

data [3].

 LTRUS: treats the undersampling process of

software instances as a learning-to-rank task. It

optimizes a linear model to rank the majority class

instances and removes those ranked at the bottom [11].

 LTRUS-ratio: is a variant of LTRUS that optimizes

the final defect rate, rather than simply balancing the

number of instances between classes [11].

4.4. SDP Methods

In RQ1, we employ three commonly used machine

learning classifiers from previous SDP studies [13, 41]:

RF [5], KNN [7], and Decision Tree (DT) [33]. In RQ2,

we use two deep learning-based SDP methods: ICNN

[31] and TSE [42].

4.5. Evaluation Metrics

The prediction results of an SDP method can be
categorized into four cases:

1) True Positive (TP): the actual class is positive, and

the model correctly predicts it as positive.

2) True Negative (TN): the actual class is negative, and

the model correctly predicts it as negative.

3) False Positive (FP): the actual class is negative, but

the model incorrectly predicts it as positive.

4) False Negative (FN): the actual class is positive, but

the model incorrectly predicts it as negative.

In this study, we use three widely adopted evaluation

metrics in SDP research: F-measure, MCC, and AUC. F-

measure is derived from Recall and Precision. The

specific formulas for these metrics are as follows:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑀𝐶𝐶 =
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

𝐴𝑈𝐶 = ∫ (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) 𝑑 (

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
)

1

0

The values of F-measure and AUC range from 0 to 1,

while MCC ranges from -1 to 1. For all metrics, higher

values indicate superior performance.

After obtaining the evaluation metrics, this

experiment employs the Scott-Knott ESD test to perform

statistical analysis on the impact of NS-PPO and baseline

methods for SDP methods. This test is widely used in

software engineering research for its ability to partition

a set of methods into statistically distinct, non-

overlapping groups based on their performance.

Specifically, the test utilizes hierarchical clustering

combined with effect size analysis to ensure that

groupings are both statistically significant and

practically meaningful. Further details on the Scott-

Knott ESD test can be found in [35].

4.6. Development Environment

The experiment is conducted on a Linux machine

equipped with an AMD MI210 GPU. All experiment

procedures are executed within a Python 3.8

environment, utilizing three primary Python libraries:

pytorch (version 2.1.2+rocm5.6), sklearn (version 1.5.2)

[32], and imblearn (version 0.12.4).

In the second stage of the NS-PPO, the hidden layer

dimension of the shared network is set to 4. The Adam

optimizer is used with a learning rate of 1e-5, and the

model is trained for 20 epochs.

5. Results and Discussion

5.1. Answer to RQ1

RQ1 evaluates the impact of NS-PPO and baseline
methods on expert metrics-based SDP methods. Figure
5 shows the average F-measure performance and Scott-
Knott ESD test results of NS-PPO and six baseline
methods across 18 software projects. The boxplots
illustrate the performance distribution, with mean values
marked in blue. To evaluate the statistical significance of
performance differences, the Scott-Knott ESD test was
employed to group methods based on distinguishable
differences. The group labels above each boxplot
indicate relative rankings: methods within the same
group are not significantly different, while those in
different groups are. Figures 6 and 7 present the same
comparison using AUC and F-measure as evaluation
metrics, respectively. Moreover, to provide a more
comprehensive view, Tables 2, 3, and 4 present the MCC
values of NS-PPO and the six baseline methods on each
software project using DT, KNN, and RF classifiers,

880 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

respectively. Within each table, the “W/D/L” row
statistics summarize the number of wins, draws, and

losses for NS-PPO when compared against the baseline
methods on each respective project.

a) MCC values on DT. b) MCC values on KNN.

c) MCC values on RF.

Figure 5. MCC values and ESD test results for NS-PPO and baseline methods across 18 software projects.

a) AUC values on DT. b) AUC values on KNN.

c) AUC values on RF.

Figure 6. AUC values and ESD test results for NS-PPO and baseline methods across 18 software projects.

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 881

a) F-measure values on DT. b) F-measure values on KNN.

c) F-measure values on RF.

Figure 7. F-measure values and ESD test results for NS-PPO and baseline methods across 18 software projects.

Table 2. MCC values of NS-PPO and baseline methods on DT.

 RUS Borderline Cluster Smote-ENN LTRUS LTRUS-ratio NS-PPO

xerces-1.2 0.080 0.078 0.226 0.061 0.145 0.165 0.087

lucene-2.4 0.486 0.562 0.190 0.334 0.231 0.418 0.385

velocity-1.4 0.786 0.629 0.289 0.236 0.515 0.467 0.404

ant-1.4 0.152 0.035 -0.121 0.000 0.371 0.217 0.473

poi-3.0 0.412 0.312 0.311 0.620 0.536 0.536 0.581

camel-1.4 0.197 0.127 0.018 0.027 0.107 0.123 0.317

synapse-1.1 0.335 0.647 0.321 0.467 0.248 0.255 0.321

lucene-2.0 0.036 -0.168 -0.069 0.382 0.203 0.389 0.15

xalan-2.5 0.123 0.091 0.145 0.325 0.188 0.264 0.279

velocity-1.6.1 -0.024 0.280 0.516 0.189 0.265 0.394 0.399

ivy-2.0 0.119 0.533 0.138 0.204 0.280 0.271 0.553

xerces-1.3 0.406 0.363 0.005 0.528 0.481 0.371 0.614

xerces-1.4.4 0.804 0.834 0.738 0.812 0.776 0.771 0.939

camel-1.6 0.305 0.191 -0.125 0.027 0.037 0.136 0.106

jedit-4.3 0.141 -0.043 -0.189 -0.043 0.023 -0.025 -0.036

JM1 0.205 0.219 -0.107 0.265 0.183 0.229 0.236

KC1 0.183 0.263 -0.311 0.299 0.269 0.208 0.285

PC3 0.246 0.072 0.268 0.173 0.201 0.199 0.289

W/D/L 12/0/6 13/0/5 14/1/3 12/0/6 13/0/5 12/0/6

Table 3. MCC values of NS-PPO and baseline methods on KNN.

 RUS Borderline Cluster Smote-ENN LTRUS LTRUS-ratio NS-PPO

xerces-1.2 -0.089 0.087 0.019 -0.089 0.109 0.129 0.080

lucene-2.4 0.385 0.679 0.385 0.385 0.307 0.283 0.437

velocity-1.4 0.346 0.603 0.3333 0.29 0.610 0.609 0.733

ant-1.4 -0.152 -0.033 -0.265 -0.328 0.046 0.018 -0.121

poi-3.0 0.354 0.354 0.412 0.485 0.489 0.497 0.467

camel-1.4 0.227 0.026 -0.095 0.111 0.157 0.169 0.134

synapse-1.1 -0.071 -0.018 -0.172 0.324 0.228 0.251 0.273

lucene-2.0 0.368 0.368 0.262 0.382 0.285 0.295 0.231

xalan-2.5 0.299 0.305 0.273 0.169 0.444 0.442 0.198

velocity-1.6.1 0.088 0.280 -0.042 0.032 0.300 0.314 0.434

ivy-2.0 0.408 0.348 0.373 0.341 0.214 0.238 0.262

xerces-1.3 0.505 0.604 0.055 0.58 0.412 0.443 0.528

xerces-1.4.4 0.507 0.558 0.413 0.613 0.588 0.660 0.614

camel-1.6 0.092 0.019 -0.257 0.174 0.171 0.230 0.249

jedit-4.3 0.119 -0.029 -0.565 0.207 0.046 0.081 0.167

JM1 0.307 0.261 -0.110 0.297 0.233 0.200 0.187

KC1 0.240 0.402 -0.144 0.438 0.305 0.305 0.300

PC3 0.382 0.303 0.030 0.328 0.327 0.342 0.394

W/D/L 13/0/5 9/0/9 15/0/3 10/0/8 10/0/8 9/0/9

882 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

Table 4. MCC values of NS-PPO and baseline methods on RF.

 RUS Borderline Cluster Smote-ENN LTRUS LTRUS-ratio NS-PPO

xerces-1.2 0.293 -0.094 0.163 -0.043 0.280 0.331 0.357

lucene-2.4 0.550 0.613 0.583 0.619 0.509 0.478 0.634

velocity-1.4 0.544 0.866 0.333 0.545 0.770 0.795 0.866

ant-1.4 0.478 0.119 -0.121 0.473 0.194 0.299 0.396

poi-3.0 0.553 0.428 0.412 0.486 0.594 0.504 0.473

camel-1.4 0.296 0.156 0.086 0.174 0.251 0.327 0.285

synapse-1.1 0.271 0.449 -0.037 0.549 0.339 0.355 0.321

lucene-2.0 0.308 0.149 0.263 0.267 0.377 0.354 0.367

xalan-2.5 0.354 0.354 0.302 0.275 0.411 0.405 0.344

velocity-1.6.1 0.280 0.233 0.464 -0.088 0.269 0.304 0.342

ivy-2.0 0.373 0.718 0.000 0.449 0.369 0.390 0.449

xerces-1.3 0.528 0.604 0.055 0.640 0.509 0.589 0.641

xerces-1.4.4 0.938 0.871 0.805 0.812 0.886 0.863 0.938

camel-1.6 0.370 0.340 0.340 0.353 0.324 0.339 0.421

jedit-4.3 0.174 -0.029 -0.029 -0.029 0.127 -0.025 -0.043

JM1 0.307 0.280 -0.110 0.297 0.192 0.309 0.374

KC1 0.239 0.422 -0.144 0.438 0.258 0.276 0.170

PC3 0.382 0.303 0.030 0.328 0.336 0.433 0.466

W/D/L 11/1/6 12/1/5 15/0/3 12/1/5 12/0/6 12/0/6

In terms of prediction performance, Figure 5

illustrates that NS-PPO achieves the highest average

MCC values across the DT, KNN, and RF classifiers.

The performance is most significant with the DT

classifier, where NS-PPO outperforms LTRUS-ratio by

5.6%, LTRUS by 7.4%, SMOTE-ENN by 8.2%,

borderline by 7.6%, RUS by 7.8%, and cluster by 23%.

As shown in Table 2, it outperforms LTRUS-ratio in 12

projects, LTRUS in 13 projects, SMOTE-ENN in 12

projects, Borderline in 13 projects, RUS in 12 projects,

and Cluster in 14 projects. Moreover, Tables 3 and 4

further demonstrate that NS-PPO consistently surpasses

the advanced baseline LTRUS-ratio in 9 projects under

the KNN classifier and in 12 projects under the RF

classifier. Figure 6 highlights that NS-PPO achieves the

highest average AUC values across all classifiers.

Specifically, on the DT classifier, NS-PPO outperforms

the second-best LTRUS by 3%; on the KNN classifier,

it surpasses the second-best LTRUS by 2.2%; and on the

RF classifier, it exceeds the second-best Borderline by

2.3%. Figure 7 shows that NS-PPO achieves the optimal

F-measure values across all SDP classifiers. Specifically,

on the DT classifier, NS-PPO outperforms the second-

best LTRUS by 4.1%; on the KNN classifier, it surpasses

the second-best LTRUS by 0.9%; and on the RF

classifier, it exceeds the second-best LTRUS by 2.3%.

In terms of the Scott-Knott ESD test results, NS-PPO

demonstrates statistically significant advantages over the

baseline methods across all evaluation metrics on the DT

classifier. For the KNN classifier, NS-PPO shows a

significant advantage in AUC compared to the second-

ranked LTRUS-ratio, but it only demonstrates a slight

lead in F-measure and MCC values. For the RF classifier,

NS-PPO exhibits significant advantages in AUC and F-

measure compared to the baseline methods. However, its

advantage in MCC over LTRUS is marginal and does

not exhibit statistical significance.

Based on the results, the performance of cluster is

limited, primarily due to its reliance on the K-means

algorithm to generate cluster centers. However, K-means

often struggles to accurately capture the feature

distribution of software instances, leading to suboptimal

clustering results. The RUS is also suboptimal, as

random sampling may discard important features,

resulting in a loss of data representativeness. In contrast,

the Borderline and Smote-ENN methods exhibit

improved effectiveness, as they are capable of

generating high-quality samples. However, they may

still introduce additional noise into the synthesized

samples. While Smote-ENN uses the ENN algorithm to

clean noise, its effectiveness remains constrained.

LTRUS and LTRUS-ratio achieve the best performance

compared to other baseline methods. While both

methods incorporate objective functions to optimize

undersampling strategies, their focus is limited to the

undersampling process. Recent research by Yang et al.

[40] suggest that effective oversampling techniques

outperform undersampling techniques when addressing

software instances. NS-PPO builds on this by utilizing a

DRL-based undersampler in its second phase to filter out

noisy samples, leading to superior performance

compared to LTRUS and LTRUS-ratio.

 Finding 1: when handling expert metrics-based

software instances, NS-PPO demonstrates a

significant advantage over baseline methods on DT

and RF, while showing a slight advantage on KNN.

5.2. Answer to RQ2

RQ2 evaluates the impact of NS-PPO and baseline

methods on semantic features-based SDP methods.

Since LTRUS and LTRUS-ratio depend on expert

metrics for ranking tasks, they are excluded from the

comparison in RQ2. Furthermore, due to the lack of

semantic content in the NASA dataset, this evaluation is

conducted on 15 software projects from the PROMISE

dataset. Figure 8 presents the comparative performance

of NS-PPO and baseline methods integrated into the

ICNN, accompanied by the Scott-Knott ESD test results.

Figure 9 reports the corresponding results based on the

TSE.

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 883

a) F-measure values on ICNN. b) MCC values on KNN.

c) AUC values on ICNN.

Figure 8. Performance and ESD test results of the NS-PPO and baseline methods on ICNN.

a) F-measure values on TSE. b) MCC values on TSE.

c) AUC values on TSE.

Figure 9. Performance and ESD test results of the NS-PPO and baseline methods on TSE.

As shown in Figure 8, NS-PPO achieves the highest

average F-measure value, surpassing Borderline by 0.6%,

RUS by 5.2%, SMOTE-ENN by 8.9%, and Cluster by

33.3%. In terms of MCC values, NS-PPO outperforms

RUS by 4.1%, SMOTE-ENN by 8%, borderline by

12.8%, and Cluster by 30.3%. However, NS-PPO shows

a slight disadvantage in the AUC, where it fails behind

RUS and SMOTE-ENN. As shown in Figure 9, NS-PPO

achieves the highest average MCC value with a

significant advantage, outperforming borderline by 6%,

RUS by 10.2%, SMOTE-ENN by 11.4%, and cluster by

18.5%. In terms of AUC values, NS-PPO surpasses

SMOTE-ENN by 0.8%, RUS by 1.4%, borderline by 2%,

and cluster by 13.2%. However, NS-PPO lags behind

884 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

borderline by 2.3% in the F-measure value but exhibits a

significant advantage over other methods.

It is noteworthy that NS-PPO achieves the highest

MCC values on both ICNN and TSE. A plausible

explanation is that the undersampler in the second stage

constructs the reward function based on the MCC values

of the SDP classifier on the validation set. As a result,

the final performance shows strong performance in

terms of MCC, although this may come at the expense

of other evaluation metrics. Furthermore, recent SDP

studies have indicated that AUC and F-measure are

biased, whereas MCC is unbiased [11, 13]. Therefore,

this paper places greater emphasis on the impact of NS-

PPO on the MCC values of the SDP methods.

 Finding 2: compared to the baseline methods, NS-

PPO demonstrates a clear advantage in handling

semantic features-based software instances.

5.3. Answer to RQ3

NS-PPO consists of two stages. In the first stage, a

hybrid sampler based on NCL and SMOTE is employed

to generate a large number of samples for the minority

class. In the second stage, a DRL-based undersampler is

designed to select high-quality samples. RQ3 aims to

evaluate the effectiveness of each step within the NS-

PPO, determining their individual contributions to the

overall performance. Specifically, RQ3 explores the

impact of NS-PPO-DRL (NS-PPO without the second

stage) and NS-PPO-NCL (NS-PPO without the NCL in

the first stage) on the performance of DT and RF, which

excelled in RQ1, as well as the ICNN and TSE in RQ2.

Table 5 presents the impact of different components

within NS-PPO on prediction performance. Bolded

values indicate the optimal strategy for each SDP

method. For expert metrics-based SDP methods, NS-

PPO achieve the highest MCC and AUC values on the

RF classifier, while falling slightly behind NS-PPO-

DRL by 0.2% in F-measure. On the DT classifier, NS-

PPO demonstrates the superior performance across all

evaluation metrics. For semantic metrics-based SDP

methods, NS-PPO achieves the optimal performance

across all evaluation metrics on the ICNN. On the TSE,

NS-PPO exhibits the optimal performance in F-measure

and MCC but lags behind NS-PPO-NCL in AUC.

Table 5. Impact of different components in NS-PPO on prediction

performance.

SDP methods
Imbalance handling

methods
F-measure MCC AUC

RF

NS-PPO 0.580 0.433 0.835

NS-PPO-DRL 0.582 0.426 0.813

NS-PPO-NCL 0.507 0.364 0.820

DT

NS-PPO 0.539 0.355 0.694

NS-PPO-DRL 0.534 0.352 0.686

NS-PPO-NCL 0.462 0.274 0.648

ICNN

NS-PPO 0.760 0.407 0.759

NS-PPO-DRL 0.730 0.271 0.660

NS-PPO-NCL 0.742 0.253 0.742

TSE

NS-PPO 0.713 0.329 0.713

NS-PPO-DRL 0.700 0.304 0.694

NS-PPO-NCL 0.707 0.318 0.734

The experimental results clearly demonstrate that NS-

PPO achieves the highest MCC values across all SDP

methods. However, it falls slightly behind the compared

methods in F-measure for RF and AUC for TSE.

The main reason for this phenomenon is likely

consistent with the explanation in RQ2: the second stage

of NS-PPO focuses on optimizing the MCC value, which

may come at the expense of other evaluation metrics.

Additionally, the results show that NS-PPO-DRL

outperforms NS-PPO-NCL. This can be attributed to the

class overlap issue in the software instances. Superior

performance is achieved by first mitigating the class

overlap and then applying oversampling techniques. In

contrast, several SDP studies have overlooked this and

applied oversampling techniques without mitigating the

overlap issue [2, 10].

 Finding 3: each component of NS-PPO is essential

and has a positive impact on prediction performance.

6. Conclusions

Previous SDP methods depend on static data resampling

techniques, which may produce synthetic samples that

deviate from the original feature distribution. Moreover,

serval SDP imbalance-handling methods focus

exclusively on expert metric-based features, restricting

their applicability to semantic features. To address these

limitations, this paper proposes NS-PPO, a two-stage

data resampling method specifically designed for SDP

tasks. In the first stage, NS-PPO constructs a hybrid

sampler based on NCL and SMOTE to generate a large

number of synthetic samples for the minority class. In

the second stage, NS-PPO treats the undersampling

process for synthetic samples as a MDP, building a

DRL-based undersampler that selects high-quality

samples based on the training performance. The

experimental results show that NS-PPO has a significant

advantage over baseline methods, including LTRUS,

across three key evaluation metrics: MCC, F-measure,

and AUC. Additionally, this paper demonstrates the

effectiveness of NS-PPO in handling semantic features.

In the future, we plan to extend NS-PPO to C/C++-

based datasets. Additionally, we aim to explore dynamic

cleaning techniques for the class overlap issue in

software instances and investigate generative adversarial

network-based oversampling methods to improve the

quality of synthetic samples.

Data Availability Statement

The supplementary materials associated with this paper

can be obtained from the corresponding author upon

reasonable request.

Acknowledgment

This work is supported by Guangdong Natural Science

Fund Project (Grant No. 2024A1515010204), and China

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 885

Southern Power Grid Company Limited (Grant No.

ZBKJXM20232483).

References

[1] Agrawal A. and Menzies T., ““Better Data” is

Better than “Better Data Miners” (Benefits of

Tuning SMOTE for Defect Prediction),” in

Proceedings of the 40th International Conference

on Software Engineering, Gothenburg, pp. 1050-

1061, 2018.

https://doi.org/10.1145/3180155.3180197

[2] Bahaweres R., Agustian F., Hermadi I., Suroso A.,

and Arkeman Y., “Software Defect Prediction

Using Neural Network Based SMOTE,” in

Proceedings of the 7th International Conference on

Electrical Engineering, Computer Sciences and

Informatics, Yogyakarta, pp. 71-76, 2020.

DOI:10.23919/EECSI50503.2020.9251874

[3] Batista G., Prati R., and Monard M., “A Study of

the Behavior of Several Methods for Balancing

Machine Learning Training Data,” ACM SIGKDD

Explorations Newsletter, vol. 6, no. 1, pp. 20-29,

2004. https://doi.org/10.1145/1007730.1007735

[4] Bennin K., Keung J., and Monden A., “On the

Relative Value of Data Resampling Approaches for

Software Defect Prediction,” Empirical Software

Engineering, vol. 24, pp. 602-636, 2019.

https://doi.org/10.1007/s10664-018-9633-6

[5] Breiman L., “Random Forests,” Machine Learning,

vol. 45, pp. 5-32, 2001.

https://doi.org/10.1023/A:1010933404324

[6] Chen L., Fang B., Shang Z., and Tang Y., “Tackling

Class Overlap and Imbalance Problems in Software

Defect Prediction,” Software Quality Journal, vol.

26, pp. 97-125, 2018.

https://doi.org/10.1007/s11219-016-9342-6

[7] Cover T. and Hart P., “Nearest Neighbor Pattern

Classification,” IEEE Transactions on Information

Theory, vol. 13, no. 1, pp. 21-27, 1967.

DOI:10.1109/TIT.1967.1053964

[8] Czibula G., Marian Z., and Czibula I., “Software

Defect Prediction Using Relational Association

Rule Mining,” Information Sciences, vol. 264, pp.

260-278, 2014.
https://doi.org/10.1016/j.ins.2013.12.031

[9] Ding H., Chen L., Dong L., Fu Z., and Cui X.,

“Imbalanced Data Classification: A KNN and

Generative Adversarial Networks-Based Hybrid

Approach for Intrusion Detection,” Future

Generation Computer Systems, vol. 131, pp. 240-

254, 2022.

https://doi.org/10.1016/j.future.2022.01.026

[10] Dipa W. and Sunindyo W., “Software Defect

Prediction Using SMOTE and Artificial Neural

Network,” in Proceedings of the International

Conference on Data and Software Engineering,

Bandung, pp. 1-4, 2021.

DOI:10.1109/ICoDSE53690.2021.9648476

[11] Feng S., Keung J., Xiao Y., Zhang P., Yu X., and

Cao X., “Improving the Undersampling Technique

by Optimizing the Termination Condition for

Software Defect Prediction,” Expert Systems with

Applications, vol. 235, pp. 121084, 2024.

https://doi.org/10.1016/j.eswa.2023.121084

[12] Feng S., Keung J., Yu X., Xiao Y., Bennin K., Kabir

M., and Zhang M., “COSTE: Complexity-Based

Oversampling Technique to Alleviate the Class

Imbalance Problem in Software Defect Prediction,”

Information and Software Technology, vol. 129, pp.

106432, 2021.

https://doi.org/10.1016/j.infsof.2020.106432

[13] Gong L., Jiang S., Wang R., and Jiang L.,

“Empirical Evaluation of the Impact of Class

Overlap on Software Defect Prediction,” in

Proceedings of the 34th IEEE/ACM International

Conference on Automated Software Engineering,

San Diego, pp. 698-709, 2019.

DOI:10.1109/ASE.2019.00071

[14] Goyal S., “Handling Class-Imbalance with KNN

(Neighbourhood) Under-Sampling for Software

Defect Prediction,” Artificial Intelligence Review,

vol. 55, pp. 2023-2064, 2022.

https://doi.org/10.1007/s10462-021-10044-w

[15] Gupta M., Rajnish K., and Bhattacharjee V.,

“Software Fault Prediction with Imbalanced

Datasets Using SMOTE-Tomek Sampling

Technique and Genetic Algorithm Models,”

Multimedia Tools and Applications Journal, vol.

83, pp. 47627-47648, 2024.

https://doi.org/10.1007/s11042-023-16788-7

[16] Han H., Wang W., and Mao B., “Borderline-

SMOTE: A New Over-Sampling Method in

Imbalanced Data Sets Learning,” in Proceedings of

the Advances in Intelligent Computing Conference,

Hefei, pp. 878-887, 2005.

https://doi.org/10.1007/11538059_91

[17] Jiang S., Chen Y., He Z., Shang Y., and Ma L.,

“Cross-Project Defect Prediction Via Semantic and

Syntactic Encoding,” Empirical Software

Engineering, vol. 29, no. 4, pp. 80, 2024.

https://doi.org/10.1007/s10664-024-10495-z

[18] Jureczko M. and Madeyski L., “Towards

Identifying Software Project Clusters with Regard

to Defect Prediction,” in Proceedings of the 6th

International Conference on Predictive Models in

Software Engineering, Timisoara, pp. 1-10, 2010.

https://doi.org/10.1145/1868328.1868342

[19] Khleel N. and Nehez K., “A Novel Approach for

Software Defect Prediction Using CNN and GRU

Based on SMOTE Tomek Method,” Journal of

Intelligent Information Systems, vol. 60, no. 3, pp.

673-707, 2023. https://doi.org/10.1007/s10844-

023-00793-1

[20] Khleel N. and Nehez K., “Software Defect

Prediction Using a Bidirectional LSTM Network

886 The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025

Combined with Oversampling Techniques,”

Cluster Computing, vol. 27, pp. 3615-3638, 2024.

https://doi.org/10.1007/s10586-023-04170-z

[21] Khoshgoftaar T. and Gao K., “Feature Selection

with Imbalanced Data for Software Defect

Prediction,” in Proceedings of the International

Conference on Machine Learning and Applications,

Miami, pp. 235-240, 2009.

DOI:10.1109/ICMLA.2009.18

[22] Kim D. and Chung Y., “Addressing Class

Imbalances in Software Defect Detection,” Journal

of Computer Information Systems, vol. 64, no. 2,

pp. 219-231, 2024.

https://doi.org/10.1080/08874417.2023.2187483

[23] Laurikkala J., “Improving Identification of

Difficult Small Classes by Balancing Class

Distribution,” in Proceedings of the 8th Conference

on Artificial Intelligence in Medicine in Europe,

Cascais, pp. 63-66, 2001.

https://doi.org/10.1007/3-540-48229-6_9

[24] Li J., He P., Zhu J., and Lyu M., “Software Defect

Prediction via Convolutional Neural Network,” in

Proceedings of the IEEE International Conference

on Software Quality, Reliability and Security,

Prague, pp. 318-328, 2017.

DOI:10.1109/QRS.2017.42

[25] Liu J., Ai J., Lu M., Wang J., and Shi H., “Semantic

Feature Learning for Software Defect Prediction

from Source Code and External Knowledge,”

Journal of Systems and Software, vol. 204, pp.

111753, 2023.

https://doi.org/10.1016/j.jss.2023.111753

[26] Liu Y., Sun F., Yang J., and Zhou D., “Software

Defect Prediction Model Based on Improved BP

Neural Network,” in Proceedings of the 6th

International Conference on Dependable Systems

and their Applications, Harbin, pp. 521-522, 2020.

DOI:10.1109/DSA.2019.00095

[27] Ma Y., Luo G., Zeng X., and Chen A., “Transfer

Learning for Cross-Company Software Defect

Prediction,” Information and Software Technology,

vol. 54, no. 3, pp. 248-256, 2012.

https://doi.org/10.1016/j.infsof.2011.09.007

[28] Nam J. and Kim S., “Heterogeneous Defect

Prediction,” in Proceedings of the 10th Joint

Meeting on Foundations of Software Engineering,

Bergamo, pp. 508-519, 2015.

https://doi.org/10.1145/2786805.2786814

[29] Nazarudin N., Ariffin N., and Maskat R.,

“Leveraging on Synthetic Data Generation

Techniques to Train Machine Learning Models for

Tenaga Nasional Berhad Stock Price Movement

Prediction,” The International Arab Journal of

Information Technology, vol. 21, no. 3, pp. 483-494,

2024. https://doi.org/10.34028/iajit/21/3/11

[30] Okutan A. and Yildiz O., “Software Defect

Prediction Using Bayesian Networks,” Empirical

Software Engineering, vol. 19, pp. 154-181, 2014.

https://doi.org/10.1007/s10664-012-9218-8

[31] Pan C., Lu M., Xu B., and Gao H., “An Improved

CNN Model for Within-Project Software Defect

Prediction,” Applied Sciences, vol. 9, no. 10, pp. 1-

28, 2019. https://doi.org/10.3390/app9102138

[32] Pedregosa F., Varoquaux G., Gramfort A., Michel

V., and et al., “Scikit-Learn: Machine Learning in

Python,” The Journal of Machine Learning

Research, vol. 12, pp. 2825-2830, 2011.

https://dl.acm.org/doi/10.5555/1953048.2078195

[33] Quinlan J., “Induction of Decision Trees,” Machine

Learning, vol. 1, pp. 81-106, 1986.

https://doi.org/10.1007/BF00116251

[34] Schulman J., Wolski F., Dhariwal P., Radford A.,

and Klimov O., “Proximal Policy Optimization

Algorithms,” arXiv Preprint, vol.

arXiv:1707.06347, pp. 1-12, 2017.

https://doi.org/10.48550/arXiv.1707.06347

[35] Tantithamthavorn C., Mclntosh S., Hassan A., and

Matsumoto K., “An Empirical Comparison of

Model Validation Techniques for Defect Prediction

Models,” IEEE Transactions on Software

Engineering, vol. 43, no. 1, pp. 1-18, 2017.

DOI:10.1109/TSE.2016.2584050

[36] Wang X., Lu L., Tian Q., and Lin H., “IC-GraF: An

Improved Clustering with Graph-Embedding-

Based Features for Software Defect Prediction,”

IET Software, vol. 2024, pp. 1-22, 2024.

https://doi.org/10.1049/2024/8027037

[37] Yan K., Lu C., Ma X., Ji Z., and Huang J.,

“Intelligent Fault Diagnosis for Air Handing Units

Based on Improved Generative Adversarial

Network and Deep Reinforcement Learning,”

Expert Systems with Applications, vol. 240, pp.

122545, 2024.

https://doi.org/10.1016/j.eswa.2023.122545

[38] Yang F., Zhong F., Zeng G., Xiao P., and Zheng W.,

“LineFlowDP: A Deep Learning-Based Two-Phase

Approach for Line-Level Defect Prediction,”

Empirical Software Engineering, vol. 29, no. 2, pp.

50, 2024. https://doi.org/10.1007/s10664-023-

10439-z

[39] Yang P., Zhu L., Zhang Y., Ma C., Liu L., Yu X.,

and Hu W., “On the Relative Value of Clustering

Techniques for Unsupervised Effort-Aware Defect

Prediction,” Expert Systems with Applications, vol.

245, pp. 123041, 2024.

https://doi.org/10.1016/j.eswa.2023.123041

[40] Yang X., Wang S., Li Y., and Wang S., “Does Data

Sampling Improve Deep Learning-Based

Vulnerability Detection? Yeas! and Nays!,” in

Proceedings of the IEEE/ACM 45th International

Conference on Software Engineering, Melbourne,

pp. 2287-2298, 2023.

DOI:10.1109/ICSE48619.2023.00192

[41] Yu X., Liu L., Zhu L., Keung J., Wang Z., and Li

F., “A Multi-Objective Effort-Aware Defect

Prediction Approach Based on NSGA-II,” Applied

NS-PPO: A Two-Stage Data Resampling Framework for The Initial Phase of Software ... 887

Soft Computing, vol. 149, pp. 110941, 2023.

https://doi.org/10.1016/j.asoc.2023.110941

[42] Zhou Y., Lu L., Zou Q., and Li C., “Two-Stage AST

Encoding for Software Defect Prediction,” in

Proceedings of the 34th International Conference on

Software Engineering and Knowledge Engineering,

Pittsburgh, pp. 1-4, 2022.

DOI:10.18293/SEKE2022-039

Xiaowei Zhao he is currently

working on his Ph.D. dissertation in

the School of Computer Science and

Engineering, South China University

of Technology. His research interests

include Digital Transformation

Development, Software Defect

Detection, and High-Performance Computing

Optimization.

Xuanye Wang he is currently

working on his Ph.D. dissertation in

the School of Computer Science and

Engineering, South China University

of Technology. His research interests

include Intelligent Software

Engineering and Software Defect

Prediction.

Siliang Suo received the master

degree from Huazhong University of

Science and Technology, Wuhan,

China, in 2007. His research interests

include Power Artificial Intelligence

Technology, Power Communication,

and Security Protection of New

Power Systems.

Lu Lu he received the Ph.D. degree

from Xi’an Jiaotong University, Xian,

China, in 1999. He is currently a

Professor with the School of

Computer Science and Engineering,

South China University of

Technology. His research interests

include Software Engineering, Software Testing, and

Software Architecture Design.

https://ksiresearch.org/seke/seke22.html

