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Abstract: This study addresses the need for a unified framework demonstrating Information Theory’s (IT) pervasive impact 

across diverse Machine Learning (ML) tasks. We investigate how IT principles-including entropy, Mutual Information (MI), 

cross-entropy, KL-divergence, and Information Gain (IG)-rigorously guide ML model design, optimization, and interpretability. 

Our approach combines theoretical elucidation with empirical validation on standard benchmarks. IT enhances feature 

selection; for instance, MI-ranked features in the breast cancer dataset improved classifier accuracy to 95.1% (top 20) and 93% 

(top 5), outperforming F-score selection. It also improves model training; cross-entropy loss in Neural Networks (NNs) for Iris 

classification led to faster convergence and high accuracy (0.98 training, 0.95 validation), surpassing MSE loss. For generative 

models, KL-divergence effectively structures Variational Auto-Encoder (VAE) latent spaces from Modified National Institute of 

Standards and Technology (MNIST) data, promoting compact, continuous representations ideal for generation. Finally, the 

Information Bottleneck (IB) principle, applied to Canadian Institute For Advanced Research (CIFAR-100), yielded competitive 

test accuracy (51% vs. 50% for baseline Convolutional Neural Network. (CNN)) and reduced training time (925.02s vs. 

1015.75s), highlighting its efficacy in learning compressed, predictive representations. These findings collectively underscore its 

continued crucial role as a unifying paradigm for addressing fundamental challenges in the evolving ML ecosystem, providing 

solutions for feature selection, model robustness, and generalization. 
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1. Introduction 

Information Theory (IT), originating from Claude 

Shannon’s pivotal work in the 1940s, provides a 

fundamental framework for understanding and 

quantifying information and uncertainty. It offers a 

robust set of tools, such as entropy and Mutual 

Information (MI), which are not merely theoretical 

constructs but have practical applications spanning 

diverse fields from communication system optimization 

to data security [8]. In the realm of Machine Learning 

(ML), IT is incredibly important. It equips us with 

essential metrics to evaluate and fine-tune algorithms for 

enhanced efficiency and effectiveness. For instance, 

entropy quantifies data uncertainty, aiding in the 

selection of optimal features for model input. MI reveals 

the statistical dependence between variables, proving 

invaluable for tasks like feature selection and 

dimensionality reduction. Derived from entropy, 

Information Gain (IG) is critical in Decision Trees (DTs) 

for determining the most effective data splits, leading to 

more accurate and interpretable models [3]. 

ML algorithms frequently encounter challenges such  

 
as noisy data, optimal feature selection, and model 

optimization. IT directly addresses these issues; for 

example, cross-entropy is widely used as a loss function 

in classification tasks to measure the alignment between 

predicted and true outcomes, guiding the training of 

Neural Networks (NNs). Similarly, MI is leveraged in 

clustering algorithms to assess the quality of data 

groupings, ensuring meaningful clusters [20, 23]. 

While IT utility in specific ML tasks is well-

established, a comprehensive analysis of its unifying 

principles across diverse modern architectures and 

datasets, particularly in addressing challenges like model 

interpretability and robustness to noisy data, remains an 

area requiring systematic investigation. Despite the 

proliferation of increasingly complex generative models, 

the underlying relevance and advanced applications of 

IT are not always thoroughly explored or demonstrated 

across various modern ML paradigms. This paper 

addresses this gap by providing a unified framework that 

systematically demonstrates the pervasive impact of IT 

concepts across diverse ML tasks, moving beyond 

isolated applications. We aim to rigorously investigate 
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how foundational IT principles guide the design, 

optimization, and interpretability of ML models 

showcasing their continued relevance and power in the 

contemporary data science landscape, [11]. The rest of 

this paper is organized as follows: Section 2 presents 

mathematically the fundamentals of IT. Section 3 

provides an overview of ML concepts and algorithms. 

Section 4 discusses the applications of IT in ML, 

supported by empirical results on benchmark datasets. 

Finally, section 5 offers a conclusion, summarizing the 

findings and outlining future research directions. 

2. Theoretical Background 

This section provides the necessary theoretical 

background of all IT concepts applied in ML models. 

2.1. Shannon Information Content 

Shannon information content, I(x), also known as self-

information, describes the quantity of information 

acquired by observing an event. The information 

content, I(x), can be defined using the following 

Equation (1).  

𝐼(𝑥)  =  −𝑙𝑜𝑔𝑃(𝑥) 

P(x) represents the probability value of the event x. For 

instance, in the scenario when a coin consistently 

displays heads, the outcomes are expected, and no new 

information is gained. Thus, the amount of information 

is zero. If the coin is fair, the probability distribution is 

evenly distributed and it is extremely unlikely whether 

the next outcome will be heads or tails. Thus, the level 

of information content is at its highest. In computer 

science, information content is defined as the minimum 

number of bits necessary to encode information 

efficiently. We utilize base 2 for the logarithm function. 

Hence, the information content for a fair coin flip is 

calculated as -log₂(½), which equals 1. That is to say, we 

acquire 1-bit of information with each individual coin 

flip. 

A variable X, is considered a random variable if it 

represents a value that comes from a random process, 

like the number that appears when you roll a die or the 

total number of heads you get after flipping a coin a 

number of times. We can describe the value of this 

random variable, X, using a probability distribution, 

p(X). For instance, if X represents the total sum of rolling 

five dice, we can use a Gaussian distribution to model X, 

thanks to the central limit theorem [1]. 

2.2. Shannon Entropy 

Entropy, H(X), which was proposed in 1948 by Claude 

Shannon, quantifies uncertainty associated with a 

Discrete Random Variable (DRV), X, by assigning a 

scalar value to it [19]. A DRV, X, with Probability Mass 

Function (PMF) P(x) has an entropy H(X) given by: 

𝐻(𝑋) = − ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑃(𝑥)𝑥∈𝑋   

Where: 

 X represents the set of all possible values that the 

DRV, X, can take. 

 x is a specific value within the set of possible 

outcomes X. 

 P(x) is the pmf of the variable X with all values x. 

 The summation (∑x∈X) signifies that the operation is 

performed by summing the set of all values of x. 

If the alogarithm is base 2, the entropy is measured in 

bits. For example, in flipping a fair coin, P(X=H)=½ and 

P(X=T)=½. Its entropy equals H(X)=-

(P(X=H))log+P(X=T)log(P(X=T))=1. The mean value of 

the content is one bit. In other words, we require an 

average of one bit to represent or encode a single event. 

Entropy sets a minimum limit for the average number of 

bits required to encode events based on the probability 

distribution P. Figure 1 shows the graph of the entropy 

as a function of P to understand how entropy changes 

with the probability of the outcomes for a binary random 

variable X. 

 

Figure 1. Entropy change of two states random variable. 

The Shannon curve in Figure 1 shows the following 

points: 

 Maximum entropy: the curve attains its highest value 

when p=0.5. This is the point at which the level of 

uncertainty is the maximum, as both outcomes (0 and 

1) are equally probable. The binary variable has a 

maximum entropy value of 1 bit. 

 Zero entropy: the curve intersects the zero point at 

p=0 and p=1. One outcome is certain at these 

instances, eliminating any uncertainty. When the 

value of p is 0, the outcome is consistently 1, and 

when the value of p is 1, the outcome is consistently 

0. 

 Curve symmetry: the entropy function exhibits 

symmetry with respect to p=0.5. This symmetry 

demonstrates that the entropy of a binary variable 

with probability p, denoted as H(p), is equal to the 

entropy with probability 1−p, denoted as H(1−p). 

Figure 1 visually demonstrates that entropy quantifies 

uncertainty, peaking when probabilities are evenly 

distributed and diminishing as one outcome becomes 

more predictable. 
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2.3. Joint and Conditional Entropy 

Joint entropy, H(X, Y), quantifies the total uncertainty 

associated with two random variables X and Y. It’s 

calculated using their joint probability distribution: 

𝐻(𝑋, 𝑌) = − ∑  

𝑥∈𝑋

∑ 𝑃(𝑥, 𝑦)𝑙𝑜𝑔𝑃(𝑥, 𝑦)

𝑦∈𝑌

  

Joint entropy quantifies the combined level of 

uncertainty when evaluating two variables 

simultaneously. Consider the scenario of simultaneously 

flipping two coins. Each coin has two possible outcomes: 

heads or tails. Therefore, when two coins are flipped, 

there are four possible outcomes: (heads, heads), (heads, 

tails), (tails, heads), and (tails, tails). Joint entropy 

quantifies the amount of information required to describe 

the outcomes of two-coin flips collectively.  

Conditional entropy, H(Y∣X), measures the 

uncertainty in Y given that X is known. The formula is: 

𝐻( 𝑌 ∣ 𝑋 ) = − ∑ 𝑃(𝑥)

𝑥∈𝑋

 ∑ 𝑃(𝑦 ∣ 𝑥)𝑙𝑜𝑔𝑃(𝑦 ∣ 𝑥)

𝑦∈𝑌

 

Conditional entropy measures the remaining uncertainty 

about a variable, given the knowledge of another 

variable. Consider a scenario where you have a box with 

balls of various colors, and you know that the box itself 

is of a blue color. Conditional entropy quantifies the 

remaining level of uncertainty regarding the color of the 

balls inside the box, even after having knowledge of the 

box color. 

2.4. Mutual Information 

Mutual information, I(X; Y), quantifies the extent to 

which knowledge of one variable decreases uncertainty 

about another. Put simply, it measures the quantity of 

information that one random variable possesses 

regarding another random variable. When two variables 

are independent, their MI is equal to zero. When they 

rely completely on each other, the level of MI is 

considerable. MI is defined as:  

𝐼(𝑋; 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) 

or using the conditional entropy: 

𝐼(𝑋; 𝑌) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋) 

Consider a scenario where you toss two coins, labeled X 

and Y. If the coin flips are entirely stochastic and 

independent, the knowledge of whether X is heads or 

tails provides no information about Y. In this scenario, 

the MI between X and Y is equal to zero. However, if 

there is a rule that states that Y and X always match, then 

the MI would be larger because knowing X enables you 

know Y. 

2.5. Cross-Entropy 

Cross-entropy quantifies the deviation between two 

probability distributions for a given set of events. It is 

frequently employed in the context of ML to assess the 

degree to which the predicted probabilities correspond to 

the actual probabilities. Better predictions are indicative 

of lower cross-entropy values, as the predicted 

distribution is more closely aligned with the true 

distribution. 

Cross-entropy quantifies the divergence between two 

probability distributions, P (true distribution) and Q 

(predicted distribution). Cross-entropy is given by the 

following Equation (7):  

𝐻(𝑃, 𝑄) = − ∑ 𝑃(𝑥)𝑙𝑜𝑔𝑄(𝑥) 

𝑥

 

In simple terms, it adds up the differences between what 

your model predicts and what actually happens. 

2.6. KL-Divergence 

KL-divergence tells us how much information is lost 

when using one probability distribution (your 

predictions) to approximate another (the actual 

outcomes). The formula is:  

𝐷𝐾𝐿(𝑃 ∣∣ 𝑄) = ∑ 𝑃(𝑥)log [
𝑄(𝑥)

𝑃(𝑥)
]

𝑥

 

Imagine you have two sets of probabilities about whether 

it will rain. One set represents what actually happens 

(e.g., 70% chance of rain, 30% chance of no rain), and 

the other set is your prediction (e.g., 60% chance of rain, 

40% chance of no rain). KL-divergence measures how 

different your predicted probabilities are from the actual 

probabilities. If the KL-divergence is high, it means your 

predictions were pretty far off. 

 

Figure 2. KL-divergence between two normal distributions. 

Figure 2 illustrates the KL-divergence between two 

normal distributions: A “true distribution P” and a 

“predicted distribution Q”. The shaded green area 

visually emphasizes the discrepancy between these two 

distributions, representing the magnitude of the KL-

divergence. The KL-divergence is elevated in regions 

where Q either significantly overestimates or 

underestimates distribution P, underscoring the areas 

where Q inadequately approximates the true distribution 

P. A larger shaded area indicates a greater divergence, 

signifying a larger information loss when using Q to 

approximate P. This visual representation helps in 

understanding how KL-divergence quantifies the 



848                                                       The International Arab Journal of Information Technology, Vol. 22, No. 5, September 2025 

(9) 

dissimilarity between probability distributions, a crucial 

concept in generative models like Variational Auto-

Encoders (VAEs) where the goal is to minimize this 

divergence between learned and prior distributions. 

2.7. Information Gain 

IG involves determining which specific piece of 

knowledge is most valuable in making optimal 

decisions. Consider determining whether it is advisable 

to engage in outdoor activities today. Various indicators, 

such as weather conditions, temperature, and humidity, 

are available as clues. IG reveals which clue is the most 

beneficial. For instance, if having knowledge of the 

weather conditions, such as whether it is sunny or rainy, 

enables you to make more informed decisions compared 

to knowing just the temperature, then the weather is 

considered to be more informative and possesses a 

greater IG. 

Information gain IG(Y,X) is calculated as:  

 𝐼𝐺(𝑌, 𝑋) = 𝐻(𝑌) − 𝐻(𝑌 ∣ 𝑋) 

where H(Y∣X) is the conditional entropy of Y given the 

feature X and H(Y) is the entropy of the target variable Y. 

Figure 3 shows the dependency flowchart of different 

types of IT measures on each other. The flowchart shows 

the interconnectedness of different IT metrics in a 

hierarchical structure. Beginning with the fundamental 

idea of probability distributions, it branches out into 

information content (self-information). An essential 

measure of uncertainty, entropy, is derived from this. On 

top of entropy exist other measurements like conditional 

entropy and joint entropy. cross-entropy and KL-

divergence depend on probability distributions in 

addition to Entropy, whereas MI integrates ideas from 

conditional entropy and entropy. in the end, one of the 

most important ways that entropy and conditional 

Entropy are used while making decisions is through IG 

The above structure helps in comprehending the 

relationship and dependencies among these key 

concepts, making it easier to see how each measure 

builds on more fundamental ideas. 

 

Figure 3. Information theory measures dependency flowchart. 

3. Machine Learning Overview 

ML is an Artificial Intelligence (AI) branch where the 

system learns through historical data [5, 16]. Rather than 

being explicitly programmed for every task, ML 

algorithms are designed to identify patterns and 

relationships within data, allowing them to improve their 

performance and make predictions or decisions on 

unseen information. This iterative process of learning 

from experience enables models to become increasingly 

intelligent and accurate. In this way, the model 

automatically learns and improves its decision and 

predictive ability [10]. Deep Learning (DL) is a 

prominent subfield of ML that employs multi-layered 

artificial NNs as its computational backbone. These 

networks are engineered to process data through 

numerous interconnected layers, effectively learning 

hierarchical representations. Deep NNs are trained to 

accept representations to classify data, perform 

predictions, or generate outputs. The rapid proliferation 

of DL has been fostered by several factors, including the 

exponential growth of available data, the decreasing cost 

of parallel computing, and advancements in statistical 

reasoning. NNs have gained significant recognition as 

powerful feature extractors in advanced domains such as 

natural language processing, speech processing, visual 

object recognition, and search engine results [9, 18]. 

Figure 4 visually represents the interconnectedness and 

hierarchical relationships among AI, ML, and DL using 

a Venn diagram. AI is depicted as the broadest field, 

encompassing the development of intelligent machines 

capable of simulating human-like thought and behavior. 

ML is shown as a significant subset of AI, specifically 

focusing on algorithms that enable systems to learn from 

data without explicit programming. DL, in turn, is 

presented as a subfield of ML, distinguished by its use of 

multi-layered NN to achieve advanced learning 

capabilities. The concentric nature of these circles 

highlights that all DL models are also ML models, and 

all ML models fall under the umbrella of A. This 

illustration clarifies the scope and relationships of these 

key concepts within the broader field of AI. 

 

Figure 4. AI, ML, and DL relationships. 
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ML can be classified into the following categories, [2, 

21]. 

 Supervised learning: this technique involves training 

algorithms with a labeled dataset, wherein each 

training example is linked to an output label. The goal 

is to acquire a correspondence from inputs to outputs 

[15]. It includes two sub-categories: Classification 

which refers to the prediction of a categorical label. 

As an example, consider email spam detection, and 

regression which refers to the prediction of a 

continuous value. For example, predicting home 

prices. 

 Unsupervised learning: in this technique algorithms 

are trained on data with no labels. The goal is to 

deduce the dataset’s natural structure [14]. It contains 

two sub-categories: Clustering which is the process of 

organizing data points into clusters. As an example, 

consider customer segmentation, and dimensionality 

reduction, which is the process of reducing the 

number of features while retaining critical 

information. As an example, consider Principal 

Component Analysis (PCA) [12]. 

 Semi-supervised learning: in this technique 

algorithms are trained on a combination of labeled 

and unlabeled data. This is beneficial when labeling 

data is costly or time-consuming. As an example, 

consider a text classification model that improves 

performance by combining a few classified and 

numerous unlabeled examples. 

 Self-supervised learning: a type of unsupervised 

learning in which data provides supervision. It means 

making predictions about some data based on other 

data. For example, during language model training, 

one can predict the next word in a sentence. 

 Reinforcement learning: in this strategy, an agent 

learns to make decisions by taking actions in an 

environment that maximizes some kind of cumulative 

reward. For example, a robot can learn to navigate a 

maze by receiving rewards for reaching the finish line 

and penalties for hitting walls. 

 

Figure 5. ML categories. 

Figure 5 provides a conceptual diagram illustrating 

the major categories of ML algorithms. Centered around 

ML the diagram branches out to show its primary 

paradigms: Supervised learning, unsupervised learning, 

semi-supervised learning, self-supervised learning, and 

reinforcement learning. Each of these main categories 

then branch further into their common sub-categories, 

such as classification and regression under supervised 

learning, and clustering and dimensionality reduction 

under unsupervised learning. The arrows indicate 

relationships and classifications, offering a clear visual 

overview of the different approaches to ML tasks and 

how they relate to the central concept. 

In the rapidly evolving landscape of ML and DL, 

several key concerns and current trends warrant 

attention. These include the increasing computational 

demands of training large models, the crucial need for 

enhanced model interpretability to understand decision-

making processes, and significant challenges related to 

data privacy and security. IT, as explored in this paper, 

provides powerful tools and theoretical foundations that 

can directly contribute to addressing these contemporary 

issues, enabling the development of more efficient, 

transparent, and secure ML systems [13]. 

4. Applications of Information Theory in 

Machine Learning 

IT principles play a crucial role in numerous areas of 

ML and DL. Below is a comprehensive explanation on 

the utilization of these methods, accompanied by 

example cases employing genuine datasets. 

4.1. Entropy and Information Gain in Tree-

Based Models 

Tree-based models such as, DTs, Random Forests (RFs) 

an ensemble of DT and boosted trees like XGBoost, are 

a non-parametric supervised learning method used for 

classification and regression [6]. They function by 

recursively partitioning the dataset based on feature 

values to create a tree-like structure where each internal 

node represents a test on an attribute, each branch 

represents an outcome of the test, and each leaf node 

represents a class label (or a predicted value in 

regression). The core principle behind constructing an 

effective DT and RF is to select the features that best 

split the data, leading to the most homogeneous child 

nodes with respect to the target variable. IT plays a vital 

role in this feature selection process, primarily through 

the concepts of entropy and IG [22]. Entropy, as defined 

in Equation (2), quantifies the impurity or randomness 

of a dataset. In the context of DT and RF, it measures 

the degree of disorder within a set of examples. A node 

with high entropy indicates a mixed distribution of 

classes, while a node with low entropy (or zero entropy) 

contains examples primarily from a single class. IG as 

defined in Equation (9), measures the reduction in 
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entropy achieved by partitioning the dataset based on a 

specific feature. It represents the amount of IG about the 

target variable by knowing the value of a particular 

attribute. The feature with the highest IG is chosen as 

the splitting attribute at each node because it provides 

the most information about the class labels, leading to 

the purest possible child nodes. DT and RF models 

iteratively select the feature with the highest IG to split 

the data at each node. This process continues recursively 

until a stopping criterion is met, such as reaching a 

maximum tree depth, having a minimum number of 

samples in a node, or achieving sufficiently low entropy 

in the leaf nodes. 

Figure 6 shows an example of using entropy and IG 

in DT applied to the well-known Iris dataset. The tree 

employed entropy and IG to identify the optimal 

features for splitting the data, facilitating the 

classification of the flowers into their various species. 

The IG for each feature can be calculated to determine 

the best split at the root node. For example, “petal 

length” typically has a high IG, effectively separating 

the Iris setosa class from the other two. The algorithm 

also demonstrates the sequence of questions and 

decisions applied to each feature. 

 

Figure 6. DT splitting using entropy and information gain. 

In DT, IG has certain limitations. For instance, it may 

favor features with many unique values, as they often 

yield splits with lower entropy-even when those features 

are not meaningful. To mitigate this, the gain ratio can 

be used, which adjusts IG by the feature’s intrinsic 

entropy. Additionally, IG can increase computational 

complexity, particularly for continuous features since 

discretization is required to calculate it. This process not 

only affects performance but may also introduce bias. 

On the other hand, boosted trees such as XGBoost take 

a different approach. While the underlying weak 

learners are still trees, the splitting criteria are often 

derived from a loss function optimization perspective, 

such as logistic loss or Mean Squared Error (MSE).  

Table 1 shows the classification accuracies of both 

the DT and XGBoost utilizing different node splitting 

criteria. The table shows that utilizing entropy-based 

node splitting has achieved more accurate model than 

using MSE loss optimization function of the XGBoost 

model. 

Table 1. DT vs XGBoost accuracy. 

Model Accuracy% 

DT (entropy) 93 

XGBoost (MSE) 91 

4.2. Mutual Information in Feature Selection 

MI, is a metric that evaluates the amount of information 

one random variable contains about another random 

variable. In the context of feature selection, it measures 

the correlation between the feature and the target 

variable. A higher MI value indicates that the feature is 



Exploring the Intersection of Information Theory and Machine Learning                                                                                                               851 

(10) 

more informative with respect to the target variable. 

What sets MI apart is its ability to handle both linear and 

non-linear relationships between variables, unlike other 

methods which are limited to linear relationships. This 

makes it a robust and adaptable approach to feature 

selection, allowing for the exploration of complex 

relationships between variables. By capturing both 

linear and non-linear dependencies, MI provides a 

comprehensive understanding of the data and enhances 

the accuracy and effectiveness of feature selection 

algorithms. Therefore, utilizing MI for feature selection 

can significantly contribute to the success and efficiency 

of data analysis. Additionally, it enables the 

identification of key features that have a significant 

impact on the target variable, allowing researchers and 

analysts to focus on the most relevant aspects of the 

data.  

In summary, MI is a crucial component in the field of 

feature selection, offering valuable insights and 

empowering data-driven decision making [25]. A 

typical approach for feature selection utilizing MI is: 

 Determining MI: evaluate the MI of each feature with 

the target variable.  

 Prioritizing features: arrange the features according 

to their MI scores.  

 Choosing features: select the top-rated features to 

construct the ML model. 

 

Figure 7. MI scores of breast cancer dataset features. 

Figure 7 shows the MI scores ranked from highest to 

lowest for the renown breast cancer dataset which 

contains features computed from digitized images of 

breast mass and a target variable indicating the presence 

of cancer. The findings present the MI scores for each 

feature in the breast cancer dataset, showing the 

contribution of each feature to predicting the target 

(presence or absence of cancer). Higher MI scores 

indicate that a feature is more informative and pertinent 

to the classification task. Sorting these scores facilitates 

the identification of the most significant features, 

guiding feature selection for the development of more 

efficient models. 

To compare the results, ANalysis Of VAriance 

(ANOVA) F-score is utilized to priorities features 

according to their F-scores as shown in Figure 8. 

 

Figure 8. ANOVA F-scores of breast cancer dataset features. 

Table 2 shows the classification accuracy summary 

when using logistic regression model trained using the 

top k features selected by each method.  

Table 2. Classification accuracy summary.  

Method # of features (k) Accuracy% 

MI 5 93 

F-score 5 92.3 

MI 20 95.1 

F-score 20 94.7 

4.3. Cross-Entropy in Classification Models 

In classification models like logistic regression and 

NNs, cross-entropy is frequently used as a loss function 

to measure the difference between the predicted 

probabilities and the true labels. The main goal is to 

effectively adjust the model’s parameters to reduce this 

loss, thereby improving the accuracy and dependability 

of the predictions, and ultimately optimizing the overall 

performance and efficacy of the model [17]. For 

example, the cross-entropy loss for multi-class 

classification problems, where the target variable, y, 

might have values from a collection of classes {1, 2, …, 

C} is defined as:  

𝐿 = −1/𝑁 ∑  ∑ 𝑦𝑖𝑐log (𝑝𝑖𝑐)

𝐶

𝑐=1

𝑁

𝑖=1

 

where:  

C is the number of different classes. 

N is the number of samples. 

yic is a binary variable (0 or 1) denoting whether class 

label c accurately classifies sample i. 

pic is the predicted probability of sample i belonging to 

class c. 

Figure 9 shows the role of cross-entropy as a loss 

function in neural network for multi-class classification 

tasks. The cross-entropy loss is used to calculate the 

error between the true and predicted outputs. This error 

is then propagated back through the network (as 

indicated by the dashed arrows labeled error back 
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propagation), adjusting the weights, wij, to minimize the 

loss. This iterative process continues until the model’s 

predictions are optimized to match the true labels as 

closely as possible. In summary, cross-entropy loss is a 

recommended choice for training NNs on categorical 

outputs since it penalizes incorrect classifications harder 

than small errors in classification models. Reducing the 

cross-entropy loss helps the model to learn to produce 

predictions that closely correspond with actual class 

labels, therefore enhancing classification accuracy. 

 

Figure 9. NN with cross-entropy as loss function [26].

Figure 10 illustrates how the cross-entropy loss 

decreases over the training epochs for both the training 

and validation sets utilizing the Iris dataset. Neural 

network model is used for the classification of the iris 

species. This example features a basic feedforward 

neural network comprising a single hidden layer 

containing 10 neurons. The hidden layer employs a 

ReLU activation function, appropriate for identifying 

non-linear relationships in the data, whilst the output 

layer utilizes the softmax activation function. The 

softmax layer is essential for multi-class classification 

tasks, as it transforms the raw output scores into 

probabilities for each class. 

 

Figure 10. Cross-entropy loss for Iris classification. 

A reduction in cross-entropy loss during the learning 

phase signifies that the model’s predictions are 

increasingly accurate and align more closely with the 

true distribution. In an effectively trained model, both 

the training and validation losses should diminish and 

ultimately converge, indicating that the model is 

effectively learning and generalizing. An increase in 

validation loss concurrent with a drop-in training loss 

signifies overfitting, wherein the model is memorizing 

the training data and inadequately generalizing to 

unknown data. 

 

Figure 11. Model accuracy using MSE loss over epochs.  

 

Figure 12. Model accuracy using CE loss over epochs.  

To compare the result, a second experiment trains the 
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same model architecture using MSE loss function. 

While MSE is a common loss function, it’s generally 

used for regression tasks. Applying it to classification 

serves as a non-IT centric comparison. It penalizes the 

squared difference between the predicted probabilities 

and the target values. Figures 11 and 12 depict training 

and validation accuracy over 100 epochs for models 

optimized using different loss functions: MSE and CE 

Loss, respectively. Figure 11 shows both training and 

validation accuracy start around 0.60 and gradually 

improve, with training accuracy reaching above 0.95 

and validation stabilizing around 0.92. The learning 

curve shows occasional plateaus and minor fluctuations, 

suggesting a slower convergence and potential 

sensitivity to noise or suboptimal loss choice for 

classification. In contrast, Figure 12 exhibits a much 

faster and smoother convergence, with training 

accuracy quickly approaching 0.98 and validation 

accuracy closely following, plateauing near 0.95. The 

reduced gap between training and validation 

performance in the CE model indicates better 

generalization and more stable learning, making it more 

suitable for classification tasks compared to the model 

trained with MSE. 

4.4. KL-Divergence in Variationa Autoencoders 

(VAEs) 

VAEs are generative models designed to understand the 

underlying distribution of the data, see Figure 13. These 

models consist of an encoder that maps input data to a 

latent space and a decoder that maps the latent space 

back to the data space. Unlike traditional auto-encoders, 

VAEs impose a probabilistic structure on the latent 

space, enabling them to create new data points by 

sampling from the learned distribution. The 

incorporation of KL-divergence in VAEs serves to 

measure the distinction between the learned latent 

variable distribution and a prior distribution, typically a 

standard normal distribution. This regularization term 

guarantees that the latent space exhibits desirable 

characteristics, such as smoothness and continuity, 

which are crucial for generating new data points. The 

loss function of a VAE encompasses two components: 

Reconstruction (Reconst) Loss, which assesses the 

decoder’s ability to reconstruct the input from the latent 

space, and KL-divergence Loss, which regularizes the 

latent space to align with the prior distribution [7]. 

 

Figure 13. VAE with Kl-divergence. 

The total VAE loss is given by:  

𝐿𝑜𝑠𝑠 = 𝑅𝑒𝑐𝑜𝑛𝑠𝑡 𝐿𝑜𝑠𝑠 + 𝛽 × 𝐾𝐿 − 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 

Where β is a weighting factor (often set to 1). 

For example, assume you’re trying to learn how to 

draw digits by looking at a variety of handwritten 

numerals. You begin by studying the basic forms and 

then attempting to duplicate them. This is comparable to 

how a VAE operates. It first learns the structure of the 

digits (encoder) before attempting to generate new ones 

(decoder). KL-divergence in VAEs assures that the 

space in which these digit shapes exist (latent space) is 

smooth and well-behaved. This means that comparable 

shapes are near together, allowing for a smooth 

transition from one shape to another. The VAE employs 

two styles of learning: It learns to rebuild the digits it 

has observed (reconstruction loss). It learns to arrange 

the shapes in a nice, smooth space (KL divergence). By 

integrating these two learning processes, the VAE can 

create new, realistic digits that resemble the ones it 

learned from. 

To highlight the importance of KL-divergence in 

shaping the latent space in VAE, the VAE was built 

utilizing the Modified National Institute of Standards 

and Technology (MNIST) dataset. We compare the 

result with a standard Auto-Encoder (AE) that uses 

deterministic latent space.  
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Figure 14. VAE latent space visualization. 

 

Figure 15. AE latent space visualization. 

Figures 14 and 15 illustrate how a VAE and a 

standard AE represent MNIST digits in a reduced two-

dimensional space. The VAE, which incorporates KL 

divergence as a regularization term, produces a more 

compact and continuous latent distribution, with 

smoother transitions between digit clusters and a more 

normalized structure across space. This regularization 

forces the encoded representations to approximate a 

prior distribution (typically Gaussian), supporting better 

interpolation and generative performance. In contrast, 

the AE yields tighter and more distinct clusters, 

particularly for certain digits, but exhibits a more 

irregular and stretched latent space. While the AE 

captures local structure effectively for reconstruction 

and class separation, it lacks the global organization and 

smoothness that characterize the VAE. Thus, the VAE 

provides a more generative-friendly encoding. 
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Figure 16. VAE original (top) and reconstructed (bottom) images. 

 

Figure 17. AE original (top) and reconstructed (bottom) images. 

Figures 16 and 17 compare the reconstruction quality 

of MNIST digits by VAE and AE models. The AE, 

which uses a deterministic encoding-decoding process 

trained with MSE loss, produces reconstructions that are 

sharper and closer to the original digits, preserving fine 

structural details such as stroke width and contour 

precision. In contrast, the VAE employs a probabilistic 

latent space regulated by KL-divergence, leading to 

slightly blurrier reconstructions due to the inherent 

randomness introduced in sampling from the latent 

distribution. While the VAE’s outputs are still 

recognizable and semantically faithful, they show a 

softer appearance with a minor loss in pixel-level 

clarity. This trade-off reflects the VAE’s design focus 

on learning a smooth and continuous latent space 

suitable for generation and interpolation, whereas the 

AE prioritizes accurate one-to-one reconstruction of the 

input images. 

4.5. Mutual Information and KL-Divergence in 

Information Bottleneck 

Information Bottleneck (IB) principle provides a 

theoretical framework for learning representations that 

are optimally informative about the target (labels) but 

minimally informative about the raw input. IB attempts 

to compress data 𝑋 into a representation 𝑍 that maintains 

only the information needed to predict the label 𝑌. IB 

mathematically defines this as decreasing the MI 

between X and Z, I(X; Z), and maximizing the MI 

between Z and the labels Y, I(Z; Y). In practice, IB-

based NNs frequently include a stochastic “bottleneck” 

layer and a regularization term that penalizes the 

network for encoding more information than necessary. 

In simpler terms, the IB aims to: 

 Compress the input data into a compact 

representation (bottleneck). 

 Preserve only the information that is relevant for 

predicting the output. 

The IB is important because it provides a 

comprehensive theory for understanding how deep NNs 

learn and turn data into meaningful representations. It 

shows how networks continually reduce input while 

retaining the necessary characteristics for the task at 

hand. This viewpoint helps to explain why, despite their 

apparent ability to overfit, huge NNs frequently succeed 

in real-world scenarios: they focus on the most 

important traits and discard unnecessary detail over 

time. Furthermore, IB promotes interpretability by 

clearly outlining the trade-off between compression and 

relevance. It implies that effective representations-those 

that generalize well-find the correct balance between 

removing extraneous noise and maintaining task-critical 

information. This understanding explains why many 

over-parameterized models nonetheless perform well: 

they intuitively learn to focus on what is genuinely 

important while discarding unnecessary input that is 

irrelevant to prediction. To appreciate the importance of 

IB in classification models, Canadian Institute For 

Advanced Research (CIFAR-100) benchmark dataset is 

utilized. CIFAR-100 contains 60,000 color images, each 

sized 32×32 pixels. These images are divided into 100 

different classes. Each class includes 600 images, 500 

for training and 100 for testing. Because it covers such 

a wide variety of categories, it forces models to learn a 

broad range of visual features, making CIFAR-100 a 

good test of a model’s generalization capability.  

In our experiment, we contrasted a simple baseline 

Convolutional Neural Network (CNN) [4, 24] with an 

IB CNN. The baseline CNN only stacks convolution 

layers and trains by reducing cross-entropy losses. The 

IB CNN, on the other hand, uses a “bottleneck” a 

sophisticated process that attempts to compress the raw 

input into a smaller latent space while retaining the 

information required to accurately identify the images. 

This compression is aided by an extra penalty term 

(including KL-divergence), which allows the model to 

ignore noisy or unimportant information from the input 

data. 

Figures 18 and 19 show the accuracy trends 

comparison between baseline CNN and IB CNN. The 

two models started around 12-13% accuracy, then rose 

steadily to reach around 55% for the baseline CNN and 

around 50% for the IB CNN in the training process. In 

the testing process IB CNN performance slightly 

outperforms the baseline CNN with a comparable result 

at epoch 50 (around 50% for the baseline CNN and 

around 51% for the IB CNN). IB approach, by design, 

places an additional regularization constraint via the 

KL-divergence term, which can slightly slow training 

progress early on but often help generalization. The 

experiment was repeated five times with different 

random initializations, to mitigate the impact of 

statistical fluctuations and provide a more robust and 

reliable assessment of the model’s true generalization 

capabilities. 
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Figure 18. Training accuracy of IB and baseline CNN. 

 

Figure 19. Testing accuracy of IB and baseline CNN. 

For practical considerations: on CIFAR-100, a 

baseline CNN confronts classification issues, with 50% 

test accuracy after 50 epochs reflecting the dataset’s 

complexity. IB CNN can provide even higher benefits 

in circumstances with noisy data, restricted labels, or 

longer training. In such cases, the model’s emphasis on 

compressing unnecessary material frequently results in 

greater resilience and generalization than a baseline 

CNN. 

 

Figure 20. Total training time for the baseline CNN and IB CNN. 

The experiment above was done on windows-based 

Laptop with intel core i9, with 32GB of RAM. The time 

taken for running the training process for the two 

models is shown in Figure 20. The figure shows that the 

baseline CNN model took about 1015.75 seconds to 

train, whereas the IB CNN model completed in around 

925.02 seconds indicating that the overhead of the 

additional KL-divergence computations might not 

drastically increase training time. 

5. Conclusions 

This work systematically emphasized the critical 

importance of IT in both the theoretical foundations and 

practical applications of ML algorithms. Unpacking the 

basic IT measures-entropy, MI, cross-entropy, KL-

divergence, and IG-made it clear how these constructs 

lead a variety of tasks, including feature selection, 

dimensionality reduction, and neural network training. 

For example, DTs use entropy and IG to reduce 

uncertainty at each node split, resulting in clear and 

understandable decision limits. NNs optimize cross-

entropy to align predictions with ground-truth labels, 

while VAEs use KL-divergence to create a well-

structured latent space that improves data creation and 

reconstruction quality. Furthermore, applying the IB 

concept demonstrates how NNs may manage the trade-

off between efficient compression and high prediction 

fidelity, thereby improving both performance and 

interpretability. 

From a broader perspective, empirical demonstrations 

on standard benchmarks-ranging from classification 

tasks on the Iris dataset to generative modeling with 

MNIST and feature-rich classification on CIFAR-100-

show that IT-based metrics consistently improve 

generalization, robustness to noise, and model 

transparency. As ML applications become more 

complicated and data-driven, the solutions discussed 

here indicate that continuing to feed ML workflows with 

information-theoretic insights will be critical. Future 

extensions of this work may investigate more 

sophisticated architectures, multi-modal data scenarios, 

and advanced optimization schemes based on 

information-theoretic constraints, highlighting its critical 

role in shaping the next generation of interpretable and 

efficient ML systems. 
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