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Abstract: The process of enhancing the video’s quality by removing unwanted effects of camera shakes and jitters is called
Video Stabilization (VS). However, the 3-Dimensional (3D) rainy stereoscopic video stabilization process was not concentrated
on any of the prevailing research work. Therefore, in this framework, an effective 3D rainy stereoscopic video stabilization with
depth estimation and Shape Autotuning Liebovitch map Cheetah Chase Algorithm with Convolution Neural Network (SA-
LmCCA-CNN) is proposed. Primarily, the input videos are converted into a number of frames. After that, by using Pairnorm L0
Gradient Minimization (Pn-LGM), the raindrops in each frame are removed. Later, the overlapping region and depth estimation
are processed, and by using the Liebovitch map Cheetah Chase Algorithm (LmCCA), the energy function is diminished. Likewise,
to mitigate the hallucination issue, a mesh is generated by utilizing Alternating Least Squares-Locally Constrained
Representations (ALS-LCR). Then, from the hallucination-mitigated image and energy function minimized image, the feature
points are extracted. Later, by employing SA-LmCCA-CNN, the stable and unstable frames are classified. If the frame is unstable,
then the frame undergoes motion and camera path corrections, followed by raindrop reconstruction; otherwise, raindrop
reconstruction is done directly for a stable frame. Lastly, in order to get the stabilized video, the frames are synthesized. The
experimental analysis proved the proposed model’s robustness in 3D rainy stereoscopic video stabilization by attaining a
stability score of 0.93.
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1. Introduction Nowadays, a surge in demand for high-quality video
experiences are caused by the rapid growth multimedia
technology with elevated stereoscopic video content
[14]. still, it is very challenging to capture stable and
visually effective stereoscopic videos in some dynamic
conditions [31]. Hardware solutions like gimbals and
stabilizers, software solutions like motion post-capture
correction algorithms, and some hybrid solutions that
combine both hardware and software solutions were
used by the traditional VS techniques [11, 18].
Nevertheless, these techniques often struggle to
eliminate complex motion artifacts and are less effective
in handling depth inconsistencies in dynamic conditions

The growing popularity of videos plays a major role in
daily life in the new digital era [22]. The generation of
video content achieves a dominant performance with the
improvements of digital cameras, smartphones, and
some other portable video recording devices [19].
However, owing to the instability of camera
movements, the video content might suffer from some
visual distortions [9]. Blurring effects, poor video
quality, and visual discomfort are caused by this
instability [5]. An effective process used for the
mitigation of these video instability issues is Video
Stabilization (VS) [4]. A technique utilized to diminish 2]
the effects of unwanted camera movements for : hodoloaies were analvzed and
enhancing the video’s quality is called VS [33]. VS has d For Vs, numerous methodolog y .

eveloped in the prevailing works. Versatile
the advantage that the unwanted camera movement

effects can be effectively removed without disturbing Quaternion-based . Filter algorlthm, .PF'”C!pa'
the intentional camera movements [20]. Thus, to Component Analysis (PCA), trajectory optimization,

remove the high-frequency distortions in NUMErous Euclidean Distance-Constrained Randomized Sampling
o 19 quency X . . Consistency (ED-RSC) algorithm, decomposed motion
applications like security surveillance, filmmaking,

" . P~ . compensation, gyroscopic measurement, Bezier curve,
videography, surgical procedures, wildlife observations, . . . . . .
. . simple linear iterative clustering, K-means clustering,
and so on, VS is essential [26].

and mesh generation models are some of the prevailing
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models for VS centered on hardware approaches,
software approaches, and hybrid approaches [7, 17].
Still, none of these models focused on stabilizing the 3D
rainy stereoscopic video. Hence, this framework
proposes effective 3D rainy stereoscopic VS by using
depth estimation and Shape Autotuning Liebovitch map
Cheetah Chase Algorithm with Convolution Neural
Network (SA-LmCCA-CNN).

1.1. Problem Statement

Some drawbacks of the prevailing works are explained
as follows:

e None of the existing works concentrated on
stabilizing the 3D rainy stereoscopic videos.

e The prevailing works had frames’ misregistration
owing to the overlapping of Wide baseline and low-
texture regions in the stereoscopic videos.

e The existing [25] had hallucination problems because
of the independent processing of the 2 frame views.

¢ The mixing motion estimation and path smoothing on
the Red, Green, and Blue (RGB) video frames
resulted in estimation errors, wobbling, and
distortion artifacts in [29].

e The conventional works had few content losses
owing to image cropping.

1.2. Objectives

To overcome the limitations of the prevailing works, the
major contributions of the proposed framework are
presented below:

e In this framework, 3D rainy stereoscopic VS is
performed by detecting and removing the raindrops
in the frames by utilizing Pn-LGM.

o Here, the overlap region and depth are estimated by
employing the  Multi-view  Stereo  (MS)
methodology, and the texture mapping is processed
using Texture Filtering (TF).

e The hallucination issue is detected by generating
mesh and is mitigated by using the proposed ALS-
LCR.

e The estimation error is diminished by employing the
Lucas Kanade-Triparametric correlation coefficient
(LKT), and the camera path smoothing is done by
using Low-Pass Filtering (LPF).

e The video is synthesized without any cropping,
thereby eliminating the content loss in this model.

The remainder of this paper is organized as follows: the
related works is explained in section 2, the proposed
framework is described in section 3, a performance
analysis is provided in section 4, and finally, section 5
concludes the paper with future work.

2. Related Works

Xu et al. [32] established a learning VS system centered
on Deep Unsupervised Trajectory (DUT) by simply

watching unstable videos. By employing a multi-
homography estimation strategy, the key point motions
were estimated in the trajectory estimation stage. After
that, in the trajectory smoothing stage, dynamic
smoothing kernels were utilized. As per the analysis
outcomes, the developed model performed better than
the other top-notch models both qualitatively as well as
quantitatively. Nevertheless, in this work, the
transformations betwixt images could not be computed
accurately.

Wu et al. [30] introduced an enhanced K-means
clustering and super pixels-centric VS with robust
global motion estimation. In this work, to establish the
motion vector space, the super pixels’ feature points
between 2 adjacent frames were estimated. By using
homography transformation, the global motion was
determined. The experimental outcomes stated that
when compared with the conventional models, the
developed model achieved a superior structural
similarity index. Nevertheless, mixing motion
estimation and path smoothing on the RGB video
frames resulted in estimation errors, wobbling, and
distortion artifacts in this model.

Souza and Pedrini [25] presented visual rhythms for
qualitative evaluation of VS. In this, from the average
of the frames’ columns, a vertical visual rhythm was
constructed, and from the rows of the frames, a
horizontal visual rhythm was created. The evaluation
outcomes proved that the developed methodology
significantly verified the complex movements in the
visual rhythms. However, due to independently
processing the 2 frame views, this model had
hallucination issues.

Zhao and Ling [35] illustrated an adaptively meshed
methodology for the shaky video’s stabilization
centered on the feature trajectories and an adaptive
blocking strategy. Initially, centered on the distribution
of the feature trajectories in the frames, the triangle
mesh was generated. Then, to stabilize the video, the
transformation between the shaky frames and their
stabilized views over the mesh was analyzed. The
robustness of this model was stated in the analysis
outcomes. Still, this model had a higher computational
burden.

Milanovic [15] stated a Gyroscope-centered VS for
the electro-optical long-range surveillance systems. In
this, by employing the quaternion domain interpolation,
the unwanted motion estimation quality was enhanced.
In addition, the gyro bias instability and noise
disturbance were eliminated. As per the evaluation
outcomes, the developed model had lower
computational complexity. Nevertheless, this model’s
performance was fully centered on the gyroscope
technology.

Zhang et al. [34] propounded a high-precision
satellite VS methodology centered on the Euclidean
Distance-constrained Randomized Sampling
Consistency (ED-RanSaC) operator. The introduced
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model extracted the high-precision features effectively
and matched the homologous points to render reliable
stabilized video. The dynamic performance of this
model in VS was proved by the analysis outcomes.
Nevertheless, for synthetic aperture radar video, this
model attained poor stabilization efficiency.

Wu et al. [29] presented a simultaneous VS and
rolling shutter removal process for shaky videos. In this,
for the spatially variant inter-frame motion estimation,
a neighbor-motion-aware local motion model was
employed. After that, to enhance the neighbor motion
consistency, a classical mesh-centric model was
utilized. The experimental outcomes stated that when
compared with other models, this model attained
superior performance in VS. However, this model had
an issue in the estimation of correct correspondences in
blurry and severe noise videos.

Lee [10] depicted a low memory access VS for a low-
cost camera system-on-chip. For the video stabilization
of the low-end hardware devices, structure and layout
methods were developed in this model. The evaluation
results proved that when compared with other
straightforward methods, this model significantly
diminished the memory access amount. Nevertheless,
for low-cost camera hardware-based video stabilization,
this model was not appropriate.

Lin et al. [12] employed a content-and-disparity-
aware stereoscopic video stabilization methodology.
Primarily, the rotational angle between 2 adjacent
frames was determined. By rotating the frames
appropriately, the inconsistent angular velocity was
solved. As per the analysis results, this model optimized
the smoothness and preserved the video contents
effectively. However, for quick translation videos, this
model had unsatisfactory outcomes.

Luan et al. [13] signified an unsupervised video
stabilization algorithm centered on key point detection.
For the generation of the rich key points, a Deep Neural
Network (DNN) based key point detector was
developed. In addition, to obtain the unstable motion
trajectories, the foreground and background separation
approach was employed. Nevertheless, due to image
cropping, this model had a content loss issue.

Oliveira et al. [19] presented the depth perception
and visualization in 360° of each donor. In this
perception was noted especially when visualizing
donors with different cavities and fossae. The
combination of 3D techniques is of paramount
importance for neuroanatomy education. Stereoscopic
projections could provide a valuable tool for
neuroanatomy instruction directed at clinical trainees
and could be especially useful when access to
laboratory-based learning is limited.

Morichon et al. [16] utilizing the smartphone- based
360° photogrammetry, virtual camera recording, and
stereoscopic display. The results demonstrate that the
3D models obtained feature a complete mesh with a
high level of detail and a realistic texture. Additionally,

stereoscopic animations were both feasible and effective
in enhancing depth perception. The simplicity and
affordability of this method position it as a technique of
choice for creating easily photorealistic anatomical
models combined with stereoscopic depth visualization.

Chen et al. [3] complete 3D-DIC simulation method
involving optical simulation and mechanical simulation
and integrating 3D-DIC, virtual stereo vision, and image
super-resolution reconstruction technology. Virtual
stereo vision can reduce hardware costs and eliminate
camera-synchronization errors. Image super-resolution
reconstruction can compensate for the decrease in
precision caused by image-resolution loss.

Pathak et al. [21] presented a method for accurate all-
round 3D reconstruction of an indoor environmentin
one-shot using a system of trinocular 360-degree
cameras. Binocular 360-degree stereo is unableto
reconstruct in all directions due to lack of disparity
along epipolar directions. Thus, a third cameraalong a
perpendicular epipolar direction is introduced to cover
for this, making the system trinocular.

Al Mokhtar and Dawwd [1] presented VP based on
decreasing design complexity and producing good
results. This produces the VP model based on a Three-
Dimensional Variational Auto Encoder (3D VAE).
presented to builds all layers depending on 3D
convolutional layers. This leads to better extraction of
spatiotemporal information and decreases the design
complexity. The Kullback Leibler Loss (KL Loss) is
enhanced by a 3D sampling stage which allows to
calculation of the 3D latent loss. The 3D sampling
represents a good regularizer in the model.

3. 3D Video Stabilization Model

In this framework, by using Pn-LGM and SA-LmCCA-
CNN, the 3D rainy stereoscopic video is stabilized.
Primarily, the input video is converted into a number of
frames, followed by removing raindrops in each frame.
After that, to classify the unstable and stable frames, the
raindrop-removed frames are further processed. Lastly,
the raindrops are reconstructed, resulting in a stabilized
video. Figure 1 indicates the proposed framework’s
structure.

3.1. Frame Conversion

Primarily, the input video data ¥ is taken from the
dataset. Here, ¥ is converted into a number of image
frames and is explained as:

lyfra = {lpl' leZ' R leF} (1)

Here, the converted frames are denoted as ¥sa, and the
number of frames in Wi is represented as F.
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Figure 1. Architecture of the proposed 3D video stabilization model.

3.2. Raindrop Removal

After that, raindrops are removed from ¥ for ensuring
a clearer view of the scene, which is crucial for video
stabilization. The raindrops can generate false motion
cues, causing poor stabilization outcomes. Therefore, by
utilizing Pn-LGM, the raindrops are removed. An edge-
aware image smoothing methodology that aims to
remove small-scale oscillations while preserving salient
structures is termed conventional Lo Gradient
Minimization (LGM). Nevertheless, the major edges are
sharpened by the LGM, which might inadvertently blur
or weaken details. Hence, Pairnorm is used in LGM to
overcome the issues. The objective function of Pn-LGM
to reduce the non-zero gradients in ¥ais formulated as:

Wram = min || = ¥prall” + 217F o 2

Where, the raindrop removed frames are denoted as
Prain, ||| @and ||.]o depict the L, norm and Lo norm,
respectively, the filtered output is represented as f, the
gradient of f is depicted as Vf, the control parameter for
controlling the level of sparseness in f is denoted as A,
and y denotes the Pairnorm vector, which is depicted as:

¥Yfra
7=/ —L= 3)
¥l
F

Here, the pairwise distance is represented as g, the
hyperparameter is denoted as $, and the Frobenius norm

is depicted as F. If the A is higher, then the output is
obtained as a coarser result with a lesser gradient. After
that, the objective function is written as:

1
yl
‘Prain=mfin?21||ﬁ—¥’fm||z+§;||fi—fj||o (4)
i= J&Ji
Here, the pixels are denoted as i and j, the number of
lengths of f is depicted as I, and the neighboring set of

the i"™ pixel is represented as Ji. Here, %denotes the

relationship between fi and f; and is counted twice.
Therefore, the non-zero gradients (i.e., raindrops) in ¥
are removed.

3.3. Overlap Region Detection

Then, centered on the pixel values, position, and
coordinates of the pixels in the frames, the overlapping
regions betwixt each frame are detected from Wrin. The
detected overlapped regions are signified as Pover.

3.4. Depth Estimation

Then, by using the MS method, the depth of the detected
Pover is assessed for determining how deeply the regions
overlap. Here, the pixel coordinates (P) of Wor are
signified as:

Cm(P) = 5, Dy (P)P (5)
Where, the 3D pixel coordinates of the m™ frame are
denoted as cm, the per-frame scale coefficients are
depicted as sm, the depth map is represented as D, and
the homogeneous augmented pixel coordinate is
denoted as P. After that, the 3D coordinates are pointed
into the camera coordinate system of another frame (n),
and it is articulated as:

Cmon(P) = fnmfl(mmf;llcm(P) + Ty — Tn) (6)
Here, the intrinsic, rotation, and translation of frames
are represented as & R and z, respectively, and the
transpose of the frame rotation vector is denoted as T.
After that, the objective function (0) of MS is to
diminish the re-projection loss (7™F) of every pixel in
Pover, and it is signified as:
0 = arg min Z Zl};ipn(P) @)

edepth
(mn)eP P

Here, 6°P" denotes the optimization variable. After that,
I is determined as:

Fr:te—?n(P) = r‘nslfrrln(cm—»n(P)r Cn (fm—»n(P))) (8)

Where, the re-projection similarity loss is represented as
Lat and the flow re-projection is notated as Finon(P).
Therefore, the depth of overlap area is obtained in O.

3.5. Texture Mapping

Later, by using TF, the texture of O is mapped. While
mapping the textures of O in 3D by employing a



158 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

parametric function (@), TF enhances the quality of the
frames and is explained as:

60:0->w (9)

Here, the 3D Euclidean space is symbolized as @. After
that, Pex: represents the 3D texture-mapped image.

3.6. Energy Function Estimation

Afterward, to determine the weighted terms of the pixels
in Yex, the energy function of P is estimated. By
using the sparse displacement and similarity
transformation factors, the weighted terms are
estimated. The estimated weighted terms are depicted as
yjene-

3.7. Energy Function Minimization

After that, to evaluate the deviation between the frames,
the energy function Ye is minimized by employing
Lm-CCA. Since the Cheetah Chase Algorithm (CCA)
has awesome capacities in the exploitation and
exploration phases, it is chosen. CCA conducts
exploration and exploitation separately, which means
that it doesn’t need to balance the 2 forces.
Nevertheless, CCA’s drawback is that overemphasizing
exploration may hinder convergence, making it
challenging to identify the global optimum. The
Liebovitch map technique is included in the exploration
phase to solve this issue. Therefore, the proposed
methodology is named as Lm-CCA. Based on searching
for prey, sitting and waiting, and attacking strategies,
this method is carried out. Here, to avoid getting stuck
in local optimal points, leaving the prey and returning
home strategy is also introduced. The process of
proposed Lm-CCA is explained as follows:

1. Initialization: primarily, the populace of Cheetah (C)
(i.e., energy function of ¥ene) is initialized as:

C=1{C1,C2,...,Cz} (20)

Here, the number of cheetahs in the population is
denoted as z. After that, the fitness function (¢) for the
cheetah’s position is deemed as the minimum (min)
energy (1), and it is illustrated as:

& =min{l} (11)

Then, the cheetah’s position in the search space (d) is
estimated as:

Ce =vl + e -rand(wd, — vih) (12)
Where, the position of the a™ cheetah in d at t™ hunting
time is denoted as Ct"_’a , and the upper and lower bounds
of d are notated as v{}p and vL, respectively.

2. Searching strategy: grounded on the surrounding
environmental conditions and hunting behavior, the
position of the a™ cheetah in the search space (d) is
estimated and is mathematically represented as:

Ctd+1,a = th,ia + (19;,(% : aga) (13)

Here, the new position of the a™ cheetah is denoted as
C& 4, the randomization parameter and step length are
depicted as 972} and af,, respectively, and the next
hunting time is represented as t+1. The randomization
parameter is just a normally distributed random number.
The step length is articulated as:

t
ad, =0.001 x , (v — vib) (14)

Here, the length of hunting time is notated as tmax. Based
on the distance of the a™ cheetah and arbitrarily selected
e™ cheetah, the random step length is estimated for other
members in C and is articulated as:

t

afq = 0.001 % 7

(Cfa —CE) (15)

3. Sitting and waiting strategy: then, the cheetah’s sit-
and-wait strategy to get the prey close enough for
hunting is arithmetically modeled as:

Clhra = C (16)

4. Attacking strategy: then, based on speed and
flexibility to catch the prey, the cheetah’s attacking
strategy is determined. Centered on the fleeing prey
and the leader’s position, the position of the cheetah
is adjusted and is signified as:

Ctd+1,a = Cga ) @ + 5t,a ) Xga (17)

Where, the turning factor and interaction factor are
denoted as 9., and XZ,, respectively, and the
Liebovitch mapping vector is depicted as 8 and is
described as:
oCl,if 0< Cly < dy,

dyz - Cga
dy, —dy,
1-0(1—-Cd) elsedy, <C <1

Jelse if dy; < Cf, < dy, (18)

Here, the control parameter is symbolized as o, and the
additional dynamic parameters are depicted as dy; and
dy.. The interaction factor determines the interaction
betwixt the cheetah and leader in the capturing mode
and is determined as:

.y )
Ora = |9calexp (%) sin(2m9, q) (29)

Here, the randomly chosen value from the normal
distribution is symbolized as % .. In addition, the turning
factor assesses the sharp turns of the cheetahs in the
capturing mode and is signified as:

Xga = Cge - Cga (20)

To attain the best solution, the position of the cheetah is
updated centered on the above strategies. Sometimes, to
prevent the system from falling into local optimal
solutions, leave the prey and return to home strategy is
applied. Therefore, the energy function is diminished,
and it is notated as ¥min. The pseudo-code for Lm-CCA
is presented in Algorithm (1) below.
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Algorithm 1: Pseudo-code for Lm-CCA.

Input: Weighted terms (¥ene)
Output: Minimized weighted terms (¥min)
Begin
Initialize Cheetah population (C),& maximum iteration

(tn), 9, v and vg
While (#<tmax)
For each Peqe do
Evaluate fitness function (&)
C& = v + e rand(vl, — v})
Estimate
# Searching strategy
Ctd+1,a = Cga + (ét_,a% ' ag,a)
Update
Determine step length
# Sitting and waiting strategy
Formulate C2, , = C&,
# Attacking strategy
Update the position
Compute the Liebovitch map

If (0<CZ,<dy1)
{
Obtain oCg,
} Else if (dy:< C&,<dy).
{ d
Attain 22=“ta

dy;—dy,

} Else
{
Get 1-0(1-C&)
}
End if

Evaluate turning factor and interaction factor
Estimate leave the prey and go back home strategy
End For
End while
Return minimized weighted terms(¥min)
End

After that, for the identification of stable and unstable
frames, the features of ¥ninare employed further.

3.8. Stability Mesh Generation

Likewise, to enhance the reliability rate of the video
stabilization, the hallucination is removed from Wain.
For ¥rain, a stability mesh is generated to mitigate the
image hallucination. Here, ¥nesn Signified the generated
mesh.

3.9. Hallucination Mitigation

After that, by employing ALS-LCR, the hallucination
effect is reduced from Ynen. TO mitigate the
hallucination, the conventional Locally Constrained
Representations (LCRs) are utilized. This is because
LCR encourages the pixel representations to be
predictable by representing neighboring pixels.
Nevertheless, enforcing locality constraints can be
challenging in LCR when dealing with irregular or
sparse data. Therefore, to overcome this issue,
Alternating Least Squares (ALS) is employed for

reducing the sparse data in LCR. Initially, to generate
the locality constraints (L) for %men, the ALS is
employed and is articulated as:

Lx,y - B T 2 2 2 (21)
(,f,?,i)relg ' Rey=mesnx¥meshy) 4 l(”q’mesh,x”ﬁ + ||lymesh,y||ﬁ)

Where, the observed rating of the data points (x, y) in
Pesn is denoted as R, the transpose vector is depicted as
T, the Frobenius norm is represented as F, and the
regularization parameter is denoted as A. Here, to reduce
the sparse data, the ALS vector (g")is employed and is
signified as:

' = (lPrT;Leshl‘Umesh + )‘i)_lllurq;zesh (22)

Here, the identity matrix is signified as I. Later, to
represent L, the diagonal (z;) and Laplacian matrix (z3)
are generated, and it is depicted as:

=) Lxy (23)
xy

T =7~ Lxy (24)

Later, to preserve the local structure of Wmesh, the
objective function (g) of ALS-LCR is determined and
articulated as:

o = nE“leleesh,x - mesh,y”zLx,y (25)
X,y

Therefore, by choosing the eigenvectors corresponding
to the smallest eigenvalues of g, the final representation
of the hallucination-mitigated image is obtained. Thus,
the ALS-LCR ensures that the learned representation
preserves the local geometric structure Of ¥resh tO
diminish the hallucination effects in ¥nesh. Therefore,
Phan depicts the hallucination mitigated image.

3.10. Feature Points Extraction

Later, features like scale-invariant feature transform,
speeded-up robust features, homogeneity, contrast,
entropy, and angular second moment are extracted from
Yhin and Phan. To estimate the motion of the camera,
these feature points in every single frame are tracked
over successive frames. Here, & e denotes the extracted
feature points.

3.11. Classification

By using SA-LmCCA-CNN, the stable and unstable
frames are classified centered on the feature points(x
ext). The conventional CNN can process high-
dimensional data and share information betwixt layers.
However, since CNN has several processing layers, it
takes a longer time for the training process. Therefore,
shape autotuning activation is used in CNN to overcome
the drawback, and by using Liebovitch map Cheetah
Chase Algorithm (LmCCA), the weight is optimized.
Figure 2 presents the SA-LmCCA-CNN’s structure.
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Figure 2. Structure of SA-LmCCA-CNN.

1. Input layer: the feature points (% ) are fed as input
to the input layer (®inp) of SA-LMCCA-CNN, and it
is explained as:

@inp > { X ext} (26)

After that, the output of @i, is fed as input to the
convolutional layer (Dcony).

2. Convolutional layer: @cn, is accountable for the
feature extraction by utilizing some kernels, which
are convolved with @i, for capturing the relevant
features of @iy, and it is articulated as:

Doy <A 8 (M) +1 27)
¢

Here, the convolutional padding size is signified as ps,

the convolutional kernel size is notated as y, and the

convolutional stride size is symbolized as ¢. Later, the
shape autotuning activation function (9) is given as:

5= d’inp

Binp (28)

(Dinp
i + exp(— ﬁn

Here, a pair of trainable non-negative parameters is
depicted as a” and f”. Also, the weights (A) of SA-
LmMCCA-CNN are determined by the LmCCA function,
which is briefly explained in section 3.7.

3. Pooling layer: afterward, in the pooling layer (@pool),
the spatial dimension of @con is diminished by
retaining the significant information from @ and
discarding the unwanted information. Therefore, the
Pp001 Prool OpEration is articulated as

follows:
d)pool = m?X((pconv) (29)

4. Flatten layer: the flatten layer (@) aids the network
in learning the complex patterns from ®geo1. The riar
converts the feature maps from @0 to a format that
is understood by the fully connected layer (D).

Qdpool — dflat — Qdflat (30)

Here, the multi-dimensional and one-dimensional
feature arrays are represented as Q and Q, respectively.

5. Fully connected layer: The fully connected layer
(Prar) Utilizes the features from Q @narand predicts the
output classes. Then, from s, the feature
information is connected to the output layer via @

6. Output layer: In the output layer (®ou), the
corresponding outcomes with the pre-trained labels
for the input data are obtained. The SA-LmCCA-
CNN’s output is obtained as the stable and unstable
frames. The output attained from the proposed SA-
LmCCA-CNN is depicted as:

DPour = {1, @5} (31)

Here, the stable and unstable frames are denoted as @
and &, respectively. Lastly, the reliability level of the
predicted outputs and the true labels of the input are
guantified by the loss function (¢). The pseudo-code for
SA-LMCCA-CNN is given Algorithm (2) below.

Algorithm 2: Pseudo-code for SA-LmCCA-CNN.

Input: Features points (X ext)
Output: Stable or unstable frames (Do)
Begin
Initialize padding size (ps), kernel size (y), and stride
size (g)
For each % eqdo
Compute convolutional operation
. Din
Activate § = m
T (T
Determine weights
Formulate pooling function
Evaluate
g(ppool_’(pflat_’g(pﬂat
Estimate fully connected layer (@)
Obtain output

Evaluate 0

" (0 = min) ‘

Terminate
} Else {

Adjust the parameters
}

End If
End For
Return Stable or unstable frames
End
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The frames are processed and synthesized centered on
the classification results for generating stabilized video.

3.12. Motion Estimation

If &, is obtained, then the video is stabilized by
assessing the motion in @ utilizing LKT. A widely
utilized differential methodology for optical flow
estimation is the existing Lucas-Kanade method. By
using the least squares criterion, this method solves the
fundamental optical flow equations for all the pixels in
the neighborhood. However, the algorithm may
converge to suboptimal solutions when image pairs
have significant distortions or complex motions. In this
method, the Triparametric correlation coefficient is
included to solve this issue. The process of LKT is
illustrated as follows:

e The LKT assumes that the displacement between the
nearby frames (M and N) is small with the window
size (ws) of pixels (k) for the motion estimation.
Afterward, the optical flow matrix (%) holds all pixels
(S) of coordinates within ws and is signified as:

Where, the intensity at position (M, N) is denoted as T

and the time is signified as £.

e The optical flow matrix provides the linear equation
and is articulated as:

oh=p (33)

Here, the matrix that contains the image gradient
components is denoted as ¢, the vector that represents
the optical flow is represented as %, and the image
derivative vector is notated as f. These vectors are
signified as:

R Iy (Sy) In(Sy)
o=r iM(SZ)iN(SZ) (34)
Ty (Si) In(Si)
_ [m 35
h [hN] (39)
1:(S1)
B = |I:(S2) (36)
T:(Sk)

Here, I implies the Triparametric correlation
coefficient vector and is illustrated as:
fo_VMN) (37)
Jo(M)/w(N)

Where, the correlation betwixt M and N is depicted as

MM, N) and Jw(M) Jw(N) signify the

informational energies of M and N, respectively.

e Here, the LKT estimates the least square solution to
avoid over-determination and is articulated below:

" oh=p"p (38)
Where, the transpose of ¢ is denoted as ¢

e Thus, the least square solution for the optical flow of
@, is obtained as:

h=(p"p) "8 (39)
k k -1 k
> W(s0? )1 (S)IN(S)] [Z ST
ml-|E | o)
[ZIN(S)IM(S)ZIN(S)} l Z (S)It(S)]

= =

If the central matrix ¢ is invertible and well-
conditioned, then the optical flow (#) of @, is well-
estimated.

3.13. Camera Path Correction

Later, to determine the motion of the camera, the camera
path is estimated during video capture. The unwanted
motions can easily be differentiated from the intentional
camera movements by estimating the camera path.
Therefore, it is estimated and corrected by employing
the LPF, and it is described as follows:

1

1+ 3(h* X 2nR'CY) (41)

¢(h*) =

Where, the transfer function is denoted as g, the
frequency of 7% is represented as #*, the imaginary unit
is depicted as 3, and the cutoff frequency with resistor
(R’) and capacitor (C’) values is denoted as 2zR’C’.
Thus, Apan Signifies the camera path corrected image.

3.14. Raindrop Reconstruction

Later, the raindrops are reconstructed for both &1 and
hpan tO get the clear original frames for the input video.
Lastly, to get the stabilized 3D stereoscopic video, the
raindrop reconstructed frames are synthesized. The
proposed 3D rainy stereoscopic video stabilization
framework’s performance is discussed further.

4. Result and Discussion

Here, the robustness of the proposed framework is
proved by analogizing it with the prevailing works. The
proposed work is implemented in the working platform
of MATLAB.

4.1. Dataset Description

To evaluate the proposed system’s efficacy, the
Middlebury Stereo Dataset (MSD) is employed. The
MSD has high-resolution stereo videos with complex
geometry and pixel-accurate ground truth video data. It
comprises 47 stereoscopic video data. Among them,
80% and 20% of the data are utilized for training and
testing purposes, respectively. In Table 1, the sample
image results attained by the proposed model are
presented. The sample image results obtained from the
proposed 3D rainy stereoscopic video stabilization
framework are illustrated in Table 1.
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Table 1. Sample image results.

S.no. Process
1 Input
2 Raindrop removal
3 Depth estimation
4 Texture mapping

Imagel

5 Stability mesh generation

6 Hallucination mitigation

7 Raindrop reconstruction

4.2. Performance Analysis

To prove the superiority of the proposed models’ video
stabilization process, the proposed methodologies’
performance is analyzed and compared with the
prevailing models in this subsection.

4.2.1. Performance Evaluation of Proposed LKT

In this section, based on the performance metrics, such
as the Sum of Squared Differences (SSD), Mean
Absolute Difference (MAD), Sum of Absolute
Difference (SAD), Peak Signal-to-Noise Ratio (PSNR),
and Mean Squared Error (MSE), the proposed LKT’s
performance is analyzed and compared with the existing
models like Lucas-Kanade (LK), Horn-Schunck (HS),
Camshift Algorithm (CA), and Block Matching
Algorithm (BMA).

The comparative analysis of the proposed LKT and
the prevailing models based on performance metrics
like SSD, MAD, SAD, and PSNR is indicated in Table
2. By employing the Triparametric correlation
coefficient, the proposed LKT reduces the suboptimal
solution. Hence, the SSD, MAD, SAD, and PSNR of the

proposed model are 5082.13, 13.707, 8793.2, and 41.01,
respectively. However, the existing models’ average
SSD, MAD, SAD, and PSNR were 7918.07, 27.096,
10143.1, and 37.59, respectively. Nevertheless, when
analogized to the proposed model, the performances of
the existing models were considerably lower. Hence, the
analysis demonstrates the efficacy of the proposed LKT.

Table 2. Comparison analysis of proposed LKT.

Technique SSD MAD | SAD | PSNR
Proposed LKT | 5082.13 | 13.707 | 8793.2 | 41.01
LK 6891.64 | 19.645| 9112.3 | 40.56

HS 7213.78 | 23.697 | 9657.3 | 38.69

CA 8113.64 | 29.913 | 10564.9 | 36.98
BMA 9453.21 | 35.128 | 11237.7 | 34.15

Figure 3 exhibits the MSE analysis of the proposed
and the prevailing models. The MSE of the existing LK
was 0.01236, HS was 0.03751, CA was 0.0689, and
BMA was 0.1364. But, the proposed approach uses a
Triparametric correlation coefficient function with the
gradient component. Hence, the proposed model’s MSE
is 0.0079, which is better compared to all existing
models. Hence, the analysis results demonstrated that
the proposed model is less error-prone.
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Figure 3. MSE analysis of proposed LKT.

4.2.2. Performance Evaluation of Proposed SA-
LmCCA-CNN

In this phase, the performance analysis of the proposed
SA-LMCCA-CNN and the prevailing models like
Convolutional Neural Network (CNN), DNN,
Recurrent Neural Network (RNN), and Artificial Neural
Network (ANN) is performed. The analysis is centered
on performance metrics, namely sensitivity, specificity,
accuracy, precision, recall, F-measure, Negative
Predictive Value (NPV), Matthews Correlation
Coefficient (MCC), False Reject Rate (FRR), False
Discovery Rate (FDR), False Positive Rate (FPR), and
False Negative Rate (FNR).

100 T T . T 100
[ F:roposed SA-LmCCA-CNN
I CNN
20 80+ [y
RN
[ RN
&80 Laol
@ 1
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Figure 4. Performance assessment of proposed SA-LmCCA-CNN.

The performance assessment of the proposed SA-
LMCCA-CNN and the prevailing models based on
sensitivity, specificity, accuracy, precision, recall, F-
measure, NPV, MCC, FRR, and FDR is depicted in
Figures 4-a), (b) and (c). The proposed model attains the
sensitivity, specificity, accuracy, precision, recall, F-
measure, NPV, MCC, FRR, and FDR of 98.63%,
98.59%, 97.22%, 98.59%, 98.63%, 98.61%, 95.89%,
94.48%, 0.041, and 0.014, respectively. Nevertheless,
the sensitivity, specificity, accuracy, precision, recall, F-
measure, NPV, MCC, FRR, and FDR of the prevailing
CNN was 97.26%, 97.18%, 95.83%, 97.18%, 97.26%,
97.22%, 94.52%, 91.70%, 0.054, and 0.028,
respectively, which were considerably lower when
analogized to the proposed model. Likewise, when
analogized to the proposed model, other prevailing
models also attained lower performances. Thus, the
proposed model’s robustness is proved. In Table 3, the
FPR and FNR analysis of the proposed SA-LmCCA-
CNN and the prevailing models are described. To
reduce the training time of the network, the proposed
SA-LmCCA-CNN effectively optimized the weights of
the network and employed the shape autotuning
activation function. Thus, the FPR and FNR analysis of
the proposed SA-LMCCA-CNN are 0.014085 and
0.041096, respectively. Nevertheless, the existing DNN
and RNN had FPRs of 0.042254 and 0.056338. Also,
they had FNRs of 0.068493 and 0.082192, respectively.
These performances are highly ineffective compared to
the proposed model. In addition, other conventional

models had lower performances. Therefore, from the
analysis, the efficacy of the proposed SA-LMCCA-
CNN is proven.

Table 3. FPR and FNR analysis.

Techniques FPR FNR
Proposed SA-LmCCA-CNN | 0.014085 | 0.041096
CNN 0.028169 | 0.054795
DNN 0.042254 | 0.068493
RNN 0.056338 | 0.082192
ANN 0.098592 | 0.123288

4.2.3. Performance Analysis of Proposed Lm-CCA

Grounded on fitness vs. lteration analysis, the
performance of the proposed Lm-CCA and the
prevailing CCA, Snow Leopard Optimization
Algorithm (SLOA), Pelican Optimization Algorithm
(POA), and Aquila Optimization (AO) is compared in
this section.

Figure 5 compares the fitness vs. iteration analysis of
the proposed and the prevailing methodologies. The
fitness of the Lm-CCA is attaining minimized energy.
For 10 iterations, the proposed model achieves a fitness
of 0.5. This is owing to the utilization of the Liebovitch
map for attaining global optimal solutions.
Nevertheless, for 10 iterations, the existing CCA,
SLOA, POA, and AO had the fitness of 0.59, 0.68, 1.39,
and 1.9, respectively. These are considerably
lower when analogized to the proposed model.
Therefore, it is stated that the proposed model’s efficacy
IS better than the existing models.



164 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

2 T

Proposed LM-CCA
—CCA

16 SLOA

—POA

1 AO

e L

0 10 20 30 40 50 60 70 80 %0 100
Iteration

Figure 5. Fitness vs. iteration analysis.

4.2.4. Comparative Analysis with Related Works

The comparative analysis of the proposed methodology
and related works is performed in this subsection. The
comparative analysis with the related works is indicated
in Table 4.

The comparative analysis of the proposed work and

the related works in terms of different video
stabilization techniques and datasets utilized in video
stabilization is presented in Table 4. The robustness of
the proposed work is determined by analogizing it with
existing works based on stability score analysis. The
existing (Huang et al. [6], Jang et al. [8], Shang and Chu
[24], Valero et al. [27], and Ren et al. [23]) attained
stability scores of 0.91, 0.82, 0.91, 0.92, and 0.86,
respectively. Nevertheless, the proposed work’s
stability score is 0.93, which is considerably superior to
other existing works. This dynamic performance of the
proposed methodology is owing to the proper handling
of the rainy stereoscopic video by determining the depth
of the overlapped regions and mitigating the
hallucination effects. In addition, the unstable frames
are effectively processed by the proposed model.
Therefore, this robust performance in video stabilization
is attained by the proposed work. Thus, from the
comparative analysis, the efficacy of the proposed work
is demonstrated.

Table 4. Comparative analysis with related works.

Author name Technique

Dataset Stability score

Proposed SA-LmCCA-CNN

MSD 0.93

Huang et al. [6] Decomposed motion compensation

The National University of Singapore and DeepStab datasets 0.91

Jang et al. [8] Dual-Modality Cross-Interaction Inertial measurement unit sensor dataset 0.82
Shang and Chu [24] |Low-rank constraint and trajectory optimization Video dataset 0.91
Valero et al. [27] Thermal Infrared Wildland fire video dataset 0.92
Ren et al. [23] Gyroscope-based Self-Calibration Spherical Gyroscope data 0.86
5. Conclusions and Future Work Reference

In this framework, a robust 3D rainy stereoscopic video
stabilization model is proposed by employing depth
estimation and SA-LmCCA-CNN. The proposed
model’s efficacy was proved by implementing it in the
working platform of MATLAB. As per the experimental
analysis, the proposed methodology attained an
accuracy of 97.22% and an F-measure of 98.61% for the
classification of stable and unstable video frames,
respectively. In addition, the proposed SA-LmCCA-
CNN obtained the minimum FPR and FNR of 0.014085
and 0.041096, correspondingly. After that, the proposed
model attained an SSD, MAD, SAD, and PSNR of
5082.13, 13.707, 8793.2, and 41.01, respectively. When
analogized with the prevailing model, the proposed
model’s MSE was less, thus indicating that the model
was less error-prone. Therefore, the proposed model’s
superiority was stated by the overall analysis.

Conclusion of the future work, the 3D rainy
stereoscopic videos can be improved by the real-time
climate data and advanced simulations. Weather effects
like rain, snow and lighting can be made more realistic
and dynamic.

Data Availability

The datasets are available at
https://vision.middlebury.edu/stereo/data/scenes2014/z

ip/.
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