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Abstract: The process of enhancing the video’s quality by removing unwanted effects of camera shakes and jitters is called 

Video Stabilization (VS). However, the 3-Dimensional (3D) rainy stereoscopic video stabilization process was not concentrated 

on any of the prevailing research work. Therefore, in this framework, an effective 3D rainy stereoscopic video stabilization with 

depth estimation and Shape Autotuning Liebovitch map Cheetah Chase Algorithm with Convolution Neural Network (SA-

LmCCA-CNN) is proposed. Primarily, the input videos are converted into a number of frames. After that, by using Pairnorm L0 

Gradient Minimization (Pn-LGM), the raindrops in each frame are removed. Later, the overlapping region and depth estimation 

are processed, and by using the Liebovitch map Cheetah Chase Algorithm (LmCCA), the energy function is diminished. Likewise, 

to mitigate the hallucination issue, a mesh is generated by utilizing Alternating Least Squares-Locally Constrained 

Representations (ALS-LCR). Then, from the hallucination-mitigated image and energy function minimized image, the feature 

points are extracted. Later, by employing SA-LmCCA-CNN, the stable and unstable frames are classified. If the frame is unstable, 

then the frame undergoes motion and camera path corrections, followed by raindrop reconstruction; otherwise, raindrop 

reconstruction is done directly for a stable frame. Lastly, in order to get the stabilized video, the frames are synthesized. The 

experimental analysis proved the proposed model’s robustness in 3D rainy stereoscopic video stabilization by attaining a 

stability score of 0.93. 
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1. Introduction 

The growing popularity of videos plays a major role in 

daily life in the new digital era [22]. The generation of 

video content achieves a dominant performance with the 

improvements of digital cameras, smartphones, and 

some other portable video recording devices [19]. 

However, owing to the instability of camera 

movements, the video content might suffer from some 

visual distortions [9]. Blurring effects, poor video 

quality, and visual discomfort are caused by this 

instability [5]. An effective process used for the 

mitigation of these video instability issues is Video 

Stabilization (VS) [4]. A technique utilized to diminish 

the effects of unwanted camera movements for 

enhancing the video’s quality is called VS [33]. VS has 

the advantage that the unwanted camera movement 

effects can be effectively removed without disturbing 

the intentional camera movements [20]. Thus, to 

remove the high-frequency distortions in numerous 

applications like security surveillance, filmmaking, 

videography, surgical procedures, wildlife observations, 

and so on, VS is essential [26]. 

 
Nowadays, a surge in demand for high-quality video 

experiences are caused by the rapid growth multimedia 

technology with elevated stereoscopic video content 

[14]. Still, it is very challenging to capture stable and 

visually effective stereoscopic videos in some dynamic 

conditions [31]. Hardware solutions like gimbals and 

stabilizers, software solutions like motion post-capture 

correction algorithms, and some hybrid solutions that 

combine both hardware and software solutions were 

used by the traditional VS techniques [11, 18]. 

Nevertheless, these techniques often struggle to 

eliminate complex motion artifacts and are less effective 

in handling depth inconsistencies in dynamic conditions 

[2]. 

For VS, numerous methodologies were analyzed and 

developed in the prevailing works. Versatile 

Quaternion-based Filter algorithm, Principal 

Component Analysis (PCA), trajectory optimization, 

Euclidean Distance-Constrained Randomized Sampling 

Consistency (ED-RSC) algorithm, decomposed motion 

compensation, gyroscopic measurement, Bezier curve, 

simple linear iterative clustering, K-means clustering, 

and mesh generation models are some of the prevailing 
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models for VS centered on hardware approaches, 

software approaches, and hybrid approaches [7, 17]. 

Still, none of these models focused on stabilizing the 3D 

rainy stereoscopic video. Hence, this framework 

proposes effective 3D rainy stereoscopic VS by using 

depth estimation and Shape Autotuning Liebovitch map 

Cheetah Chase Algorithm with Convolution Neural 

Network (SA-LmCCA-CNN). 

1.1. Problem Statement 

Some drawbacks of the prevailing works are explained 

as follows: 

 None of the existing works concentrated on 

stabilizing the 3D rainy stereoscopic videos. 

 The prevailing works had frames’ misregistration 

owing to the overlapping of Wide baseline and low-

texture regions in the stereoscopic videos. 

 The existing [25] had hallucination problems because 

of the independent processing of the 2 frame views. 

 The mixing motion estimation and path smoothing on 

the Red, Green, and Blue (RGB) video frames 

resulted in estimation errors, wobbling, and 

distortion artifacts in [29]. 

 The conventional works had few content losses 

owing to image cropping. 

1.2. Objectives 

To overcome the limitations of the prevailing works, the 

major contributions of the proposed framework are 

presented below: 

 In this framework, 3D rainy stereoscopic VS is 

performed by detecting and removing the raindrops 

in the frames by utilizing Pn-LGM. 

 Here, the overlap region and depth are estimated by 

employing the Multi-view Stereo (MS) 

methodology, and the texture mapping is processed 

using Texture Filtering (TF). 

 The hallucination issue is detected by generating 

mesh and is mitigated by using the proposed ALS-

LCR. 

 The estimation error is diminished by employing the 

Lucas Kanade-Triparametric correlation coefficient 

(LKT), and the camera path smoothing is done by 

using Low-Pass Filtering (LPF). 

 The video is synthesized without any cropping, 

thereby eliminating the content loss in this model. 

The remainder of this paper is organized as follows: the 

related works is explained in section 2, the proposed 

framework is described in section 3, a performance 

analysis is provided in section 4, and finally, section 5 

concludes the paper with future work. 

2. Related Works 

Xu et al. [32] established a learning VS system centered 

on Deep Unsupervised Trajectory (DUT) by simply 

watching unstable videos. By employing a multi-

homography estimation strategy, the key point motions 

were estimated in the trajectory estimation stage. After 

that, in the trajectory smoothing stage, dynamic 

smoothing kernels were utilized. As per the analysis 

outcomes, the developed model performed better than 

the other top-notch models both qualitatively as well as 

quantitatively. Nevertheless, in this work, the 

transformations betwixt images could not be computed 

accurately.  

Wu et al. [30] introduced an enhanced K-means 

clustering and super pixels-centric VS with robust 

global motion estimation. In this work, to establish the 

motion vector space, the super pixels’ feature points 

between 2 adjacent frames were estimated. By using 

homography transformation, the global motion was 

determined. The experimental outcomes stated that 

when compared with the conventional models, the 

developed model achieved a superior structural 

similarity index. Nevertheless, mixing motion 

estimation and path smoothing on the RGB video 

frames resulted in estimation errors, wobbling, and 

distortion artifacts in this model.  

Souza and Pedrini [25] presented visual rhythms for 

qualitative evaluation of VS. In this, from the average 

of the frames’ columns, a vertical visual rhythm was 

constructed, and from the rows of the frames, a 

horizontal visual rhythm was created. The evaluation 

outcomes proved that the developed methodology 

significantly verified the complex movements in the 

visual rhythms. However, due to independently 

processing the 2 frame views, this model had 

hallucination issues. 

Zhao and Ling [35] illustrated an adaptively meshed 

methodology for the shaky video’s stabilization 

centered on the feature trajectories and an adaptive 

blocking strategy. Initially, centered on the distribution 

of the feature trajectories in the frames, the triangle 

mesh was generated. Then, to stabilize the video, the 

transformation between the shaky frames and their 

stabilized views over the mesh was analyzed. The 

robustness of this model was stated in the analysis 

outcomes. Still, this model had a higher computational 

burden. 

Milanovic [15] stated a Gyroscope-centered VS for 

the electro-optical long-range surveillance systems. In 

this, by employing the quaternion domain interpolation, 

the unwanted motion estimation quality was enhanced. 

In addition, the gyro bias instability and noise 

disturbance were eliminated. As per the evaluation 

outcomes, the developed model had lower 

computational complexity. Nevertheless, this model’s 

performance was fully centered on the gyroscope 

technology. 

Zhang et al. [34] propounded a high-precision 

satellite VS methodology centered on the Euclidean 

Distance-constrained Randomized Sampling 

Consistency (ED-RanSaC) operator. The introduced 
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model extracted the high-precision features effectively 

and matched the homologous points to render reliable 

stabilized video. The dynamic performance of this 

model in VS was proved by the analysis outcomes. 

Nevertheless, for synthetic aperture radar video, this 

model attained poor stabilization efficiency. 

Wu et al. [29] presented a simultaneous VS and 

rolling shutter removal process for shaky videos. In this, 

for the spatially variant inter-frame motion estimation, 

a neighbor-motion-aware local motion model was 

employed. After that, to enhance the neighbor motion 

consistency, a classical mesh-centric model was 

utilized. The experimental outcomes stated that when 

compared with other models, this model attained 

superior performance in VS. However, this model had 

an issue in the estimation of correct correspondences in 

blurry and severe noise videos. 

Lee [10] depicted a low memory access VS for a low-

cost camera system-on-chip. For the video stabilization 

of the low-end hardware devices, structure and layout 

methods were developed in this model. The evaluation 

results proved that when compared with other 

straightforward methods, this model significantly 

diminished the memory access amount. Nevertheless, 

for low-cost camera hardware-based video stabilization, 

this model was not appropriate. 

Lin et al. [12] employed a content-and-disparity-

aware stereoscopic video stabilization methodology. 

Primarily, the rotational angle between 2 adjacent 

frames was determined. By rotating the frames 

appropriately, the inconsistent angular velocity was 

solved. As per the analysis results, this model optimized 

the smoothness and preserved the video contents 

effectively. However, for quick translation videos, this 

model had unsatisfactory outcomes. 

Luan et al. [13] signified an unsupervised video 

stabilization algorithm centered on key point detection. 

For the generation of the rich key points, a Deep Neural 

Network (DNN) based key point detector was 

developed. In addition, to obtain the unstable motion 

trajectories, the foreground and background separation 

approach was employed. Nevertheless, due to image 

cropping, this model had a content loss issue. 

Oliveira et al. [19] presented the depth perception 

and visualization in 360° of each donor. In this 

perception was noted especially when visualizing 

donors with different cavities and fossae. The 

combination of 3D techniques is of paramount 

importance for neuroanatomy education. Stereoscopic  

projections could provide a valuable tool for 

neuroanatomy instruction directed at clinical trainees 

and could be especially useful when access to 

laboratory-based learning is limited. 

Morichon et al. [16] utilizing the smartphone- based 

360° photogrammetry, virtual camera recording, and 

stereoscopic display. The results demonstrate that the 

3D models obtained feature a complete mesh with a 

high level of detail and a realistic texture. Additionally, 

stereoscopic animations were both feasible and effective 

in enhancing depth perception. The simplicity and 

affordability of this method position it as a technique of 

choice for creating easily photorealistic anatomical 

models combined with stereoscopic depth visualization. 

Chen et al. [3] complete 3D-DIC simulation method 

involving optical simulation and mechanical simulation 

and integrating 3D-DIC, virtual stereo vision, and image 

super-resolution reconstruction technology. Virtual 

stereo vision can reduce hardware costs and eliminate 

camera-synchronization errors. Image super-resolution 

reconstruction can compensate for the decrease in 

precision caused by image-resolution loss. 

Pathak et al. [21] presented a method for accurate all-

round 3D reconstruction of an indoor environmentin 

one-shot using a system of trinocular 360-degree 

cameras. Binocular 360-degree stereo is unableto 

reconstruct in all directions due to lack of disparity 

along epipolar directions. Thus, a third cameraalong a 

perpendicular epipolar direction is introduced to cover 

for this, making the system trinocular. 

Al Mokhtar and Dawwd [1] presented VP based on 

decreasing design complexity and producing good 

results. This produces the VP model based on a Three-

Dimensional Variational Auto Encoder (3D VAE). 

presented to builds all layers depending on 3D 

convolutional layers. This leads to better extraction of 

spatiotemporal information and decreases the design 

complexity. The Kullback Leibler Loss (KL Loss) is 

enhanced by a 3D sampling stage which allows to 

calculation of the 3D latent loss. The 3D sampling 

represents a good regularizer in the model.  

3. 3D Video Stabilization Model 

In this framework, by using Pn-LGM and SA-LmCCA-

CNN, the 3D rainy stereoscopic video is stabilized. 

Primarily, the input video is converted into a number of 

frames, followed by removing raindrops in each frame. 

After that, to classify the unstable and stable frames, the 

raindrop-removed frames are further processed. Lastly, 

the raindrops are reconstructed, resulting in a stabilized 

video. Figure 1 indicates the proposed framework’s 

structure. 

3.1. Frame Conversion 

Primarily, the input video data Ψ is taken from the 

dataset. Here, Ψ is converted into a number of image 

frames and is explained as: 

𝛹𝑓𝑟𝑎 = {𝛹1, 𝛹2, … ,𝛹𝐹} 

Here, the converted frames are denoted as Ψfra, and the 

number of frames in Ψfra is represented as F. 

 

 

 

 

 

(1) 
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Figure 1. Architecture of the proposed 3D video stabilization model. 

3.2. Raindrop Removal 

After that, raindrops are removed from Ψfra for ensuring 

a clearer view of the scene, which is crucial for video 

stabilization. The raindrops can generate false motion 

cues, causing poor stabilization outcomes. Therefore, by 

utilizing Pn-LGM, the raindrops are removed. An edge-

aware image smoothing methodology that aims to 

remove small-scale oscillations while preserving salient 

structures is termed conventional L0 Gradient 

Minimization (LGM). Nevertheless, the major edges are 

sharpened by the LGM, which might inadvertently blur 

or weaken details. Hence, Pairnorm is used in LGM to 

overcome the issues. The objective function of Pn-LGM 

to reduce the non-zero gradients in Ψfra is formulated as: 

𝛹𝑟𝑎𝑖𝑛 = 𝑚𝑖𝑛
𝑓
𝛾 ‖𝑓 − 𝛹𝑓𝑟𝑎‖

2
+ 𝜆‖𝛻𝑓‖0 

Where, the raindrop removed frames are denoted as 

Ψrain, ||.|| and ||.||0 depict the L2 norm and L0 norm, 

respectively, the filtered output is represented as f, the 

gradient of f is depicted as ∇f, the control parameter for 

controlling the level of sparseness in f is denoted as λ, 

and 𝛾 denotes the Pairnorm vector, which is depicted as: 

𝛾 = 𝑠̇√𝑔 ∙
𝛹𝑓𝑟𝑎

√‖𝛹𝑓𝑟𝑎‖
𝐹̃

2  

Here, the pairwise distance is represented as g, the 

hyperparameter is denoted as 𝑠̇, and the Frobenius norm 

is depicted as 𝐹̃. If the λ is higher, then the output is 

obtained as a coarser result with a lesser gradient. After 

that, the objective function is written as: 

𝛹𝑟𝑎𝑖𝑛 = 𝑚𝑖𝑛
𝑓
𝛾∑‖𝑓𝑖 −𝛹𝑓𝑟𝑎‖

2
+
𝜆

2
∑‖𝑓𝑖 − 𝑓𝑗‖0
𝑗∈𝐽𝑖

𝐼

𝑖=1

 

Here, the pixels are denoted as i and j, the number of 

lengths of f is depicted as I, and the neighboring set of 

the ith pixel is represented as Ji. Here, 
𝜆

2
 denotes the 

relationship between fi and fj and is counted twice. 

Therefore, the non-zero gradients (i.e., raindrops) in Ψfra 

are removed. 

3.3. Overlap Region Detection 

Then, centered on the pixel values, position, and 

coordinates of the pixels in the frames, the overlapping 

regions betwixt each frame are detected from Ψrain. The 

detected overlapped regions are signified as Ψover. 

3.4. Depth Estimation 

Then, by using the MS method, the depth of the detected 

Ψover is assessed for determining how deeply the regions 

overlap. Here, the pixel coordinates (P) of Ψover are 

signified as: 
𝑐𝑚(𝑃) = 𝑠𝑚𝐷𝑚(𝑃)𝑃̃ 

Where, the 3D pixel coordinates of the mth frame are 

denoted as cm, the per-frame scale coefficients are 

depicted as sm, the depth map is represented as Dm, and 

the homogeneous augmented pixel coordinate is 

denoted as 𝑃̃. After that, the 3D coordinates are pointed 

into the camera coordinate system of another frame (n), 

and it is articulated as: 

𝑐𝑚→𝑛(𝑃) = 𝜉𝑛ℜ𝑛
𝑇̃(ℜ𝑚𝜉𝑚

−1𝑐𝑚(𝑃) + 𝜏𝑚 − 𝜏𝑛) 

Here, the intrinsic, rotation, and translation of frames 

are represented as ξ, ℜ and τ, respectively, and the 

transpose of the frame rotation vector is denoted as 𝑇̃. 

After that, the objective function (o) of MS is to 

diminish the re-projection loss (Γrep) of every pixel in 

Ψover, and it is signified as: 

𝑂 = 𝑎𝑟𝑔 min
𝜃𝑑𝑒𝑝𝑡ℎ

∑ ∑𝛤𝑚→𝑛
𝑟𝑒𝑝

(𝑃)

𝑃(𝑚,𝑛)𝜖𝑃

 

Here, θdepth denotes the optimization variable. After that, 

Γrep is determined as: 

𝛤𝑚→𝑛
𝑟𝑒𝑝 (𝑃) = 𝛤𝑚,𝑛

𝑠𝑖𝑚(𝑐𝑚→𝑛(𝑃), 𝑐𝑛 (𝑓𝑚→𝑛(𝑃))) 

Where, the re-projection similarity loss is represented as 

𝛤𝑚,𝑛
𝑠𝑖𝑚 and the flow re-projection is notated as 𝑓𝑚→𝑛(𝑃). 

Therefore, the depth of overlap area is obtained in O. 

3.5. Texture Mapping 

Later, by using TF, the texture of O is mapped. While 

mapping the textures of O in 3D by employing a 

(2) 

(3) 

(5) 

(6) 

(7) 

(8) 

(4) 
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parametric function (Θ), TF enhances the quality of the 

frames and is explained as: 

𝛩: 𝑂 → 𝜛  

Here, the 3D Euclidean space is symbolized as 𝜛. After 

that, Ψtext represents the 3D texture-mapped image. 

3.6. Energy Function Estimation 

Afterward, to determine the weighted terms of the pixels 

in Ψtext, the energy function of Ψtext is estimated. By 

using the sparse displacement and similarity 

transformation factors, the weighted terms are 

estimated. The estimated weighted terms are depicted as 

Ψene. 

3.7. Energy Function Minimization 

After that, to evaluate the deviation between the frames, 

the energy function Ψene is minimized by employing 

Lm-CCA. Since the Cheetah Chase Algorithm (CCA) 

has awesome capacities in the exploitation and 

exploration phases, it is chosen. CCA conducts 

exploration and exploitation separately, which means 

that it doesn’t need to balance the 2 forces. 

Nevertheless, CCA’s drawback is that overemphasizing 

exploration may hinder convergence, making it 

challenging to identify the global optimum. The 

Liebovitch map technique is included in the exploration 

phase to solve this issue. Therefore, the proposed 

methodology is named as Lm-CCA. Based on searching 

for prey, sitting and waiting, and attacking strategies, 

this method is carried out. Here, to avoid getting stuck 

in local optimal points, leaving the prey and returning 

home strategy is also introduced. The process of 

proposed Lm-CCA is explained as follows: 

1. Initialization: primarily, the populace of Cheetah (C) 

(i.e., energy function of Ψene) is initialized as: 

𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑧} 

Here, the number of cheetahs in the population is 

denoted as z. After that, the fitness function (ε) for the 

cheetah’s position is deemed as the minimum (min) 

energy (l), and it is illustrated as: 

𝜀 = 𝑚𝑖𝑛{𝑙} 

Then, the cheetah’s position in the search space (d) is 

estimated as: 
𝐶𝑡,𝑎
𝑑 = 𝑣𝑙𝑜

𝑑 + 𝜀 ∙ 𝑟𝑎𝑛𝑑(𝑣𝑢𝑝
𝑑 − 𝑣𝑙𝑜

𝑑 ) 

Where, the position of the ath cheetah in d at tth hunting 

time is denoted as 𝐶𝑡,𝑎
𝑑  , and the upper and lower bounds 

of d are notated as 𝑣𝑢𝑝
𝑑  and 𝑣𝑙𝑜

𝑑 , respectively. 

2. Searching strategy: grounded on the surrounding 

environmental conditions and hunting behavior, the 

position of the ath cheetah in the search space (d) is 

estimated and is mathematically represented as: 

𝐶𝑡+1,𝑎
𝑑 = 𝐶𝑡,𝑎

𝑑 + (𝜗̂𝑡,𝑎
−1 ∙ 𝑎𝑡,𝑎

𝑑 ) 

Here, the new position of the ath cheetah is denoted as 

𝐶𝑡+1,𝑎
𝑑 , the randomization parameter and step length are 

depicted as 𝜗̂𝑡,𝑎
−1 and 𝑎𝑡,𝑎

𝑑 , respectively, and the next 

hunting time is represented as t+1. The randomization 

parameter is just a normally distributed random number. 

The step length is articulated as: 

𝑎𝑡,𝑎
𝑑 = 0.001 ×

𝑡

𝑡𝑚𝑎𝑥
(𝑣𝑢𝑝

𝑑 − 𝑣𝑙𝑜
𝑑 ) 

Here, the length of hunting time is notated as tmax. Based 

on the distance of the ath cheetah and arbitrarily selected 

eth cheetah, the random step length is estimated for other 

members in C and is articulated as: 

𝑎𝑡,𝑎
𝑑 = 0.001 ×

𝑡

𝑡𝑚𝑎𝑥
(𝐶𝑡,𝑎

𝑑 − 𝐶𝑡,𝑒
𝑑 ) 

3. Sitting and waiting strategy: then, the cheetah’s sit-

and-wait strategy to get the prey close enough for 

hunting is arithmetically modeled as: 

𝐶𝑡+1,𝑎
𝑑 = 𝐶𝑡,𝑎

𝑑  

4. Attacking strategy: then, based on speed and 

flexibility to catch the prey, the cheetah’s attacking 

strategy is determined. Centered on the fleeing prey 

and the leader’s position, the position of the cheetah 

is adjusted and is signified as: 

𝐶𝑡+1,𝑎
𝑑 = 𝐶𝑡,𝑎

𝑑 ∙ 𝜃 + 𝜗̆𝑡,𝑎 ∙ 𝑋𝑡,𝑎
𝑑  

Where, the turning factor and interaction factor are 

denoted as 𝜗̆𝑡,𝑎 and 𝑋𝑡,𝑎
𝑑 , respectively, and the 

Liebovitch mapping vector is depicted as 𝜃 and is 

described as: 

𝜃 =

{
 
 

 
 

𝜎𝐶𝑡,𝑎
𝑑 , 𝑖𝑓 0 < 𝐶𝑡,𝑎

𝑑 ≤ 𝑑𝑦1

𝑑𝑦2 − 𝐶𝑡,𝑎
𝑑

𝑑𝑦2 − 𝑑𝑦1
, 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑑𝑦1 < 𝐶𝑡,𝑎

𝑑 ≤ 𝑑𝑦2

1 − 𝜎(1 − 𝐶𝑡,𝑎
𝑑 ), 𝑒𝑙𝑠𝑒 𝑑𝑦2 < 𝐶𝑡,𝑎

𝑑 ≤ 1

 

Here, the control parameter is symbolized as σ, and the 

additional dynamic parameters are depicted as dy1 and 

dy2. The interaction factor determines the interaction 

betwixt the cheetah and leader in the capturing mode 

and is determined as: 

𝜗̆𝑡,𝑎 = |𝜗𝑡,𝑎|𝑒𝑥𝑝 (
𝜗𝑡,𝑎
2
) sin (2𝜋𝜗𝑡,𝑎) 

Here, the randomly chosen value from the normal 

distribution is symbolized as ϑt, a. In addition, the turning 

factor assesses the sharp turns of the cheetahs in the 

capturing mode and is signified as: 

𝑋𝑡,𝑎
𝑑 = 𝐶𝑡,𝑒

𝑑 − 𝐶𝑡,𝑎
𝑑  

To attain the best solution, the position of the cheetah is 

updated centered on the above strategies. Sometimes, to 

prevent the system from falling into local optimal 

solutions, leave the prey and return to home strategy is 

applied. Therefore, the energy function is diminished, 

and it is notated as Ψmin. The pseudo-code for Lm-CCA 

is presented in Algorithm (1) below. 

(9) 

(10) 

(11) 

(12) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(13) 
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Algorithm 1: Pseudo-code for Lm-CCA. 

Input: Weighted terms (Ψene) 

Output: Minimized weighted terms (Ψmin) 

Begin 

Initialize Cheetah population (C),𝜀, maximum iteration 

(tmax), d , 𝑣𝑢𝑝
𝑑  and 𝑣𝑙𝑜

𝑑   

 While (t≤tmax)  

For each Ψene do 

Evaluate fitness function (𝜀) 
𝐶𝑡,𝑎
𝑑 = 𝑣𝑙𝑜

𝑑 + 𝜀 ∙ 𝑟𝑎𝑛𝑑(𝑣𝑢𝑝
𝑑 − 𝑣𝑙𝑜

𝑑 )  

 Estimate  

# Searching strategy 

𝐶𝑡+1,𝑎
𝑑 = 𝐶𝑡,𝑎

𝑑 + (𝜗̂𝑡,𝑎
−1 ∙ 𝑎𝑡,𝑎

𝑑 ) 
 Update  

Determine step length 

 # Sitting and waiting strategy 

 Formulate 𝐶𝑡+1,𝑎
𝑑 = 𝐶𝑡,𝑎

𝑑  

 # Attacking strategy 

 Update the position 

Compute the Liebovitch map 

 If (0<𝐶𝑡,𝑎
𝑑 ≤dy1) 

{ 

  Obtain 𝜎𝐶𝑡,𝑎
𝑑  

  } Else if (dy1< 𝐶𝑡,𝑎
𝑑 ≤dy)2 

{ 

  Attain 
𝑑𝑦2−𝐶𝑡,𝑎

𝑑

𝑑𝑦2−𝑑𝑦1
    

  } Else  

{ 

  Get 1-𝜎(1-𝐶𝑡,𝑎
𝑑 ) 

} 

  End if 

Evaluate turning factor and interaction factor 

Estimate leave the prey and go back home strategy 

  End For 

 End while 

 Return minimized weighted terms(Ψmin) 

End 

After that, for the identification of stable and unstable 

frames, the features of Ψmin are employed further. 

3.8. Stability Mesh Generation 

Likewise, to enhance the reliability rate of the video 

stabilization, the hallucination is removed from Ψrain. 

For Ψrain, a stability mesh is generated to mitigate the 

image hallucination. Here, Ψmesh signified the generated 

mesh. 

3.9. Hallucination Mitigation 

After that, by employing ALS-LCR, the hallucination 

effect is reduced from Ψmesh. To mitigate the 

hallucination, the conventional Locally Constrained 

Representations (LCRs) are utilized. This is because 

LCR encourages the pixel representations to be 

predictable by representing neighboring pixels. 

Nevertheless, enforcing locality constraints can be 

challenging in LCR when dealing with irregular or 

sparse data. Therefore, to overcome this issue, 

Alternating Least Squares (ALS) is employed for 

reducing the sparse data in LCR. Initially, to generate 

the locality constraints (L) for Ψmesh, the ALS is 

employed and is articulated as:  

𝐿𝑥,𝑦 = 

min
(𝑥,𝑦)∈𝑅̂

℘′(𝑅̂𝑥,𝑦−𝛹𝑚𝑒𝑠ℎ,𝑥
𝑇 𝛹𝑚𝑒𝑠ℎ,𝑦)

2

+ 𝜆(‖𝛹𝑚𝑒𝑠ℎ,𝑥‖𝐹̃
2
+ ‖𝛹𝑚𝑒𝑠ℎ,𝑦‖𝐹̃

2
) 

Where, the observed rating of the data points (x, y) in 

Ψmesh is denoted as 𝑅̂, the transpose vector is depicted as 

T, the Frobenius norm is represented as 𝐹̃, and the 

regularization parameter is denoted as λ. Here, to reduce 

the sparse data, the ALS vector (℘′)is employed and is 

signified as: 

℘′ = (𝛹𝑚𝑒𝑠ℎ
𝑇 𝛹𝑚𝑒𝑠ℎ + λ𝐼)̈

−1𝛹𝑚𝑒𝑠ℎ
𝑇  

Here, the identity matrix is signified as 𝐼.̈ Later, to 

represent L, the diagonal (𝜏𝑑̃) and Laplacian matrix (𝜏𝑙) 
are generated, and it is depicted as: 

𝜏𝑑̃ =∑𝐿𝑥,𝑦
𝑥,𝑦

 

𝜏𝑙 = 𝜏𝑑̃ − 𝐿𝑥,𝑦 

Later, to preserve the local structure of Ψmesh, the 

objective function (℘) of ALS-LCR is determined and 

articulated as: 

℘ = min
𝐿
∑‖𝛹𝑚𝑒𝑠ℎ,𝑥 −𝛹𝑚𝑒𝑠ℎ,𝑦‖

2
𝐿𝑥,𝑦

𝑥,𝑦

 

Therefore, by choosing the eigenvectors corresponding 

to the smallest eigenvalues of ℘, the final representation 

of the hallucination-mitigated image is obtained. Thus, 

the ALS-LCR ensures that the learned representation 

preserves the local geometric structure of Ψmesh to 

diminish the hallucination effects in Ψmesh. Therefore, 

Ψhall depicts the hallucination mitigated image. 

3.10. Feature Points Extraction 

Later, features like scale-invariant feature transform, 

speeded-up robust features, homogeneity, contrast, 

entropy, and angular second moment are extracted from 

Ψmin and Ψhall. To estimate the motion of the camera, 

these feature points in every single frame are tracked 

over successive frames. Here, ext denotes the extracted 

feature points. 

3.11. Classification 

By using SA-LmCCA-CNN, the stable and unstable 

frames are classified centered on the feature points(

ext). The conventional CNN can process high-

dimensional data and share information betwixt layers. 

However, since CNN has several processing layers, it 

takes a longer time for the training process. Therefore, 

shape autotuning activation is used in CNN to overcome 

the drawback, and by using Liebovitch map Cheetah 

Chase Algorithm (LmCCA), the weight is optimized. 

Figure 2 presents the SA-LmCCA-CNN’s structure. 

(22) 

(23) 

(24) 

(25) 

(21) 
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Figure 2. Structure of SA-LmCCA-CNN. 

1. Input layer: the feature points ( ext) are fed as input 

to the input layer (Φinp) of SA-LmCCA-CNN, and it 

is explained as: 
𝛷𝑖𝑛𝑝 → { 𝑒𝑥𝑡} 

After that, the output of Φinp is fed as input to the 

convolutional layer (Φconv). 

2. Convolutional layer: Φconv is accountable for the 

feature extraction by utilizing some kernels, which 

are convolved with Φinp for capturing the relevant 

features of Φinp, and it is articulated as: 

𝛷𝑐𝑜𝑛𝑣 =∧⋅ 𝛿 (
𝛷𝑖𝑛𝑝 + 2𝑝𝑠 − 𝑦

𝜍
) + 1 

Here, the convolutional padding size is signified as ps, 

the convolutional kernel size is notated as γ, and the 

convolutional stride size is symbolized as ς. Later, the 

shape autotuning activation function (δ) is given as: 

𝛿 =
𝛷𝑖𝑛𝑝

𝛷𝑖𝑛𝑝
𝑎"

+ 𝑒𝑥𝑝 (−
𝛷𝑖𝑛𝑝
𝛽"

)

 

Here, a pair of trainable non-negative parameters is 

depicted as a” and β”. Also, the weights (∧) of SA-

LmCCA-CNN are determined by the LmCCA function, 

which is briefly explained in section 3.7. 

3. Pooling layer: afterward, in the pooling layer (Φpool), 

the spatial dimension of Φconv is diminished by 

retaining the significant information from Φconv and 

discarding the unwanted information. Therefore, the 

𝛷𝑝𝑜𝑜𝑙Φpool operation is articulated as  

follows: 
𝛷𝑝𝑜𝑜𝑙 = max

𝜍
(𝛷𝑐𝑜𝑛𝑣) 

4. Flatten layer: the flatten layer (Φflat) aids the network 

in learning the complex patterns from Φpool. The Φflat 

converts the feature maps from Φpool to a format that 

is understood by the fully connected layer (Φful). 

𝒬𝛷𝑝𝑜𝑜𝑙 → 𝛷𝑓𝑙𝑎𝑡 → 𝒬̃𝛷𝑓𝑙𝑎𝑡 

Here, the multi-dimensional and one-dimensional 

feature arrays are represented as 𝒬 and 𝒬̃, respectively. 

5. Fully connected layer: The fully connected layer 

(Φflat) utilizes the features from 𝒬̃Φflat and predicts the 

output classes. Then, from Φflat, the feature 

information is connected to the output layer via Φful. 

6. Output layer: In the output layer (Φout), the 

corresponding outcomes with the pre-trained labels 

for the input data are obtained. The SA-LmCCA-

CNN’s output is obtained as the stable and unstable 

frames. The output attained from the proposed SA-

LmCCA-CNN is depicted as: 

𝛷𝑜𝑢𝑡 = {𝛷1, 𝛷2} 

Here, the stable and unstable frames are denoted as Φ1 

and Φ2, respectively. Lastly, the reliability level of the 

predicted outputs and the true labels of the input are 

quantified by the loss function (♢). The pseudo-code for 

SA-LmCCA-CNN is given Algorithm (2) below. 

Algorithm 2: Pseudo-code for SA-LmCCA-CNN. 

Input: Features points ( ext) 

Output: Stable or unstable frames (Φout) 

Begin 

 Initialize padding size (ps), kernel size (γ), and stride 

size (ς) 

For each ext do 

 Compute convolutional operation 

 Activate 𝛿 =
𝛷𝑖𝑛𝑝

𝛷𝑖𝑛𝑝

𝑎"
+𝑒𝑥𝑝(−

𝛷𝑖𝑛𝑝

𝛽”
)
  

 Determine weights 

 Formulate pooling function 

 Evaluate  

𝒬Φpool→Φflat→𝒬̃Φflat 

 Estimate fully connected layer (Φful) 

 Obtain output 

 Evaluate   

 If 
 min

{ 

  Terminate 

 } Else { 

  Adjust the parameters 

 } 

 End If 

End For 

Return Stable or unstable frames 

End 

(27) 

(28) 

(29) 

(31) 

(26) 

(30) 



An Enhanced 3D Rainy Stereoscopic Video Stabilization Framework by Using ...                                                                    161 

The frames are processed and synthesized centered on 

the classification results for generating stabilized video. 

3.12. Motion Estimation 

If Φ2 is obtained, then the video is stabilized by 

assessing the motion in Φ2 utilizing LKT. A widely 

utilized differential methodology for optical flow 

estimation is the existing Lucas-Kanade method. By 

using the least squares criterion, this method solves the 

fundamental optical flow equations for all the pixels in 

the neighborhood. However, the algorithm may 

converge to suboptimal solutions when image pairs 

have significant distortions or complex motions. In this 

method, the Triparametric correlation coefficient is 

included to solve this issue. The process of LKT is 

illustrated as follows: 

 The LKT assumes that the displacement between the 

nearby frames (M and N) is small with the window 

size (ws) of pixels (k) for the motion estimation. 

Afterward, the optical flow matrix (ℏ) holds all pixels 

(S) of coordinates within ws and is signified as: 

𝐼𝑀(𝑆)ℏ𝑀 + 𝐼𝑁(𝑆)ℏ𝑁 = 𝑐𝐼𝑡̂(𝑆) 

Where, the intensity at position (M, N) is denoted as 𝐼 
and the time is signified as 𝑡̂. 

 The optical flow matrix provides the linear equation 

and is articulated as: 

φℏ=β 

Here, the matrix that contains the image gradient 

components is denoted as φ, the vector that represents 

the optical flow is represented as ℏ, and the image 

derivative vector is notated as β. These vectors are 

signified as: 

φ = 𝛤̂ [

𝐼𝑀(𝑆1) 𝐼𝑁(𝑆1)

𝐼𝑀(𝑆2) 𝐼𝑁(𝑆2)

𝐼𝑀(𝑆𝑘) 𝐼𝑁(𝑆𝑘)

] 

ℏ = [
ℏ𝑀
ℏ𝑁
] 

𝛽 = [

𝐼𝑡̂(𝑆1)

𝐼𝑡̂(𝑆2)

𝐼𝑡̂(𝑆𝑘)

] 

Here, 𝛤̂  implies the Triparametric correlation 

coefficient vector and is illustrated as: 

𝛤̂ =
𝛻(𝑀,𝑁)

√𝜔(𝑀)√𝜔(𝑁)
 

Where, the correlation betwixt M and N is depicted as 

∇(M, N) and √𝜔(𝑀) and √𝜔(𝑁) signify the 

informational energies of M and N, respectively. 

 Here, the LKT estimates the least square solution to 

avoid over-determination and is articulated below: 

φTrφℏ=φTrβ 

Where, the transpose of φ is denoted as φTr. 

 Thus, the least square solution for the optical flow of 

Φ2 is obtained as: 

ℏ=(φTrφ)-1φTrβ 

[
ℏ𝑀
ℏ𝑁
] =

[
 
 
 
 
 
∑𝐼𝑀(𝑆𝑖̅)

2

𝑘

𝑖̅=1

 ∑𝐼𝑀(𝑆𝑖̅)

𝑘

𝑖̅=1

𝐼𝑁(𝑆𝑖̅)

∑𝐼𝑁(𝑆𝑖̅)

𝑘

𝑖̅=1

𝐼𝑀(𝑆𝑖̅) ∑𝐼𝑁(𝑆𝑖̅)
2

𝑘

𝑖̅=1 ]
 
 
 
 
 
−1

[
 
 
 
 
 
−∑𝐼𝑀(𝑆𝑖̅)

𝑘

𝑖̅=1

𝐼𝑡̂(𝑆𝑖̅)

−∑𝐼𝑁(𝑆𝑖̅)

𝑘

𝑖̅=1

𝐼𝑡̂(𝑆𝑖̅)
]
 
 
 
 
 

 

If the central matrix φTrφ is invertible and well-

conditioned, then the optical flow (ℏ) of Φ2 is well-

estimated. 

3.13. Camera Path Correction 

Later, to determine the motion of the camera, the camera 

path is estimated during video capture. The unwanted 

motions can easily be differentiated from the intentional 

camera movements by estimating the camera path. 

Therefore, it is estimated and corrected by employing 

the LPF, and it is described as follows: 

𝜙(ℏ∗) =
1

1 + ℑ(ℏ∗ × 2𝜋𝑅′𝐶′)
 

Where, the transfer function is denoted as ∅, the 

frequency of ℏ is represented as ℏ*, the imaginary unit 

is depicted as ℑ, and the cutoff frequency with resistor 

(R’) and capacitor (C’) values is denoted as 2πR’C’. 

Thus, ℏpath signifies the camera path corrected image. 

3.14. Raindrop Reconstruction 

Later, the raindrops are reconstructed for both Φ1 and 

ℏpath to get the clear original frames for the input video. 

Lastly, to get the stabilized 3D stereoscopic video, the 

raindrop reconstructed frames are synthesized. The 

proposed 3D rainy stereoscopic video stabilization 

framework’s performance is discussed further. 

4. Result and Discussion 

Here, the robustness of the proposed framework is 

proved by analogizing it with the prevailing works. The 

proposed work is implemented in the working platform 

of MATLAB. 

4.1. Dataset Description 

To evaluate the proposed system’s efficacy, the 

Middlebury Stereo Dataset (MSD) is employed. The 

MSD has high-resolution stereo videos with complex 

geometry and pixel-accurate ground truth video data. It 

comprises 47 stereoscopic video data. Among them, 

80% and 20% of the data are utilized for training and 

testing purposes, respectively. In Table 1, the sample 

image results attained by the proposed model are 

presented. The sample image results obtained from the 

proposed 3D rainy stereoscopic video stabilization 

framework are illustrated in Table 1. 

(32) 

(33) 

(37) 

(38) 

(39) 

(41) 

(34) 

(36) 

(35) 

(40) 
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Table 1. Sample image results. 

S.no. Process Image 1 Image 2 

1 Input 

  

2 Raindrop removal 

  

3 Depth estimation 

  

4 Texture mapping 

  

5 Stability mesh generation 

  

6 Hallucination mitigation 

  

7 Raindrop reconstruction 

  

 

4.2. Performance Analysis 

To prove the superiority of the proposed models’ video 

stabilization process, the proposed methodologies’ 

performance is analyzed and compared with the 

prevailing models in this subsection. 

4.2.1. Performance Evaluation of Proposed LKT 

In this section, based on the performance metrics, such 

as the Sum of Squared Differences (SSD), Mean 

Absolute Difference (MAD), Sum of Absolute 

Difference (SAD), Peak Signal-to-Noise Ratio (PSNR), 

and Mean Squared Error (MSE), the proposed LKT’s 

performance is analyzed and compared with the existing 

models like Lucas-Kanade (LK), Horn-Schunck (HS), 

Camshift Algorithm (CA), and Block Matching 

Algorithm (BMA). 

The comparative analysis of the proposed LKT and 

the prevailing models based on performance metrics 

like SSD, MAD, SAD, and PSNR is indicated in Table 

2. By employing the Triparametric correlation 

coefficient, the proposed LKT reduces the suboptimal 

solution. Hence, the SSD, MAD, SAD, and PSNR of the 

proposed model are 5082.13, 13.707, 8793.2, and 41.01, 

respectively. However, the existing models’ average 

SSD, MAD, SAD, and PSNR were 7918.07, 27.096, 

10143.1, and 37.59, respectively. Nevertheless, when 

analogized to the proposed model, the performances of 

the existing models were considerably lower. Hence, the 

analysis demonstrates the efficacy of the proposed LKT. 

Table 2. Comparison analysis of proposed LKT. 

Technique SSD MAD SAD PSNR 

Proposed LKT 5082.13 13.707 8793.2 41.01 

LK 6891.64 19.645 9112.3 40.56 

HS 7213.78 23.697 9657.3 38.69 

CA 8113.64 29.913 10564.9 36.98 

BMA 9453.21 35.128 11237.7 34.15 

Figure 3 exhibits the MSE analysis of the proposed 

and the prevailing models. The MSE of the existing LK 

was 0.01236, HS was 0.03751, CA was 0.0689, and 

BMA was 0.1364. But, the proposed approach uses a 

Triparametric correlation coefficient function with the 

gradient component. Hence, the proposed model’s MSE 

is 0.0079, which is better compared to all existing 

models. Hence, the analysis results demonstrated that 

the proposed model is less error-prone. 
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Figure 3. MSE analysis of proposed LKT. 

4.2.2. Performance Evaluation of Proposed SA-

LmCCA-CNN 

In this phase, the performance analysis of the proposed 

SA-LmCCA-CNN and the prevailing models like 

Convolutional Neural Network (CNN), DNN, 

Recurrent Neural Network (RNN), and Artificial Neural 

Network (ANN) is performed. The analysis is centered 

on performance metrics, namely sensitivity, specificity, 

accuracy, precision, recall, F-measure, Negative 

Predictive Value (NPV), Matthews Correlation 

Coefficient (MCC), False Reject Rate (FRR), False 

Discovery Rate (FDR), False Positive Rate (FPR), and 

False Negative Rate (FNR). 

 

   

a) Sensitivity, specificity, accuracy and precision. b) Recall, FMeasure, NPV and MCC. c) FRR and FDR 

Figure 4. Performance assessment of proposed SA-LmCCA-CNN. 

The performance assessment of the proposed SA-

LmCCA-CNN and the prevailing models based on 

sensitivity, specificity, accuracy, precision, recall, F-

measure, NPV, MCC, FRR, and FDR is depicted in 

Figures 4-a), (b) and (c). The proposed model attains the 

sensitivity, specificity, accuracy, precision, recall, F-

measure, NPV, MCC, FRR, and FDR of 98.63%, 

98.59%, 97.22%, 98.59%, 98.63%, 98.61%, 95.89%, 

94.48%, 0.041, and 0.014, respectively. Nevertheless, 

the sensitivity, specificity, accuracy, precision, recall, F-

measure, NPV, MCC, FRR, and FDR of the prevailing 

CNN was 97.26%, 97.18%, 95.83%, 97.18%, 97.26%, 

97.22%, 94.52%, 91.70%, 0.054, and 0.028, 

respectively, which were considerably lower when 

analogized to the proposed model. Likewise, when 

analogized to the proposed model, other prevailing 

models also attained lower performances. Thus, the 

proposed model’s robustness is proved. In Table 3, the 

FPR and FNR analysis of the proposed SA-LmCCA-

CNN and the prevailing models are described. To 

reduce the training time of the network, the proposed 

SA-LmCCA-CNN effectively optimized the weights of 

the network and employed the shape autotuning 

activation function. Thus, the FPR and FNR analysis of 

the proposed SA-LmCCA-CNN are 0.014085 and 

0.041096, respectively. Nevertheless, the existing DNN 

and RNN had FPRs of 0.042254 and 0.056338. Also, 

they had FNRs of 0.068493 and 0.082192, respectively. 

These performances are highly ineffective compared to 

the proposed model. In addition, other conventional 

models had lower performances. Therefore, from the 

analysis, the efficacy of the proposed SA-LmCCA-

CNN is proven. 

Table 3. FPR and FNR analysis. 

Techniques FPR FNR 

Proposed SA-LmCCA-CNN 0.014085 0.041096 

CNN 0.028169 0.054795 

DNN 0.042254 0.068493 

RNN 0.056338 0.082192 

ANN 0.098592 0.123288 

4.2.3. Performance Analysis of Proposed Lm-CCA 

Grounded on fitness vs. Iteration analysis, the 

performance of the proposed Lm-CCA and the 

prevailing CCA, Snow Leopard Optimization 

Algorithm (SLOA), Pelican Optimization Algorithm 

(POA), and Aquila Optimization (AO) is compared in 

this section. 

Figure 5 compares the fitness vs. iteration analysis of 

the proposed and the prevailing methodologies. The 

fitness of the Lm-CCA is attaining minimized energy. 

For 10 iterations, the proposed model achieves a fitness 

of 0.5. This is owing to the utilization of the Liebovitch 

map for attaining global optimal solutions. 

Nevertheless, for 10 iterations, the existing CCA, 

SLOA, POA, and AO had the fitness of 0.59, 0.68, 1.39, 

and 1.9, respectively. These are considerably  

lower when analogized to the proposed model. 

Therefore, it is stated that the proposed model’s efficacy 

is better than the existing models. 
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Figure 5. Fitness vs. iteration analysis. 

4.2.4. Comparative Analysis with Related Works 

The comparative analysis of the proposed methodology 

and related works is performed in this subsection. The 

comparative analysis with the related works is indicated 

in Table 4. 

The comparative analysis of the proposed work and 

the related works in terms of different video 

stabilization techniques and datasets utilized in video 

stabilization is presented in Table 4. The robustness of 

the proposed work is determined by analogizing it with 

existing works based on stability score analysis. The 

existing (Huang et al. [6], Jang et al. [8], Shang and Chu 

[24], Valero et al. [27], and Ren et al. [23]) attained 

stability scores of 0.91, 0.82, 0.91, 0.92, and 0.86, 

respectively. Nevertheless, the proposed work’s 

stability score is 0.93, which is considerably superior to 

other existing works. This dynamic performance of the 

proposed methodology is owing to the proper handling 

of the rainy stereoscopic video by determining the depth 

of the overlapped regions and mitigating the 

hallucination effects. In addition, the unstable frames 

are effectively processed by the proposed model. 

Therefore, this robust performance in video stabilization 

is attained by the proposed work. Thus, from the 

comparative analysis, the efficacy of the proposed work 

is demonstrated. 

Table 4. Comparative analysis with related works. 

Author name Technique Dataset Stability score 

Proposed SA-LmCCA-CNN MSD 0.93 

Huang et al. [6] Decomposed motion compensation The National University of Singapore and DeepStab datasets 0.91 

Jang et al. [8] Dual-Modality Cross-Interaction Inertial measurement unit sensor dataset 0.82 

Shang and Chu [24] Low-rank constraint and trajectory optimization Video dataset 0.91 

Valero et al. [27] Thermal Infrared Wildland fire video dataset 0.92 

Ren et al. [23] Gyroscope-based Self-Calibration Spherical Gyroscope data 0.86 

 

5. Conclusions and Future Work 

In this framework, a robust 3D rainy stereoscopic video 

stabilization model is proposed by employing depth 

estimation and SA-LmCCA-CNN. The proposed 

model’s efficacy was proved by implementing it in the 

working platform of MATLAB. As per the experimental 

analysis, the proposed methodology attained an 

accuracy of 97.22% and an F-measure of 98.61% for the 

classification of stable and unstable video frames, 

respectively. In addition, the proposed SA-LmCCA-

CNN obtained the minimum FPR and FNR of 0.014085 

and 0.041096, correspondingly. After that, the proposed 

model attained an SSD, MAD, SAD, and PSNR of 

5082.13, 13.707, 8793.2, and 41.01, respectively. When 

analogized with the prevailing model, the proposed 

model’s MSE was less, thus indicating that the model 

was less error-prone. Therefore, the proposed model’s 

superiority was stated by the overall analysis. 

Conclusion of the future work, the 3D rainy 

stereoscopic videos can be improved by the real-time 

climate data and advanced simulations. Weather effects 

like rain, snow and lighting can be made more realistic 

and dynamic. 

Data Availability 

The datasets are available at 

https://vision.middlebury.edu/stereo/data/scenes2014/z

ip/. 
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