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Abstract: Software Defect Prediction (SDP) is one of the most reliability assurance methods before the delivery of software 

projects. However, class imbalance is a common issue in software projects, significantly hindering the ability of SDP methods to 

distinguish between defective and non-defective instances. Recently, although several SDP imbalance-handling methods have 

achieved certain success, they still exhibit limitations in terms of reliability and applicability. To address this, this paper proposes 

Neighborhood cleaning rule and Synthetic minority oversampling technique with Proximal Policy Optimization-based adaptive 

sampling (NS-PPO), a two stage-based data resampling framework aimed at mitigating the impact of class imbalance in software 

projects. NS-PPO operates in two phases. In the first phase, a hybrid sampler that combines Neighborhood CLeaning rule (NCL) 

and Synthetic Minority Oversampling TEchnique (SMOTE) is employed to generate a large number of synthetic samples for 

minority instances. In the second phase, a Deep Reinforcement Learning (DRL)-based undersampler is designed to filter high-

quality synthetic samples. These selected samples are then combined with real samples to form the training set for the SDP 

methods. Extensive experiments are conducted on 18 software projects from the PRedictOr Models In Software Engineering 

(PROMISE) and National Aeronautics and Space Administration (NASA) datasets, with Matthews Correlation Coefficient 

(MCC), Area Under the Curve (AUC), and F-measure used as evaluation metrics. The findings demonstrate that, regardless of 

whether expert metrics or semantic metrics are used as inputs for SDP methods, NS-PPO exhibits significant advantages over 

the state-of-the-art SDP imbalance-handling methods, including Learning-To-Rank UnderSampling (LTRUS). 
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1. Introduction 

After a software project is released, even a minor defect 

can result in serious consequences, including system 

crashes, data loss, and reduced user satisfaction [39]. 

Therefore, identifying software defects early in the 

development cycle is essential for ensuring the software 

reliability. Existing Software Defect Prediction (SDP) 

methods utilize historical data to build machine learning-

based classifiers, aiming to predict the presence of 

defects in future datasets [36]. However, software 

projects often suffer from significant class imbalance, 

where the number of non-defective instances may be 

much larger than that of defective ones. This issue results 

in an SDP classifier that prioritizes the majority class 

while neglecting the minority class, thereby leading to 

biased prediction performance [12]. Software 

engineering practitioners employ data resampling 

techniques to mitigate the class imbalance issue. Data  

 
resampling techniques can be broadly categorized into 

two types: Undersampling and oversampling [1]. 

Undersampling reduces class imbalance by removing a 

portion of samples from the majority class, while 

oversampling enhances the representation of the 

minority class by generating synthetic samples. Together, 

these techniques help achieve a balanced class 

distribution in the training set. 

Common undersampling techniques used in SDP 

include Random Under Sampling (RUS) and Edited 

Nearest Neighbor (ENN). RUS reduces class imbalance 

by randomly removing samples from the majority class, 

though this approach may risk discarding valuable 

information [4]. ENN leverages the K-Nearest 

Neighbors (KNN) algorithm to eliminate noisy or 

borderline samples [26]. Typical oversampling 

techniques include the Synthetic Minority Oversampling 

TEchnique (SMOTE) and cluster centroids. SMOTE 

generates synthetic samples by interpolating between 

https://doi.org/10.34028/iajit/22/5/3
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existing minority class instances, resulting in a more 

balanced class distribution [4]. Cluster centroids 

employs the K-means clustering algorithm to compute 

cluster centers, which are then used to generate new 

samples [11]. Previous SDP methods have typically 

tackled the class imbalance issue in software projects by 

using common data resampling techniques. Khleel and 

Nehez [20] combined SMOTE with Bidirectional Long 

Short-Term Memory (Bi-LSTM) and successfully 

demonstrated its effectiveness. Feng et al. [11] proposed 

a learning-based termination condition for RUS, treating 

the undersampling process of software instances as a 

ranking task, where instances with lower ranks are 

prioritized for removal. Yang et al. [40] conducted a 

comparative analysis of data resampling techniques in 

SDP methods, and the results suggest that, oversampling 

outperform undersampling. Despite the significant 

progress made in previous studies, several shortcomings 

remain evident: 

1. Common data resampling methods used in SDP 

studies rely on predefined sampling rules, lacking the 

ability to dynamically adjust based on the feature 

distribution of software instances or the training 

performance [19, 20, 26]. 

2. Previous SDP imbalance-handling studies have 

mainly focused on the expert metrics-based features 

of software instances, neglecting the semantic 

features [11, 12].  

Extensive SDP studies indicate that semantic features, 

compared to expert features, contain richer contextual 

information, which can achieve superior performance 

[31, 36, 42]. Furthermore, even within the same project, 

there can be significant differences in the feature 

distributions of expert metrics and semantic features. 

Therefore, while some SDP imbalance-handling 

methods perform well with expert metrics, they often 

cannot be directly transferred to semantic features. 

To address the above issues, this paper proposes a 

two-stage data sampling framework, Neighborhood 

cleaning rule and Synthetic minority oversampling 

technique with Proximal Policy Optimization-based 

adaptive sampling (NS-PPO), to mitigate the class 

imbalance in SDP methods. Specifically, NS-PPO 

consists of two stages. In the first stage, the framework 

leverages prior knowledge from previous SDP studies to 

develop a hybrid sampler that combines the 

Neighborhood CLeaning rule (NCL) and SMOTE [6]. 

This sampler first applies NCL to remove overlapping 

class samples. Then, based on the cleaned dataset, it uses 

SMOTE to generate a large number of synthetic samples 

for the minority class. In the second stage, the framework 

introduces a Deep Reinforcement Learning (DRL)-

based undersampler, framing the undersampling process 

of synthetic samples as a Markov Decision Process 

(MDP) to dynamically optimize the sampling strategies. 

By constructing a simple SDP classifier, the sampler 

iteratively refines the sampling strategy based on the 

classifier’s performance on the validation set, allowing 

for more effective sample selection. To validate the 

effectiveness of NS-PPO, experiments are conducted on 

18 open-source software projects from the Predictor 

Models in Software Engineering (PROMISE) and 

National Aeronautics and Space Administration (NASA) 

datasets, using F-measure, Area Under the Curve (AUC), 

and Matthews Correlation Coefficient (MCC) as 

evaluation metrics and employing Scott-Knott Effect Size 

Difference (ESD( tests. The experimental results 

demonstrate that the method using NS-PPO for software 

instance sampling outperforms baseline methods, 

including Learning-To-Rank Under-Sampling (LTRUS). 

In summary, the main contributions of this paper are 

as follows: 

 By introducing DRL theory, this paper models the 

undersampling process of synthetic software 

instances as a MDP, enabling the sampler to 

dynamically adjust based on the characteristics of 

instances and the training performance. 

 A two-stage sampling framework, NS-PPO, is 

proposed to mitigate the imbalance issue in SDP 

methods. NS-PPO first generates a large number of 

synthetic samples using NCL and SMOTE, then 

optimizes the undersampling process using the 

Proximal Policy Optimization (PPO) algorithm. 

Ablation experiments highlight the essential role of 

each step. 

 Experimental results on 18 software projects show 

that NS-PPO achieves significant performance over 

baseline methods in terms of both expert metrics-

based features and semantic features. 

The structure of this paper is as follows: Section 2 

presents the related work; section 3 provides a detailed 

description of the proposed method; section 4 outlines 

the experimental setup; section 5 discusses the 

experimental results; and section 6 concludes the paper 

and offers suggestions for future work. 

2. Related Work 

In this section, we introduce the previous SDP research 

and the background on data resampling techniques. 

2.1. The SDP Research 

The goal of SDP is to support software development 

teams in ensuring software reliability throughout the 

development lifecycle [27]. By leveraging historical data, 

SDP methods construct defect prediction models that 

assist developers in identifying potential defects in pre-

release software [8, 36]. 

In early SDP research, the community primarily 

focused on designing effective expert metrics to 

construct machine learning-based classifiers. Okutan 

and Yildiz [30] proposed two additional metrics, 

Number of Developers (NoD) and Source Code Quality 
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(LOCQ), and used a Bayesian network to assess the 

impact of metrics on defect prediction. Nam and Kim [28] 

focused on the magnitude of expert metrics to determine 

the presence of defects in software instances.  

With the widespread adoption of deep learning 

techniques across various fields, the community has 

found that deep representation learning can effectively 

capture potential defects from semantic features [24]. 

Pan et al. [31] designed an Improved Convolutional 

Neural Networks (ICNN) model to perform 

representation learning for Abstract Syntax Trees (ASTs) 

of source code. Zhou et al. [42] introduced a Two-Stage 

Encoding (TSE) method to identify defect information 

within the code context. Liu et al. [25] employed the pre-

trained UniXcoder to extract defect-prone features from 

source code. Yang et al. [38] extracted Program 

Dependency Graphs (PDGs) from source code and 

constructed a graph convolutional network for fine-

grained defect prediction. Jiang et al. [17] proposed an 

enhanced AST-based defect prediction method that 

integrates semantic and syntactic information. Although 

semantic features provide rich contextual information 

from source code, the deep learning techniques need to 

extract these features often entail substantial 

computational resources. In contrast, expert metrics-

based SDP methods continue to be a popular focus in 

current SDP research, owing to their simple model 

architecture and rapid training efficiency. 

2.2. The Data Resampling Technique  

Software projects face the challenge of class imbalance, 

which often causes classifiers to prioritize the majority 

class while neglecting the minority class. Consequently, 

migrating the class imbalance issue has remained a 

central focus in SDP research. 

At the data level, the community employs data 

resampling techniques to migrate the class imbalance 

issue. Data resampling techniques can be divided into 

two main categories: Undersampling and oversampling 

methods. Chen et al. [6] proposed an SDP method that 

achieves balanced subsets by performing multiple 

rounds of RUS and using the AdaBoost mechanism to 

construct an SDP classifier. Goyal [14] introduced a 

neighborhood-based undersampling technique, which 

outperformed traditional undersampling methods in SDP. 

Feng et al. [11] highlighted that RUS could lead to the 

loss of critical information. To mitigate this problem, 

they proposed an optimized termination condition based 

on the differential evolution algorithm, which adapts to 

the characteristics of the training set to minimize the 

information loss caused by RUS. Liu et al. [26] 

employed a random search approach to optimize the 

hyperparameters of SMOTE and neural networks. 

Khleel and Nehez [19] employed the SMOTE-Tomek 

method to generate synthetic samples for the minority 

class while removing overlapping instances. Kim and 

Chung [22] evaluated the performance of four 

oversampling techniques on both machine learning-

based and deep learning-based SDP methods. Their 

results indicated that oversampling techniques are more 

suitable for machine learning-based SDP methods. 

However, in deep learning tasks, they still relied on 

expert-based metrics as inputs, overlooking the 

importance of semantic metrics. Gupta et al. [15] utilized 

the SMOTE-tomek method to mitigate class imbalance 

and employed a genetic algorithm-optimized SDP 

classifier. 

3. Methodology 

This section offers a comprehensive explanation of each 

step within the NS-PPO framework. Specifically, NS-

PPO consists of two key stages: in the first stage, a 

hybrid sampler is constructed to generate a large number 

of synthetic samples for the minority class instances. In 

the second stage, a DRL-based undersampler is designed 

to filter synthetic samples based on the feature 

distribution and the training performance. The filtered 

samples are then combined with the original training set 

to serve as the training data for SDP methods. The 

overall framework of NS-PPO is shown in Figure 1. 

 

Figure 1. The overall framework of NS-PPO. 
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3.1. Data Preprocessing 

As described in section 2, SDP methods rely on expert 

metrics or semantic features extracted from instances. 

Expert metrics are derived through the manual analysis 

to assess various aspects, including code quality, 

complexity, and readability. For example, cyclomatic 

complexity, which quantifies the number of branches 

and loops in the code, aids software engineers in 

evaluating the logical structure of instances. Lower 

cyclomatic complexity indicates simpler logic, 

enhancing the code's readability and ease of 

understanding. However, extracting these metrics relies 

heavily on expert knowledge, making the process both 

time-consuming and costly. Additionally, these metrics 

mainly capture structural information and offer limited 

representation of the richer contextual semantics [25, 42]. 

Both the PROMISE and NASA datasets provide expert 

metrics for each instance, eliminating the need for 

additional preprocessing and allowing for direct use. 

Moreover, a detailed description of the expert metrics 

used in this study can also be found in [18]. 

Semantic features represent the logical meaning and 

functional information embedded within the instance. In 

SDP methods, static analysis of the source code is 

employed to extract its structured representations, such 

as the ASTs. AST is a tree-like structure where each 

node represents a specific syntactic element of the source 

code. An example of an AST is shown in Figure 2. 

Compared to handcrafted metrics, AST-based semantic 

features not only capture the structural details of the code 

but also provide richer contextual information, leading 

to superior prediction performance. Building on the 

preprocessing methods described in ICNN and TSE, this 

study utilizes the javalang tool to extract the ASTs as 

semantic features. Specific node types are retained and 

transformed into vectorized sequences [31, 42]. 

 

Figure 2. An example of an AST Structure. Black arrows represent 

the data flow between AST nodes, while red arrows indicate the 

extraction order of nodes in SDP methods. 

3.2. Hybrid Sampler for Synthetic Sample 

Generation 

The bias caused by differences in sample sizes across 

classes is not the only factor that makes the challenge of 

model learning in the class imbalance issue [9]. In fact, 

even with balanced datasets, the presence of class 

overlap can still lead to a significant drop in classifier 

performance. In previous SDP studies, data resampling 

techniques have primarily focused on balancing sample 

quantities, while the issue of class overlap has often been 

overlooked [2, 10]. 

The class overlap issue occurs when samples from 

different classes share the same region within the feature 

space. In this region, samples originate from distinct 

classes but exhibit similar feature distributions. Due to 

the high similarity, SDP classifiers struggle to 

distinguish between them during the training process. 

Figure 3 contrasts an ideal balanced data distribution 

with one that exhibits the class overlap phenomenon. 

 

a) Imbalanced dataset. 

 

b) Overlap between classes.  

Figure 3. A comparative example of an ideal balanced dataset versus 

a dataset with the class overlap issue. 

To mitigate the issue of feature overlap between 

software instances, the first phase of hybrid sampler 

integrates a domain-cleaning approach based on the 

KNN algorithm, specifically the NCL [23]. The cleaning 

process of NCL includes the following steps: 

 Neighborhood construction: the neighborhood of 

each sample under evaluation is determined by 

arranging other known samples in ascending order 

based on the Euclidean distance. The neighborhood 

consists of k-nearest samples, which may include 

samples from both majority and minority class. The 

Euclidean distance is calculated as follows:  

𝑑(𝑥𝑖 , 𝑥𝑗)  =  √∑ (𝑥𝑖𝑘 − 𝑥𝑗𝑘)
2𝑛

𝑘=1
 

where xi and xj are the feature vectors of the samples, and 
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(3) 

(4) 

(5) 

(6) 

n is the dimensionality of the feature space. 

 Classification assessment: for the sample under 

evaluation, if the KNN classifier identifies it as 

misclassified or finds that its presence causes 

neighboring minority class samples to be 

misclassified as majority class samples, the sample is 

deemed detrimental to classification performance.  

 Sample cleaning: all samples labeled as boundary 

samples are removed from the training set to reduce 

redundant features. 

SMOTE generates synthetic samples for the minority 

class by interpolating within its feature space [29]. 

Following the resolution of inter-class overlap, the 

hybrid sampler employs the SMOTE to produce a 

substantial number of synthetic samples. The detailed 

steps are as follows: 

 Neighborhood construction: for each minority class 

sample, the KNN algorithm is used to find its 

neighbors in the feature space. 

 Synthetic sample generation: a synthetic sample is 

generated by randomly selecting one neighbor from 

the nearest neighbors of each minority class sample 

and performing linear interpolation based on the 

distance between the sample and the selected 

neighbor. The process is illustrated as follows:  

𝑥𝑛𝑒𝑤  =  𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 + 𝜆 × (𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑥𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙) 

Wher λ e a value randomly generated in the range [0, 1], 

xoriainal is the current sample, and xneighor is the selected 

neighbor. 

In the first stage of NS-PPO, the hybrid sampler 

generates synthetic samples until the number of minority 

class samples reaches five times that of the majority class. 

The purpose of generating a large number of synthetic 

samples is to enable the undersampler in the second satge 

to thoroughly learn the feature distribution of the 

software instances. 

3.3. DRL-Based Undersampler 

Reinforcement Learning (RL) focuses on training an 

agent to discover the optimal action policy for a specific 

task through trial-and-error interactions and feedback 

from its environment. The principle of RL lies in 

enabling an agent to interact with its environment by 

observing its state, taking actions, and receiving rewards 

or penalties, thereby continuously optimizing its 

decision-making process [37]. Notably, RL consists of 

the following key components: 

 Agent: the agent is the decision-maker that interacts 

with the environment, performs actions, and learns 

from the feedback it receives. 

 State (st): st represents the agent’s perception of the 

environment at a specific time step. 

 Action (at): at represents the decision the agent makes 

in a given state. 

 Reward (rt): rt is the feedback signal provided by the 

environment after the agent takes an action. 

 Policy (π): π defines the agent’s action-selection 

strategy, represented as a probability distribution 

π(a∣s). 

The goal of the agent is to learn an optimal policy 

through continuous interaction with the environment, 

maximizing the long-term accumulated rewards. RL 

introduces state value functions and action value 

functions to evaluate the effectiveness of a policy. The 

state value Vπ(s) evaluates the expected cumulative 

reward that the agent can obtain by following policy π 

from state s, as shown in the following Equation (3): 

𝑉 𝜋(𝑠) =  𝐸𝜋 [∑ 𝛾𝑡𝑟𝑡|𝑠𝑡

∞

𝑡=0

= 𝑠] 

Where 𝛾 is the discount factor, which is used to measure 

the importance of future rewards. The action value 

function Q𝜋(s, a) evaluates the expected cumulative 

reward of an agent starting from state s, taking action a, 

and then following policy π. This can be expressed as 

follows: 

𝑄 𝜋(𝑠, 𝑎) = 𝐸𝜋[𝑟𝑡+1 + 𝛾 ∙ 𝑄 𝜋(𝑠𝑡+1, 𝑎𝑡+1)|𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎 ] 

DRL combines the decision-making capability of RL 

with the representational power of deep neural networks, 

leveraging neural networks to approximate value 

functions or policies. In the second stage of NS-PPO, the 

undersampling process of synthetic samples is 

formulated as a MDP, and the undersampler is optimized 

using the PPO algorithm. PPO [34] is a classic RL 

algorithm designed for policy optimization. It employs 

the concept of importance sampling to evaluate the 

performance of a new policy based on experiences 

gathered from the old policy. At each time step, the 

importance sampling ratio is calculated as the probability 

ratio between the new policy and the old policy, as 

shown below: 

𝑟𝑡(𝜃)  =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑜𝑙𝑑(𝑎𝑡|𝑠𝑡)
 

where 𝜋𝜃(at\st) represents the probability of selecting 

action at in state st under the new policy 𝜋𝜃. In policy 

optimization, PPO introduces a “clipped” objective 

function to constrain the magnitude of policy updates 

during each iteration, ensuring that the updated policy 

stays close to the current policy. This function enhances 

the stability of the agent throughout the training process 

and is defined as follows:  

𝐿𝐶𝐿𝐼𝑃(𝜃) = 𝐸𝑡[𝑚𝑖𝑛(𝑟𝑡(𝜃)𝐴𝑡, 𝑐𝑙𝑖𝑝(𝑟𝑡(𝜃), 1 − 𝜖, 1 + 𝜖)𝐴𝑡] 

Where 𝜖 is a clipping hyperparameter that constrains the 

range of policy updates to ensure stability. In NS-PPO, 𝜖 

is set to 0.2. 

In this framework, the synthetic samples generated in 

the first phase constitute the state space for undersampler. 

These samples are divided into five batches, which are 
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sequentially fed into the agent as input states. The input 

states are first passed through a shared network, whose 

feature extraction layers consist of two fully connected 

layers and two ReLU functions, resulting in a 4-

dimensional feature vector. Subsequently, two 

independent linear layers are used to generate the state 

value 𝑉θ and the action probability 𝐴θ. The structure of 

the shared network is shown in Figure 4. The action 

probability 𝐴θ guides the agent in sample selection: when 

𝐴θ=0, the sample is discarded; when 𝐴θ=1, the sample is 

retained. Additionally, the agent’s reward mechanism is 

based on the MCC values, calculated on the validation 

set using a lightweight SDP method. A Random Forest 

(RF) classifier is employed for expert metric-based 

features, while the ICNN method is used for semantic 

features. The MCC value is treated as the action value Qθ 

while the difference between Qθ and Vθ is regarded as the 

reward for the action, as expressed in the following 

Equation (7): 

𝑅𝑒𝑤𝑎𝑟𝑑𝑁𝑆−𝑃𝑃𝑂  =  𝑄𝜋𝜃
− 𝑉𝜋𝜃

 

 

Figure 4. The structure of the shared network. 

After iterative optimization, all the synthetic samples 

generated from the hybrid sampler are provided to the 

agent, and the number of selected samples is determined 

by the agent based on its learned policy. Finally, the 

high-quality samples selected by the agent are combined 

with the original training data to construct the final 

training set for SDP methods. 

4. Experimental Setup 

This section provides an overview of the experimental 

setup for this study, including the datasets used, baseline 

methods, and evaluation metrics applied. 

4.1. Research Questions 

This paper seeks to address on the following Research 

Questions (RQs) to fill the gaps left by previous SDP 

imbalance-handling studies: 

 RQ1: how does the performance of NS-PPO compare 

to baseline methods when handling expert metrics? 

Motivation: previous SDP imbalance-handling studies 

have often relied on static environments [19, 20, 26], 

making it challenging to adjust based training 

performance. To address this limitation, this paper 

introduces NS-PPO. RQ1 conducts a comparative 

analysis against baseline methods, including LTRUS, to 

demonstrate the effectiveness of NS-PPO. 

 RQ2: how does the performance of NS-PPO compare 

to baseline methods when handling semantic features? 

Motivation: previous SDP imbalance-handling studies 

have predominantly focused on expert metrics, 

overlooking the potential of semantic features [11, 12, 

19, 20, 26]. However, semantic features-based SDP 

methods tend to achieve superior performance. RQ2 

aims to evaluate the applicability of NS-PPO in handling 

semantic features by comparing it with baseline methods. 

 RQ3: does each component of NS-PPO contribute 

positively to its overall performance? 

Motivation: RQ3 designs an ablation study to evaluate 

the effectiveness of each component within NS-PPO. By 

systematically removing the NCL and the DRL-based 

undersampler from the framework, the study analyzes 

their impact on prediction performance, providing 

valuable insights for practitioners in the SDP field. 

4.2. Dataset 

The experimental datasets are sourced from 15 open-

source software projects from PROMISE and 3 open-

source projects from NASA. As two of the most widely 

used SDP datasets, PROMISE and NASA frequently 

appear in previous SDP studies [12, 36, 39]. Detailed 

information about the selected projects is provided in 

Table 1. It is important to note that the NASA dataset 

does not include semantic features. Therefore, RQ2 is 

conducted exclusively using the PROMISE dataset. 

Table 1. Description of 18 projects. 

Dataset Project Instance Defect ratio 

PROMISE xerces-1.2 439 16.17% 

PROMISE lucene-2.4 330 61.52% 

PROMISE velocity-1.4 195 75.38% 

PROMISE ant-1.4 177 22.60% 

PROMISE poi-3.0 438 61.16% 

PROMISE camel-1.4 848 17.10% 

PROMISE synapse-1.1 222 27.03% 

PROMISE lucene-2.0 186 48.92% 

PROMISE xalan-2.5 762 50.79% 

PROMISE velocity-1.6.1 229 34.06% 

PROMISE ivy-2.0 352 11.36% 

PROMISE xerces-1.3 452 15.27% 

PROMISE xerces-1.4.4 331 64.35% 

PROMISE camel-1.6 935 20.11% 

PROMISE jedit-4.3 487 2.26% 

NASA JM1 9591 18.34 

NASA KC1 2095 15.51% 

NASA PC3 1099 12.56% 

4.3. Baseline Methods 

To evaluate the performance of NS-PPO in SDP 

methods, this paper compares it with six baseline 

methods: RUS, borderline, cluster, SMOTE-ENN, 
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(10) 

(11) 

(12) 

(8) 

LTRUS, and LTRUS-ratio. RUS, borderline, cluster, 

and SMOTE-ENN are widely used data resampling 

techniques in previous SDP studies [11, 12], while 

LTRUS and its variant LTRUS-ratio represent State-Of-

The-Art (SOTA) data resampling methods specifically 

designed to address the class imbalance issue in SDP. A 

brief description of each method is provided below.  

 RUS: is a data undersampling technique that achieves 

class balance by randomly removing samples from 

the majority class [21]. 

 Borderline: is a boundary-based oversampling 

technique that generates minority class samples near 

the decision boundary, improving the classifier's 

ability to discriminate between classes [16]. 

 Cluster: is a data undersampling technique that 

employs a clustering algorithm, such as K-means, to 

group majority class samples. It then substitutes each 

cluster with its centroid, effectively reducing the 

number of majority class instances [11]. 

 Smote-ENN: generates synthetic samples using 

SMOTE and then removes noisy instances through 

ENN, thereby enhancing the quality of the training 

data [3]. 

 LTRUS: treats the undersampling process of 

software instances as a learning-to-rank task. It 

optimizes a linear model to rank the majority class 

instances and removes those ranked at the bottom [11]. 

 LTRUS-ratio: is a variant of LTRUS that optimizes 

the final defect rate, rather than simply balancing the 

number of instances between classes [11]. 

4.4. SDP Methods  

In RQ1, we employ three commonly used machine 

learning classifiers from previous SDP studies [13, 41]: 

RF [5], KNN [7], and Decision Tree (DT) [33]. In RQ2, 

we use two deep learning-based SDP methods: ICNN 

[31] and TSE [42]. 

4.5. Evaluation Metrics 

The prediction results of an SDP method can be 
categorized into four cases:  

1) True Positive (TP): the actual class is positive, and 

the model correctly predicts it as positive.  

2) True Negative (TN): the actual class is negative, and 

the model correctly predicts it as negative. 

3) False Positive (FP): the actual class is negative, but 

the model incorrectly predicts it as positive. 

4) False Negative (FN): the actual class is positive, but 

the model incorrectly predicts it as negative.  

In this study, we use three widely adopted evaluation 

metrics in SDP research: F-measure, MCC, and AUC. F-

measure is derived from Recall and Precision. The 

specific formulas for these metrics are as follows:  

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

𝐴𝑈𝐶 =  ∫ (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) 𝑑 (

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
)

1

0

 

The values of F-measure and AUC range from 0 to 1, 

while MCC ranges from -1 to 1. For all metrics, higher 

values indicate superior performance. 

After obtaining the evaluation metrics, this 

experiment employs the Scott-Knott ESD test to perform 

statistical analysis on the impact of NS-PPO and baseline 

methods for SDP methods. This test is widely used in 

software engineering research for its ability to partition 

a set of methods into statistically distinct, non-

overlapping groups based on their performance. 

Specifically, the test utilizes hierarchical clustering 

combined with effect size analysis to ensure that 

groupings are both statistically significant and 

practically meaningful. Further details on the Scott-

Knott ESD test can be found in [35]. 

4.6. Development Environment 

The experiment is conducted on a Linux machine 

equipped with an AMD MI210 GPU. All experiment 

procedures are executed within a Python 3.8 

environment, utilizing three primary Python libraries: 

pytorch (version 2.1.2+rocm5.6), sklearn (version 1.5.2) 

[32], and imblearn (version 0.12.4). 

In the second stage of the NS-PPO, the hidden layer 

dimension of the shared network is set to 4. The Adam 

optimizer is used with a learning rate of 1e-5, and the 

model is trained for 20 epochs. 

5. Results and Discussion 

5.1. Answer to RQ1 

RQ1 evaluates the impact of NS-PPO and baseline 
methods on expert metrics-based SDP methods. Figure 
5 shows the average F-measure performance and Scott-
Knott ESD test results of NS-PPO and six baseline 
methods across 18 software projects. The boxplots 
illustrate the performance distribution, with mean values 
marked in blue. To evaluate the statistical significance of 
performance differences, the Scott-Knott ESD test was 
employed to group methods based on distinguishable 
differences. The group labels above each boxplot 
indicate relative rankings: methods within the same 
group are not significantly different, while those in 
different groups are. Figures 6 and 7 present the same 
comparison using AUC and F-measure as evaluation 
metrics, respectively. Moreover, to provide a more 
comprehensive view, Tables 2, 3, and 4 present the MCC 
values of NS-PPO and the six baseline methods on each 
software project using DT, KNN, and RF classifiers, 



880                                                          The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025 

respectively. Within each table, the “W/D/L” row 
statistics summarize the number of wins, draws, and 

losses for NS-PPO when compared against the baseline 
methods on each respective project. 

  
a) MCC values on DT. b) MCC values on KNN. 

 

c) MCC values on RF. 

Figure 5. MCC values and ESD test results for NS-PPO and baseline methods across 18 software projects. 

  
a) AUC values on DT. b) AUC values on KNN. 

 

c) AUC values on RF. 

Figure 6. AUC values and ESD test results for NS-PPO and baseline methods across 18 software projects. 
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a) F-measure values on DT. b) F-measure values on KNN. 

 

c) F-measure values on RF. 

Figure 7. F-measure values and ESD test results for NS-PPO and baseline methods across 18 software projects. 

Table 2. MCC values of NS-PPO and baseline methods on DT. 

 RUS Borderline Cluster Smote-ENN LTRUS LTRUS-ratio NS-PPO 

xerces-1.2 0.080 0.078 0.226 0.061 0.145 0.165 0.087 

lucene-2.4 0.486 0.562 0.190 0.334 0.231 0.418 0.385 

velocity-1.4 0.786 0.629 0.289 0.236 0.515 0.467 0.404 

ant-1.4 0.152 0.035 -0.121 0.000 0.371 0.217 0.473 

poi-3.0 0.412 0.312 0.311 0.620 0.536 0.536 0.581 

camel-1.4 0.197 0.127 0.018 0.027 0.107 0.123 0.317 

synapse-1.1 0.335 0.647 0.321 0.467 0.248 0.255 0.321 

lucene-2.0 0.036 -0.168 -0.069 0.382 0.203 0.389 0.15 

xalan-2.5 0.123 0.091 0.145 0.325 0.188 0.264 0.279 

velocity-1.6.1 -0.024 0.280 0.516 0.189 0.265 0.394 0.399 

ivy-2.0 0.119 0.533 0.138 0.204 0.280 0.271 0.553 

xerces-1.3 0.406 0.363 0.005 0.528 0.481 0.371 0.614 

xerces-1.4.4 0.804 0.834 0.738 0.812 0.776 0.771 0.939 

camel-1.6 0.305 0.191 -0.125 0.027 0.037 0.136 0.106 

jedit-4.3 0.141 -0.043 -0.189 -0.043 0.023 -0.025 -0.036 

JM1 0.205 0.219 -0.107 0.265 0.183 0.229 0.236 

KC1 0.183 0.263 -0.311 0.299 0.269 0.208 0.285 

PC3 0.246 0.072 0.268 0.173 0.201 0.199 0.289 

W/D/L 12/0/6 13/0/5 14/1/3 12/0/6 13/0/5 12/0/6  

Table 3. MCC values of NS-PPO and baseline methods on KNN. 

 RUS Borderline Cluster Smote-ENN LTRUS LTRUS-ratio NS-PPO 

xerces-1.2 -0.089 0.087 0.019 -0.089 0.109 0.129 0.080 

lucene-2.4 0.385 0.679 0.385 0.385 0.307 0.283 0.437 

velocity-1.4 0.346 0.603 0.3333 0.29 0.610 0.609 0.733 

ant-1.4 -0.152 -0.033 -0.265 -0.328 0.046 0.018 -0.121 

poi-3.0 0.354 0.354 0.412 0.485 0.489 0.497 0.467 

camel-1.4 0.227 0.026 -0.095 0.111 0.157 0.169 0.134 

synapse-1.1 -0.071 -0.018 -0.172 0.324 0.228 0.251 0.273 

lucene-2.0 0.368 0.368 0.262 0.382 0.285 0.295 0.231 

xalan-2.5 0.299 0.305 0.273 0.169 0.444 0.442 0.198 

velocity-1.6.1 0.088 0.280 -0.042 0.032 0.300 0.314 0.434 

ivy-2.0 0.408 0.348 0.373 0.341 0.214 0.238 0.262 

xerces-1.3 0.505 0.604 0.055 0.58 0.412 0.443 0.528 

xerces-1.4.4 0.507 0.558 0.413 0.613 0.588 0.660 0.614 

camel-1.6 0.092 0.019 -0.257 0.174 0.171 0.230 0.249 

jedit-4.3 0.119 -0.029 -0.565 0.207 0.046 0.081 0.167 

JM1 0.307 0.261 -0.110 0.297 0.233 0.200 0.187 

KC1 0.240 0.402 -0.144 0.438 0.305 0.305 0.300 

PC3 0.382 0.303 0.030 0.328 0.327 0.342 0.394 

W/D/L 13/0/5 9/0/9 15/0/3 10/0/8 10/0/8 9/0/9  
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Table 4. MCC values of NS-PPO and baseline methods on RF.  

 RUS Borderline Cluster Smote-ENN LTRUS LTRUS-ratio NS-PPO 

xerces-1.2 0.293 -0.094 0.163 -0.043 0.280 0.331 0.357 

lucene-2.4 0.550 0.613 0.583 0.619 0.509 0.478 0.634 

velocity-1.4 0.544 0.866 0.333 0.545 0.770 0.795 0.866 

ant-1.4 0.478 0.119 -0.121 0.473 0.194 0.299 0.396 

poi-3.0 0.553 0.428 0.412 0.486 0.594 0.504 0.473 

camel-1.4 0.296 0.156 0.086 0.174 0.251 0.327 0.285 

synapse-1.1 0.271 0.449 -0.037 0.549 0.339 0.355 0.321 

lucene-2.0 0.308 0.149 0.263 0.267 0.377 0.354 0.367 

xalan-2.5 0.354 0.354 0.302 0.275 0.411 0.405 0.344 

velocity-1.6.1 0.280 0.233 0.464 -0.088 0.269 0.304 0.342 

ivy-2.0 0.373 0.718 0.000 0.449 0.369 0.390 0.449 

xerces-1.3 0.528 0.604 0.055 0.640 0.509 0.589 0.641 

xerces-1.4.4 0.938 0.871 0.805 0.812 0.886 0.863 0.938 

camel-1.6 0.370 0.340 0.340 0.353 0.324 0.339 0.421 

jedit-4.3 0.174 -0.029 -0.029 -0.029 0.127 -0.025 -0.043 

JM1 0.307 0.280 -0.110 0.297 0.192 0.309 0.374 

KC1 0.239 0.422 -0.144 0.438 0.258 0.276 0.170 

PC3 0.382 0.303 0.030 0.328 0.336 0.433 0.466 

W/D/L 11/1/6 12/1/5 15/0/3 12/1/5 12/0/6 12/0/6  

 

In terms of prediction performance, Figure 5 

illustrates that NS-PPO achieves the highest average 

MCC values across the DT, KNN, and RF classifiers. 

The performance is most significant with the DT 

classifier, where NS-PPO outperforms LTRUS-ratio by 

5.6%, LTRUS by 7.4%, SMOTE-ENN by 8.2%, 

borderline by 7.6%, RUS by 7.8%, and cluster by 23%. 

As shown in Table 2, it outperforms LTRUS-ratio in 12 

projects, LTRUS in 13 projects, SMOTE-ENN in 12 

projects, Borderline in 13 projects, RUS in 12 projects, 

and Cluster in 14 projects. Moreover, Tables 3 and 4 

further demonstrate that NS-PPO consistently surpasses 

the advanced baseline LTRUS-ratio in 9 projects under 

the KNN classifier and in 12 projects under the RF 

classifier. Figure 6 highlights that NS-PPO achieves the 

highest average AUC values across all classifiers. 

Specifically, on the DT classifier, NS-PPO outperforms 

the second-best LTRUS by 3%; on the KNN classifier, 

it surpasses the second-best LTRUS by 2.2%; and on the 

RF classifier, it exceeds the second-best Borderline by 

2.3%. Figure 7 shows that NS-PPO achieves the optimal 

F-measure values across all SDP classifiers. Specifically, 

on the DT classifier, NS-PPO outperforms the second-

best LTRUS by 4.1%; on the KNN classifier, it surpasses 

the second-best LTRUS by 0.9%; and on the RF 

classifier, it exceeds the second-best LTRUS by 2.3%. 

In terms of the Scott-Knott ESD test results, NS-PPO 

demonstrates statistically significant advantages over the 

baseline methods across all evaluation metrics on the DT 

classifier. For the KNN classifier, NS-PPO shows a 

significant advantage in AUC compared to the second-

ranked LTRUS-ratio, but it only demonstrates a slight 

lead in F-measure and MCC values. For the RF classifier, 

NS-PPO exhibits significant advantages in AUC and F-

measure compared to the baseline methods. However, its 

advantage in MCC over LTRUS is marginal and does 

not exhibit statistical significance. 

Based on the results, the performance of cluster is 

limited, primarily due to its reliance on the K-means 

algorithm to generate cluster centers. However, K-means 

often struggles to accurately capture the feature 

distribution of software instances, leading to suboptimal 

clustering results. The RUS is also suboptimal, as 

random sampling may discard important features, 

resulting in a loss of data representativeness. In contrast, 

the Borderline and Smote-ENN methods exhibit 

improved effectiveness, as they are capable of 

generating high-quality samples. However, they may 

still introduce additional noise into the synthesized 

samples. While Smote-ENN uses the ENN algorithm to 

clean noise, its effectiveness remains constrained. 

LTRUS and LTRUS-ratio achieve the best performance 

compared to other baseline methods. While both 

methods incorporate objective functions to optimize 

undersampling strategies, their focus is limited to the 

undersampling process. Recent research by Yang et al. 

[40] suggest that effective oversampling techniques 

outperform undersampling techniques when addressing 

software instances. NS-PPO builds on this by utilizing a 

DRL-based undersampler in its second phase to filter out 

noisy samples, leading to superior performance 

compared to LTRUS and LTRUS-ratio. 

 Finding 1: when handling expert metrics-based 

software instances, NS-PPO demonstrates a 

significant advantage over baseline methods on DT 

and RF, while showing a slight advantage on KNN. 

5.2. Answer to RQ2 

RQ2 evaluates the impact of NS-PPO and baseline 

methods on semantic features-based SDP methods. 

Since LTRUS and LTRUS-ratio depend on expert 

metrics for ranking tasks, they are excluded from the 

comparison in RQ2. Furthermore, due to the lack of 

semantic content in the NASA dataset, this evaluation is 

conducted on 15 software projects from the PROMISE 

dataset. Figure 8 presents the comparative performance 

of NS-PPO and baseline methods integrated into the 

ICNN, accompanied by the Scott-Knott ESD test results. 

Figure 9 reports the corresponding results based on the 

TSE. 
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a) F-measure values on ICNN. b) MCC values on KNN. 

 

c) AUC values on ICNN. 

Figure 8. Performance and ESD test results of the NS-PPO and baseline methods on ICNN. 

  
a) F-measure values on TSE. b) MCC values on TSE. 

 

c) AUC values on TSE. 

Figure 9. Performance and ESD test results of the NS-PPO and baseline methods on TSE. 

As shown in Figure 8, NS-PPO achieves the highest 

average F-measure value, surpassing Borderline by 0.6%, 

RUS by 5.2%, SMOTE-ENN by 8.9%, and Cluster by 

33.3%. In terms of MCC values, NS-PPO outperforms 

RUS by 4.1%, SMOTE-ENN by 8%, borderline by 

12.8%, and Cluster by 30.3%. However, NS-PPO shows 

a slight disadvantage in the AUC, where it fails behind 

RUS and SMOTE-ENN. As shown in Figure 9, NS-PPO 

achieves the highest average MCC value with a 

significant advantage, outperforming borderline by 6%, 

RUS by 10.2%, SMOTE-ENN by 11.4%, and cluster by 

18.5%. In terms of AUC values, NS-PPO surpasses 

SMOTE-ENN by 0.8%, RUS by 1.4%, borderline by 2%, 

and cluster by 13.2%. However, NS-PPO lags behind 
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borderline by 2.3% in the F-measure value but exhibits a 

significant advantage over other methods. 

It is noteworthy that NS-PPO achieves the highest 

MCC values on both ICNN and TSE. A plausible 

explanation is that the undersampler in the second stage 

constructs the reward function based on the MCC values 

of the SDP classifier on the validation set. As a result, 

the final performance shows strong performance in 

terms of MCC, although this may come at the expense 

of other evaluation metrics. Furthermore, recent SDP 

studies have indicated that AUC and F-measure are 

biased, whereas MCC is unbiased [11, 13]. Therefore, 

this paper places greater emphasis on the impact of NS-

PPO on the MCC values of the SDP methods. 

 Finding 2: compared to the baseline methods, NS-

PPO demonstrates a clear advantage in handling 

semantic features-based software instances. 

5.3. Answer to RQ3 

NS-PPO consists of two stages. In the first stage, a 

hybrid sampler based on NCL and SMOTE is employed 

to generate a large number of samples for the minority 

class. In the second stage, a DRL-based undersampler is 

designed to select high-quality samples. RQ3 aims to 

evaluate the effectiveness of each step within the NS-

PPO, determining their individual contributions to the 

overall performance. Specifically, RQ3 explores the 

impact of NS-PPO-DRL (NS-PPO without the second 

stage) and NS-PPO-NCL (NS-PPO without the NCL in 

the first stage) on the performance of DT and RF, which 

excelled in RQ1, as well as the ICNN and TSE in RQ2. 

Table 5 presents the impact of different components 

within NS-PPO on prediction performance. Bolded 

values indicate the optimal strategy for each SDP 

method. For expert metrics-based SDP methods, NS-

PPO achieve the highest MCC and AUC values on the 

RF classifier, while falling slightly behind NS-PPO-

DRL by 0.2% in F-measure. On the DT classifier, NS-

PPO demonstrates the superior performance across all 

evaluation metrics. For semantic metrics-based SDP 

methods, NS-PPO achieves the optimal performance 

across all evaluation metrics on the ICNN. On the TSE, 

NS-PPO exhibits the optimal performance in F-measure 

and MCC but lags behind NS-PPO-NCL in AUC.  

Table 5. Impact of different components in NS-PPO on prediction 

performance. 

SDP methods 
Imbalance handling 

methods 
F-measure MCC AUC 

RF 

NS-PPO 0.580 0.433 0.835 

NS-PPO-DRL 0.582 0.426 0.813 

NS-PPO-NCL 0.507 0.364 0.820 

DT 

NS-PPO 0.539 0.355 0.694 

NS-PPO-DRL 0.534 0.352 0.686 

NS-PPO-NCL 0.462 0.274 0.648 

ICNN 

NS-PPO 0.760 0.407 0.759 

NS-PPO-DRL 0.730 0.271 0.660 

NS-PPO-NCL 0.742 0.253 0.742 

TSE 

NS-PPO 0.713 0.329 0.713 

NS-PPO-DRL 0.700 0.304 0.694 

NS-PPO-NCL 0.707 0.318 0.734 

The experimental results clearly demonstrate that NS-

PPO achieves the highest MCC values across all SDP 

methods. However, it falls slightly behind the compared 

methods in F-measure for RF and AUC for TSE.  

The main reason for this phenomenon is likely 

consistent with the explanation in RQ2: the second stage 

of NS-PPO focuses on optimizing the MCC value, which 

may come at the expense of other evaluation metrics. 

Additionally, the results show that NS-PPO-DRL 

outperforms NS-PPO-NCL. This can be attributed to the 

class overlap issue in the software instances. Superior 

performance is achieved by first mitigating the class 

overlap and then applying oversampling techniques. In 

contrast, several SDP studies have overlooked this and 

applied oversampling techniques without mitigating the 

overlap issue [2, 10]. 

 Finding 3: each component of NS-PPO is essential 

and has a positive impact on prediction performance. 

6. Conclusions 

Previous SDP methods depend on static data resampling 

techniques, which may produce synthetic samples that 

deviate from the original feature distribution. Moreover, 

serval SDP imbalance-handling methods focus 

exclusively on expert metric-based features, restricting 

their applicability to semantic features. To address these 

limitations, this paper proposes NS-PPO, a two-stage 

data resampling method specifically designed for SDP 

tasks. In the first stage, NS-PPO constructs a hybrid 

sampler based on NCL and SMOTE to generate a large 

number of synthetic samples for the minority class. In 

the second stage, NS-PPO treats the undersampling 

process for synthetic samples as a MDP, building a 

DRL-based undersampler that selects high-quality 

samples based on the training performance. The 

experimental results show that NS-PPO has a significant 

advantage over baseline methods, including LTRUS, 

across three key evaluation metrics: MCC, F-measure, 

and AUC. Additionally, this paper demonstrates the 

effectiveness of NS-PPO in handling semantic features. 

In the future, we plan to extend NS-PPO to C/C++-

based datasets. Additionally, we aim to explore dynamic 

cleaning techniques for the class overlap issue in 

software instances and investigate generative adversarial 

network-based oversampling methods to improve the 

quality of synthetic samples. 
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