
36 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

Enhancing Software Development Efficiency

Through User Stories Reuse from Application

Descriptions

Indra Kharisma Raharjana

Center for Information Systems Engineering

University of Airlangga, Indonesia

indra.kharisma@fst.unair.ac.id

Avril Hermawan

Faculty of Science and Technology

University of Airlangga, Indonesia

avrilaudihermawan@gmail.com

Badrus Zaman

Faculty of Science and Technology

University of Airlangga, Indonesia

badruszaman@fst.unair.ac.id

Shukor Sanim Mohd Fauzi

Faculty of Computer and Mathematical Sciences

University of Teknology MARA, Malaysia

shukorsanim@uitm.edu.my

Abstract: Software development projects frequently encounter cost and time efficiency challenges, rendering them susceptible

to failure. An imprecise and incomplete process of eliciting user software requirements can further escalate software

development’s time, cost, and effort. Consequently, the reuse of user stories based on application descriptions for software

requirement elicitation is proposed to mitigate these issues and enhance cost efficiency. This research aims to evaluate the reuse

of user stories within the software elicitation process by extracting software features from initial application descriptions. The

goal is to determine whether this approach can effectively reduce the time and cost associated with software development. This

study employs Natural Language Processing (NLP) techniques to identify Part-Of-Speech (POS) tag patterns to extract software

features from application descriptions. A similarity measurement is conducted between user stories and the extracted software

features. User stories are then filtered based on a similarity threshold to ensure high relevance to the extracted software features.

The proposed method was tested using three distinct application descriptions alongside 22 user story datasets provided to nine

respondents. The analysis indicates that the reuse of user stories based on feature extraction from application descriptions,

determined through Cosine similarity with an 80% threshold, significantly enhances software development efficiency in terms of

time and cost. The method demonstrated an average precision of 84%, recall of 93%, and F1-score of 86% across the three test

projects, confirming its alignment with system design requirements. The findings of this research validate the effectiveness of the

Cosine similarity method in identifying reusable user stories from application descriptions. This approach is a viable solution

for reusing user stories in the software requirement elicitation process, thereby improving efficiency in software development

projects.

Keywords: Application description, requirements reuse, requirements elicitation, process innovation, user story.

Received July 31, 2024; accepted August 7, 2025

https://doi.org/10.34028/iajit/23/1/4

1. Introduction

Requirements elicitation is the process of finding,

uncovering, obtaining, and describing requirements for

the software development process [40]. Requirement

elicitation is the initial process of the software

development process [25]. In practice, requirements

elicitation is a process that has a significant role in

software development because if the requirements in

requirements elicitation are incomplete, it can increase

costs and efforts in software development [29].

Extraction of requirements obtained from various

sources of unstructured documents increases software

development efficiency [30]. Reusing practices allows

for reducing costs and efforts in the requirements

elicitation [27]. Requirements reuse is reclaiming

software requirements developed and used in earlier

projects [15].

Requirement reuse is an effective method for

increasing efficiency in the software development

process, reducing software development and

maintenance costs, producing higher-quality software

products, improving software and system dependencies,

and facilitating the transfer of team members, tools, and

methods between projects [11]. In general, requirements

reuse is extracted from the Software Requirements

Specification (SRS), but not everyone can do SRS

extraction for requirements reuse because not everyone

has access to software artifacts [2, 20]. Apart from being

obtained from SRS, reuse requirements can be extracted

from user reviews and application descriptions. User

reviews are ratings written by users; in addition to

ratings, some users suggest new features that users want.

Meanwhile, the developer writes the application

description containing complete information about the

application name, features, and benefits. It aims to help

mailto:badruszaman@fst.unair.ac.id

Enhancing Software Development Efficiency Through User Stories Reuse ... 37

users quickly find the application they need [14]. In this

study, the application description is the source document

that will be extracted to obtain software features because

it can be written at the beginning of the software

development process and accessed by everyone, in

contrast to SRS, which is not accessible to everyone and

user reviews which can only be obtained when the

software has been released, used, and reviewed by users.

Several methods can be used in software

development. One is agile development software, a

short-term software development that requires

developers to adapt quickly to various changes [16, 26,

39]. In agile, user stories collected during the

requirements elicitation are the most widely used

artifacts to obtain simple descriptions from the user’s

perspective [35]. A user story is a short, structured

sentence requesting user needs or functions [6]. User

story consists of 3 aspects: who/who asks for the needs

or functions, what or what needs or stakeholders request

functions, and why/why stakeholders want these

functions [18, 36]. User stories are widely used during

requirements elicitation because user stories play a role

in explaining the needs and desires of stakeholders or

personas [21]. User stories can be boundary objects in

transferring and creating new knowledge [7].

User stories are widely used during the requirements

elicitation in agile software development [10, 34]. User

stories that have been collected are generally not

collected again by software developers, which opens up

opportunities for developers to reuse user stories

collected from several previous projects for future

projects [7]. Reusing user stories based on application

descriptions for software elicitation needs aims to

reduce costs and efforts in software development [7,

24]. The practice of reuse can reduce costs and efforts

in the requirements elicitation process [27]. Customer

satisfaction results from cost and time efficiency [4].

The benchmarks for the success of agile software

development are time, cost, effort, and customer

satisfaction [1, 33]. The purpose of this study is to reuse

user stories for the elicitation of software based on

extracting software features from the initial application

description. This research produces an output list of user

stories that can be reused; the potential is obtained from

the similarity value of user stories with the extraction of

software features from the application description.

2. Related Works

Software developers usually write app descriptions and

describe their features on the app store, and users

comment about the features in the app reviews section

[37, 38]. Extracting and matching functionality from app

descriptions is critical to benefiting from the App Store.

In the study of Johann et al. [14], propose a new

Approach for Extracting Software Features (SAFE) from

application descriptions and user reviews and matching

them. This research uses 18 parts of speech written

manually and five sentence patterns that often refer to

software features. This study will extract application

descriptions to obtain software features using part-of-

speech. Software features that have been extracted will

be searched for compatibility with the processed user

story. There are several techniques in requirements

elicitation to increase understanding of domain

knowledge, such as user interviews, questionnaires,

document analysis, and brainstorming. Most of these

techniques require in-depth stakeholder engagement. In

practice, stakeholders generally have limited time and

stakeholder so that not all software projects can use this

technique [31]. Software development is agile, and user

stories are used to capture and write functional

requirements. A user story is an appropriate and easy-to-

understand format for writing the results of a

requirement. Research by Raharjana et al. [30] aims to

propose a model for extracting user stories from online

news to increase understanding of domain knowledge.

User stories are a fundamental component of agile

software development, which captures functional

requirements from the end-user’s perspective. In this

context, reusable user stories refer to user stories that can

be applied across different projects or domains with

minimal modification [17]. The reusability of user

stories helps improve efficiency and reduce excessive

effort in software development. In this study, user stories

are used to reuse the requirements. This is because user

stories are widely used during requirement elicitation in

agile software development so that they can be reused to

increase cost efficiency and software development

efforts.

High-quality user stories are typically characterized

by the INVEST criteria: Independent, Negotiable,

Valuable, Estimable, Small, and Testable [3]. These

attributes ensure that user stories are well-structured and

manageable in agile development. While our study

focuses on automation rather than manual refinement,

the INVEST principles provide a valuable benchmark

for assessing the quality of extracted user stories. Feature

sets are essential assets for reuse in software product line

methodologies. In requirements reuse, the extraction of

software features from a SRS can only be performed by

practitioners who have access to these software artifacts.

Due to organizational privacy, the SRS is always kept

confidential and is not easily used by the public. As an

alternative, researchers use publicly available software

descriptions (such as product manuals and online) to

identify potential software functions to initiate the reuse

of requirements. Bakar et al. [2] research aims to propose

a semi-automated method, called Feature Extraction for

Natural Language Reuse (FENL), to extract phrases that

can represent software functions from software reviews

without using SRS as a method to initiate the technique.

This study will use application descriptions as document

sources to obtain software features. Software features

will be used to reuse the requirements. The extraction

process from the application description requires a pre-

38 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

processing as described in the research by Bakar et al.

[2].

3. Method

The research step begins with extracting software

features in the application description by pre-processing

the application description by tokenizing sentences and

cleaning data. The next step is labeling each word with

Part-Of-Speech (POS) tagging. After being marked on

each sentence, an extraction process takes the word

fragments labeled according to the needs and then

collects them as a list using Chungking POS. Then, do

Case Folding, which changes all the letters on the list to

lowercase. After case folding, changing becomes the

base word for each word on the list using WordNet

Lemmatization. After being converted into basic words,

words without meaning are removed, usually called stop

words. The next step of this research is to extract the user

story dataset, starting with separating the sentences in the

user story. Then, noise such as punctuation and numbers

are removed, followed by case folding, lemmatization,

and stop word removal.

The last step of this research is filtering the user story

related to the application description and then calculating

the similarity between software feature extraction and

user story extraction. User stories that have a similarity

exceeding the threshold will be included in the list of

user stories that can be reused. Furthermore, an

evaluation will be conducted to assess the information’s

accuracy. The architecture of the proposed method can

be seen in Figure 1.

Figure 1. Architecture of the proposed method.

3.1. Collecting Data

This study requires three types of data: user story

datasets, application descriptions, and expert

evaluations. The user story dataset is the source of

reusable artifacts in the software elicitation process.

Application descriptions are extracted to obtain software

features, while expert data is used for evaluation and

comparison.

User stories typically comprise three aspects: who,

what, and why [18]. Some user stories may not explicitly

include the why aspect. To extract meaningful

information, user stories are processed by separating

Enhancing Software Development Efficiency Through User Stories Reuse ... 39

these aspects: identifying the user (who) requested

features (what) and the rationale or benefit of the feature

(why). The dataset [31] includes over 1,500 user stories

from 22 applications covering various domains.

Extraction steps involve tokenization, data cleaning,

case folding, WordNet lemmatization, and stopword

removal. Application descriptions contain key

information about an application’s name, features, and

benefits, written by developers to attract users [14]. A

well-written application description is concise,

informative, and highlights key features effectively [13].

This study extracts these descriptions to derive software

features, which are then used to filter user stories. Word

extraction uses POS tagging, chunking, and case folding

techniques.

3.2. Pre-Processing Data

The next stage involves pre-processing user story and

application description data to ensure consistency and

improve processing efficiency. Pre-processing includes

tokenization, case folding (converting text to lowercase),

lemmatization (reducing words to their base forms), and

stopword removal (eliminating common but non-

essential words). These steps refine the data for further

analysis in the research workflow.

The data pre-processing stage ensures that user stories

and application descriptions are structured for further

analysis. This process includes aspect separation, data

cleaning, POS tagging, chunking, case folding,

lemmatization, and stopword removal. User stories are

segmented into three key aspects: who (the stakeholder

or end-user requesting the functionality), what (the

requested feature), and why (the reason or benefit) [35].

The separation is performed using delimiters such as

commas (,) and the word “so”. Next, data cleaning

removes unnecessary elements such as numbers,

punctuation, and symbols to reduce noise. POS tagging

is then applied to label words based on their grammatical

roles, facilitating further text processing. Chunking is

performed to group related words into meaningful

phrases using predefined rules.

Case folding standardizes text by converting all

characters to lowercase, ensuring consistency in text

analysis. Lemmatization further refines the data by

reducing words to their base forms, helping to improve

the accuracy of similarity calculations between extracted

user stories and software features. Finally, stopword

removal eliminates common but non-essential words

such as “as,” “is,” and “all,” streamlining the dataset for

more effective processing.

3.3. User Story Dataset Filtering

In this stage, the user story dataset is filtered to enhance

system efficiency by reducing errors, improving

processing speed, and increasing accuracy. The filtering

process evaluates the similarity between extracted user

stories and words from application descriptions. Several

methods are employed to select relevant words from

application descriptions. The first method identifies

frequently occurring words, while the second focuses on

extracting nouns. Both approaches utilize TF-IDF for

word weighting to prioritize important terms.

Additionally, the YAKE tool is used to extract automatic

keywords. Cosine similarity is applied to measure the

closeness between extracted words and the user story

dataset to determine relevance. The user story is

considered relevant for further processing if the

similarity score exceeds a predefined threshold.

3.4. Finding Reusable User Stories

Each story is compared with the software feature

extraction from application descriptions to identify

reusable user stories. The extraction process involves

separating application descriptions into individual

sentences. While this process shares similarities with

pre-processing, the chunking step follows distinct rules

tailored for feature extraction. Chunking uses part-of-

speech patterns and regular expressions to group relevant

words and phrases. These extracted phrases are then

analyzed for similarity with user stories using Cosine

similarity and Jaccard similarity methods. If a user

story’s similarity score exceeds a predetermined

threshold, it is considered relevant to the extracted

software features. The final output is a structured table

displaying user stories that can be reused based on

similarity calculations. This table is then evaluated to

assess the accuracy and effectiveness of the proposed

method.

3.5. Evaluation

Evaluation is carried out to assess whether the system

created can provide accurate information about the list of

user stories that match the application description. The

first step in evaluating this system is to determine an

evaluation case. The determination of the topic

description of the application is required to follow the

user story dataset. So, a user story in the dataset has

similarities and can be reused. Next, the expert manually

marks the user stories that are considered to have

similarities with the application description. The last step

is to perform precision and recall tests on manual results

from experts with results from the system. Experts here

have been involved in software development projects as

programmers or system analysts. Evaluation is carried

out with a minimum of 3 experts.

Precision measures the accuracy between the list of

reused user stories written by experts and the list

provided by the system or the system’s accuracy in

classifying data. Calculating the precision value can be

done by Equation (1).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡} ∩ {𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡}|

|{𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

Recall compares the number of lists of reused user

(1)

40 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

stories correctly by the system in a class against all actual

data. The recall calculation can be seen in Equation (2).

𝑅𝑒𝑐𝑎𝑙𝑙 =
|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡} ∩ {𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡}|

|{𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠}|

 Relevant document: a list of reusable user stories

written by experts.

 Retrieved document: a list of reusable user stories

generated by the system.

4. Result

In this section, an explanation will be given regarding the

research results carried out while conducting the

research. The explanation given is an elaboration of the

existing problem formulation.

4.1. Data Collection

The user story datasets were sourced from Mendeley,

where they were publicly uploaded in 2018 [5]. There

are 22 applications in the user story dataset with various

topics. In this study, it is necessary to understand the

subject of each application to determine a description of

similar applications. The detail of the user story dataset

can be seen in Table 1.

Table 1. User story datasets topics.

Project name Project topic

Federalspending Monitor state spending.

Loudoun
Loudoun city planning portal for residents and visitors

to the city.

Recycling Help find recycling places.

Openspending Monitor and study state finances.

Frictionless Describe validate (process) data.

Scrumalliance Provide learning about scrum and agile.

Nsf Research funding and awards.

Camperplus Camping service provider.

Planningpoker Game for agile planning.

Datahub Data Collection.

Mis
Duke university information management and

repository.

Cask Software development portal.

Neurohub Data storage and intermediary Research collaboration.

Alfred Oldster assistance.

Badcamp Event management and registration.

Rdadmp Data management planning.

Archivesspace Archiving.

Unibath University of Bath Repository.

Duraspace Repository for digital content.

Racdam Archiving.

Culrepo Content management for universities.

Zooniverse Portal to provide support for research.

4.1.1. Application Description

A description of the application is obtained by looking

for a software project similar to the user story. The

software project topics used in this research are

recycling, digital assistants for parents, and digital

archiving. The search is done using a search engine from

Google by entering the keywords “software project” or

“project idea,” followed by the topic to be searched in

English. Google will show a collection of pages that

have software projects with relevant topics. In this study,

application descriptions were sorted manually by

looking at the relevance of the software project on the

page. In this study, the description page of the software

project will be opened automatically using the software

package “trafilatura.”

4.1.2. Expert Data

The experts here have been involved in software

development projects as programmers or system

analysts, and nine experts were needed in this study. The

first stage of the data collection process is when the

author explains the expert procedures for online data

annotation via video communication (Google Meet).

The video communication explains that the expert will

be given three application descriptions and 22 user

stories containing 1677 user stories. Then, the expert will

be given a brief description of each user story. Then, the

expert will annotate the number of 0 (which means it is

irrelevant to the application description) and 1 (relevant

to the description) from 1677 user stories.

4.2. Data Extraction

The second stage in this research is the pre-processing of

collected data.

4.2.1. User Story Extraction

This user story extraction stage includes tokenization,

case folding, data cleaning, lemmatization, and stopword

removal. Separation of user story sentences into two or

three parts depending on the availability of the number

of aspects in the user story. User stories are separated

based on their aspects, namely who (who) wants this

functionality, what functional (what) stakeholders or

end-users wish to from the system, and why (why)

stakeholders or end-users need this function. The

separation is done by making a regular expression with

a pattern set according to research needs. The aspects

used in this study are the who and why aspects. Case

folding is changing all letters in the user story dataset to

lowercase. The step to do case folding is to call the lower

() function in each iteration of the requirements list

document. Data cleaning is done because the user story

dataset contains many disturbing characters for the next

stage. These characters include punctuation at the end of

words and other irrelevant characters. Data cleaning is

done by calling the remove punctuation () function.

Lemmatization is the process of grouping words in

different forms to be analyzed as one item. In this

process, the additional affixes of the word will be

removed and converted into basic word forms.

Lemmatization is carried out to reduce the vocabulary in

the user story dataset and application description, which

is expected to increase the similarity value of the user

story dataset extraction with software feature extraction.

Stopwords are the most common words in the language,

for example, like, “as,” “a,” “I,” “is,” “all.” Therefore,

these words have no meaning and are removed from the

text of the user story dataset and application description.

(2)

Enhancing Software Development Efficiency Through User Stories Reuse ... 41

4.2.2. Application Description Word Extraction

Word extraction is intended to retrieve words that are

considered necessary from an application description.

To get accurate results, it is necessary to experiment

using three-word extraction methods to get the most

accurate and efficient results. This study uses three trial

methods: TF-IDF, TF-IDF for nouns in the user story

dataset, and tools from YAKE, which can extract words

automatically.

 TF-IDF: word extraction is done by looking for the

word that appears most often and weighing the top 20

words using TF-IDF.

 TF-IDF and Nouns phrases: word extraction intended

to retrieve nouns in the application description. The

methods used in noun extraction are case folding for

changing the shape of each letter in the same form and

POS tagging Natural Language Processing (NLP) to

assign word labels to sentences automatically. POS

tagging uses the pos_tag function in the Natural

Language Toolkit (NLTK) library for each review

sentence iteration, and POS Chunking to group words

or phrases in a sentence into a new group called ‘chunks’

using adjusted rules. In this stage, the rules used to

retrieve nouns are words with tags Noun (NN), Proper

Noun (NNP), NNs, and NNPs.

 YAKE!: Yake is a new feature-based system for multi-

language keyword extraction that supports text of any

size, domain, or language.

4.3. Filtering User Story Dataset

The third stage in this research is filtering or selecting

the user story that will be used for further processing.

Filtering is done to reduce system errors, speed up

processing time, and increase the system’s accuracy to

make the system much more efficient. Filtering is done

by looking for the closeness between user story

extraction and word extraction in the application

description.

4.3.1. Finding the Similarity of Word Extraction

with User Story

After the extraction process is carried out, the three

methods at the application description extraction stage,

namely word extraction using TF-IDF, noun extraction

using TF-IDF, and YAKE, will be calculated for

proximity using the Cosine similarity method to

calculate the similarity between the application

description and the user story dataset that has been

extracted. Then, sort the user story dataset based on the

magnitude of the similarity value with the application

description displayed in the data frame, as shown in

Table 2. In Table 2, the user story recycle dataset has the

most prominent similarity value, with a score of 0.16, so

the dataset can be reused compared to other datasets with

lower scores.

Table 2. Result of similarity score of application descriptions with
user story.

App description User story Similarity score

0 daur recycling 0.161061

1 daur nsf 0.134181

2 daur culrepo 0.126633

3 daur neurohub 0.118156

4 daur rdadmp 0.112035

5 daur mis 0.099074

6 daur unibath 0.097821

7 daur alfred 0.092581

8 daur racdam 0.08904

9 daur openspending 0.089037

4.3.2. Testing the Dataset Filtering Method

To determine the number of user story datasets used and

which method is most appropriate for this study, an

experiment was carried out by comparing the results

from the system with the results of data retrieval from

the evaluator. The first step is to combine the data

obtained from nine evaluators. Merging is done by

taking the user story dataset labeled 1 (considered

relevant) by more than 50% of the nine evaluators. A

collection of combined user stories will be used as a

reference in this study’s appropriate method trials and

evaluation process. The retrieval of datasets in this test

uses 2, 5, and 10 datasets to make a significant difference

in test results.

4.3.3. Calculating the Accuracy and Success of the

Method

To find out the correct method for this study and the

number of datasets taken for the filtration process,

precision-recall and F1-scores were manually calculated

between the evaluator’s and the system’s results. The

result of this calculation can be seen in Table 3.

Table 3. Results of similarity score of application descriptions with user story.

Project Methods
2 Dataset 5 Dataset 10 Dataset

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Recycle

TF-IDF + noun phrase 0,5 1 0,667 0,2 1 0,333 0,1 1 0,182

YAKE 0,5 1 0,667 0,2 1 0,333 0,1 1 0,182

TF-IDF 0 0 0 0 0 0 0,1 1 0,182

Archive

TF-IDF + noun phrase 1 0,333 0,5 0,8 0,66 0,727 0,4 0,66 0,55

YAKE 0 0 0 0,2 0,167 0,182 0,2 0,333 0,25

TF-IDF 0 0 0 0,2 0,167 0,182 0,2 0,333 0,25

Alfred

TF-IDF + noun phrase 0,5 1 0,667 0,2 1 0,333 0,1 1 0,182

YAKE 0,5 1 0,667 0,2 1 0,333 0,1 1 0,182

TF-IDF 0 0 0 0 0 0 0 0 0

42 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

The recycle project uses the TF-IDF method for

nouns, according to Table 2. Using two datasets

produces a precision value of 0.5, a recall of 1, and an

F1-score of 0.6667. This figure is obtained by

performing manual calculations by calculating the

results according to the evaluator with the output

generated by the system. Based on these three projects,

the TF-IDF weighting method based on noun extraction

produces the most significant value by taking two

datasets on the recycle and Alfred projects. Taking five

datasets has the most substantial value in the project

archive. The YAKE method produces the most

significant value based on noun extraction by taking two

recycle and Alfred projects datasets.

Furthermore, taking ten datasets has the most

substantial value in the project archive. The TF-IDF

weighting method based on noun extraction produces the

most significant value by taking ten datasets on the

Recycle and Archive projects. This method did not

identify datasets related to the application description in

the Alfred project. There is a difference in the number of

datasets used because, in the Recycle and Alfred

projects, the number of datasets considered relevant by

the evaluator is only one. Six datasets for the archive

dataset project are regarded as appropriate.

It can be concluded from the experimental results

above that the TF-IDF method with noun extraction is

the most appropriate compared to the other two methods.

The results of this filtration process are considerable

time efficiency, from 180-200 minutes to 30-45 minutes

(83.3% time saving), and reduced noise in irrelevant user

story datasets, so it is expected to increase the accuracy

of the system, which will be tested in the evaluation

section.

4.4. Finding Reusable User Stories

The fourth stage of this research is looking for reusable

user stories. The search for user stories that can be reused

is done by comparing each user story with the user story

extracted from the application description. This stage is

carried out in six steps: application description

extraction, sentence tokenization, data cleaning, POS

tagging, POS chunking, and calculating similarity.

4.4.1. Application Description Extraction

Application description will be extracted to obtain

software features by tokenizing sentences, cleaning data,

post tagging, heading chunking, case folding, word net

lemmatization, and deletion of stopwords. Tokenization

separates the application description, which is still one

text, into one sentence for one need. Tokenize on the app

description using the sent tokenize () function. Data

cleaning is done because the application description

contains many disturbing characters for the next stage.

These characters include punctuation at the end of words

and other irrelevant characters. Data cleaning is done by

calling the remove_punctuation () function. POS tagging

is an NLP function that automatically labels words in

sentences. POS tagging uses the POS-tag function in the

NLTK library for each review sentence iteration.

Chunking is done to group words or phrases in a

sentence into a new group called ‘chunks.’ Chunking is

done by combining parts of speech with regular

expressions. The rules or rules used for chunking are

adjusted to what phrase or group of words needs to be

taken from a sentence. In this study, the rules used to

retrieve Software Features (SF) are contained in

Equation (6), where to obtain SF rules, Noun Phrase

(NC) rules are needed in Equation (3), Verbs (VERB) in

Equation (4), and Nouns (NP) in Equation (5).

𝑁𝐶 =
{(< 𝐷𝑇 >∗< 𝐽𝐽|𝐽𝐽𝑆|𝐽𝐽𝑅 >∗)? (< 𝐼𝑁 >∗< 𝑁𝑁|𝑁𝑁𝑃|𝑁𝑁𝑆|𝑁𝑁𝑃𝑆 >) ∗}

𝑉𝐸𝑅𝐵 = {< 𝑉𝐵|𝑉𝐵𝐺|𝑉𝐵𝑍|𝑉𝐵𝐷|𝑉𝐵𝑁|𝑉𝐵𝑃 > +< 𝐼𝑁 >∗}

𝑁𝑃 = {((< 𝑁𝐶 > +<, >) ∗< 𝑁𝐶 >∗< 𝐶𝐶 > +) ∗< 𝑁𝐶|𝐼𝑁 > +}

𝑆𝐹: {(< 𝑉𝐸𝑅𝐵|(𝐽𝐽|𝐽𝐽𝑆|𝐽𝐽𝑅)|𝑁𝑃 > +< 𝐷𝑇 >∗
< 𝑁𝑃|(𝑅𝐵|𝑅𝐵𝑅|𝑅𝐵𝑆)|(𝐽𝐽|𝐽𝐽𝑆|𝐽𝐽𝑅) > +)+}

4.4.2. Calculating Similarity

Similarity calculations are performed to determine

which user stories are related to feature extraction from

the application description. The data extracted from the

user story will be calculated for its proximity to the

results of the feature extraction data from the application

description. Proximity is assessed using the Cosine

similarity and Jaccard similarity methods. Suppose a

user story has a similarity value with a software feature

that exceeds a predetermined threshold. In that case, the

user story is considered to be related to the features in the

application description. User stories that have a

connection will be displayed in the results of user stories

that can be reused. To get the best results, trials were

carried out using three thresholds for each similarity

calculation method. Calculations were carried out using

the Cosine similarity method with 70%, 80%, and 90%,

and Jaccard similarity with 5%, 10%, and 15%

thresholds. The results of similarity calculations can be

seen in Table 4. The most considerable value in each

method is given a bold effect. The purpose of making

this system is to recommend to users which user stories

can be used. The expected recommendation is that the

data generated is quite a lot and varied but still has

minimal errors to produce information that is credible

and usable so that this system prioritizes recall but does

not ignore the value of precision so that in this study, the

F1-score is better used as a reference for finding the best

method.

Based on the results from Table 4, the best method

will refer to the average of the F1-score, where avg

means the average of data that is 0 (irrelevant) and 1

(relevant). The F1-score is the harmonic average of the

precision and recall, in which the more significant the

F1-score means, the better the precision and recall

results; vice versa, the smaller the F1-score means, the

worse the precision and recall results.

(3)

(4)

(5)

(6)

Enhancing Software Development Efficiency Through User Stories Reuse ... 43

Table 4. User story results that can be reused.

Project Method
0 (not relevant) 1 (relevant) Average

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Recycle

Cosine (0,7) 1.00 0.95 0.98 0.24 1.00 0.38 0.62 0.98 0.68

Cosine (0,8) 1.00 0.98 0.99 0.42 1.00 0.59 0.71 0.99 0.79

Cosine (0,9) 0.99 1.00 0.99 1.00 0.00 0.00 0.99 0.50 0.50

Jaccard (0,05) 1.00 0.01 0.02 0.01 1.00 0.03 0.51 0.50 0.02

Jaccard (0,1) 0.87 0.04 0.08 0.01 0.58 0.02 0.44 0.31 0.05

Jaccard (0,15) 0.83 0.05 0.10 0.00 0.21 0.01 0.41 0.13 0.05

Archive

Cosine (0,7) 0.95 0.87 0.91 0.45 0.67 0.54 0.70 0.77 0.72

Cosine (0,8) 0.95 0.99 0.97 0.94 0.67 0.79 0.95 0.83 0.88

Cosine (0,9) 0.87 1.00 0.93 1.00 0.01 0.02 0.93 0.50 0.47

Jaccard (0,05) 0.75 0.05 0.09 0.13 0.90 0.22 0.44 0.47 0.16

Jaccard (0,1) 0.62 0.13 0.22 0.08 0.47 0.13 0.35 0.30 0.18

Jaccard (0,15) 0.63 0.17 0.26 0.06 0.35 0.10 0.34 0.26 0.18

Alfred

Cosine (0,7) 1.00 0.91 0.95 0.15 1.00 0.27 0.58 0.96 0.61

Cosine (0,8) 1.00 1.00 1.00 0.76 0.96 0.85 0.88 0.98 0.92

Cosine (0,9) 0.98 1.00 0.99 1.00 0.00 0.00 0.99 0.50 0.50

Jaccard (0,05) 0.95 0.05 0.10 0.01 0.81 0.03 0.48 0.43 0.06

Jaccard (0,1) 0.89 0.10 0.17 0.00 0.27 0.01 0.45 0.18 0.09

Jaccard (0,15) 0.89 0.12 0.22 0.00 0.00 0.00 0.44 0.06 0.11

In the project recycle using the Cosine similarity

method, it has the best value at the threshold of 0.8 with

an average precision of 0.71, recall of 0.99, and F1-score

of 0.79. The formula is used in the equations below to

get this value. The first thing to do is to get each

precision-recall and F1-score from irrelevant (0) and

relevant (1) user stories. For irrelevant user stories with

1620 True Positives (TP), 0 False Positives (FP), and 33

False Negatives. For relevant user stories with 24 True

Positives (TP), 32 False Positives (FP) and 0 False

Negatives. After obtaining each precision, recall, and

F1-score, a macro average search is performed, namely

taking the average of each value. In the Cosine similarity

method, with a threshold of 0.8, the best value is in the

project archive, while at a threshold of 0.8, the best value

is in the Alfred project; for a threshold of 0.9, the best

value is in the recycle and Alfred projects. The Jaccard

similarity method produces the project archive’s best

value with a 0.05, 0.1, 0.15 threshold.

4.5. Discussion

This research begins with data collection, determining

the topic from the public user story dataset [9], which is

carried out for the search process for application

descriptions. The application descriptions are collected

by searching on the Google search engine with

predetermined topics. After obtaining the application

description, an online meeting process was carried out

using Google Meet with the evaluators. The meeting

began with the researchers’ explanation of the

background and purpose of this study, then continued by

dividing sheets using Google Docs containing user story

datasets and application description source links. The

evaluator’s annotation process takes seven days. After

seven days, the sheets were collected and then averaged.

If more than half (50%) of the evaluators chose the user

story, then the user story was considered relevant. At the

same time, during the annotation period from the

evaluator, the user story dataset and application

description are pre-processed.

This study has a limitation: when searching for user

stories related to software feature extraction, the system

runs for over three hours and has a reasonably low

evaluation result. This happens because the 22 user

story datasets contain 1677 user stories compared to

extraction software features of each application

description. So, an initial filtration process is needed,

which aims to find links between the application

description and the user story dataset. The experiment

was carried out using the three methods discussed in

sub-chapter 3.2 with the result that the user story dataset

is smaller in comparison, thereby increasing the

evaluation value and shortening the processing time.

The performance increase occurred because previously,

the user story dataset, which was compared with the

application description of 22, decreased to only two

datasets on the recycle and Alfred topics and five

datasets on the archive topic according to the results of

Table 3 so that the data compared was less and reduced

user stories irrelevant in the dataset. Feature extraction

is performed on application descriptions to identify

relevant software functionalities. However, application

descriptions vary significantly in structure and detail,

leading to potential inconsistencies in feature extraction.

While our approach provides a structured method for

extracting features, handling such variability remain

challenging. Future work could explore fine-tuning

transformer-based models or incorporating metadata-

based heuristics to improve the consistency and

accuracy of feature extraction across diverse application

descriptions.

After the filtration stage is executed, the next step is

to search for user stories that can be reused. This stage

begins by extracting the software features contained in

the application description. The application description

will be pre-processed, and the tagging and chunking

process will follow the specified rules. The results of this

44 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

extraction will be searched for closeness to each user

story that has gone through the filtration process.

Experiments were carried out using two similarity

calculation methods, namely Cosine and Jaccard

similarity. The results of the closeness calculation will

be evaluated using a precision and recall test with the

annotation results from the evaluator. The method with

the most significant precision and recall test values will

be used at this stage. The evaluation results in Table 4

show that the Cosine similarity method with a threshold

of 0.8 is the most appropriate method for this study, with

F1-scores for each topic being 0.79, 0.88, and 0.92.

The results of this study indicate that the word

extraction method uses noun phrase extraction, as done

by Bakar et al. [2], combined with TF-IDF, can be used

as a filtration step compared to other methods tested in

this study, which were calculated using the precision and

recall test. Cosine and Jaccard similarity are methods

used to find closeness between two sentences [12]. In

this research, the methods used for filtration are TF-IDF

aimed at extracting frequently occurring words,

combining TF-IDF with the extraction of nouns found in

the user story dataset, and utilizing YAKE tools for

automated word extraction. While our approach

effectively identifies relevant user stories using Cosine

similarity and keyword extraction, we recognize that

more advanced NLP techniques, such as BERT-based

embedding, can improve semantic matching [8, 19].

These models take advantage of deep contextual

embedding, which can provide a deeper understanding

of user stories. This study prioritizes TF-IDF and Cosine

similarity due to their simplicity, interpretability, and

lower computational cost. Future work may explore

integrating transformer-based approaches to improve

accuracy and assess their feasibility in practical software

engineering applications.

This shows that this approach is practical for

improving the reuse task of user stories based on feature

extraction from application descriptions. One of the

limitations of this study is that the number of different

projects is relatively small (22). However, the dataset

contains a large number of user stories (1,677), which

provides a solid basis for pattern analysis. It is important

to be aware of the limitations of our datasets. Future

research should validate approaches on more diverse and

broad data sets to ensure their generalization across

multiple contexts. Therefore, the results presented in this

study should be interpreted as indicative, not conclusive.

The performance of the proposed method may differ

when applied to projects from different domains or with

different characteristics.

Given the diversity of topics in the user story dataset

used in this research, it is further suggested to seek

descriptions of other applications with different

relevance from the designated topic in this study. This

would lead to testing a broader range of user story

datasets.

Reusing requirements has been shown to improve

efficiency in software development [15, 22]. However,

adapting reused user stories across multiple domains

presents challenges due to terminology, context, and

variations in functional requirements. For example, user

stories from e-commerce may require significant

modifications when applied to healthcare. The ease of

adaptation depends on the similarities between the

original and target app descriptions-a closer match

simplifies the process, while significant differences

require more effort. Common adaptations include

terminology changes (e.g., “customer” in e-commerce

vs. “patient” in healthcare), feature modifications (e.g.,

a “checkout” process in retail that focuses on payments

vs. procurement that requires approval steps), and

structural refinements (e.g., adding restrictions or

details to fit the new domain). While these adjustments

help maintain relevance, the system cannot function

independently. The intervention of a system analyst is

essential, as the system provides recommendations

rather than fully automated solutions.

The study proposes an automated approach to filter

and extract reusable user stories to improve efficiency

in agile development. While our method improves

automation, we realize that direct comparisons with

traditional manual requirements collection or existing

tools can further validate its effectiveness. However, we

evaluated by involving experts and comparing the

recommended reusable user stories with expert

opinions. Future studies will explore such comparative

analyses to measure time efficiency and accuracy

improvements.

Several studies have investigated approaches to

enhance user story processing and reuse. A taxonomy-

based method has been introduced to support user story

reuse, offering a different strategy from NLP-based

techniques while aiming for similar improvements in

reusability [7]. Additionally, prior research has

emphasized the significance of NLP in automating user

story processing, mainly through models utilizing pre-

trained embeddings [23, 28]. This study aligns with

these advancements by employing feature extraction

and similarity measurements to identify reusable user

stories, contributing to the ongoing development of

NLP-driven requirements engineering. The proposed

method improves user story reuse and can be integrated

into agile workflows through backlog refinement, where

similar past user stories are identified and suggested

during requirement discussions [32]. However,

adopting this approach in industry presents challenges,

such as aligning with existing tools (e.g., Jira, Azure

DevOps) and addressing variations in user story

structuring across teams. Additionally, teams may

require training to effectively utilize automated

recommendations, and some stakeholders may be

hesitant to rely on automation in requirement elicitation.

Addressing these challenges will be crucial for the

broader adoption of this approach.

Enhancing Software Development Efficiency Through User Stories Reuse ... 45

5. Conclusions

The main contribution of this study is the development

and validation of an NLP-based approach for reusing

user stories from application descriptions in software

requirement elicitation to enhance cost and time

efficiency in software development. The findings of this

study confirm that reusing user stories based on feature

extraction from application descriptions using Cosine

similarity with an 80% threshold is an effective method

for improving time and cost efficiency in software

development. The proposed NLP-based approach, which

employs POS tagging and similarity measurement,

demonstrated its feasibility by achieving high precision

(84%), recall (93%), and F1-score (86%) across three

test projects. Specifically, the method achieved

precision, recall, and F1-scores of 0.71, 0.99, and 0.79

for Recycle; 0.95, 0.83, and 0.88 for Archive; and 0.88,

0.98, and 0.92 for Alfred, confirming its alignment with

system design requirements. These results validate the

effectiveness of the Cosine similarity method in

identifying and reusing user stories, making it a viable

solution for improving efficiency in the software

requirement elicitation process.

Acknowledgment

This work was supported by Universitas Airlangga

under Airlangga Research Fund (ARF) Batch 2 2025,

Grand number 3005/B/UN3.LPPM/PT.01.03/2025.

References

[1] Ali F., Usman M., Abrar M., Rahman S., and et al.,

“Practices of Motivators in Adopting Agile

Software Development at Large Scale

Development Team from Management

Perspective,” Electronics, vol. 10, no. 19. 2021.

DOI: 10.3390/electronics10192341

[2] Bakar N., Kasirun Z., Salleh N., and Jalab H.,

“Extracting Features from Online Software

Reviews to Aid Requirements Reuse,” Applied

Soft Computing, vol. 49, pp. 1297-1315, 2016.

DOI: 10.1016/j.asoc.2016.07.048

[3] Buglione L. and Abran A., “Improving the User

Story Agile Technique Using the INVEST

Criteria,” in Proceedings of the 23rd Joint

Conference of International Workshop on

Software Measurement and the 8th International

Conference on Software Process and Product

Measurement, Ankara, pp. 49-53, 2013. DOI:

10.1109/IWSM-Mensura.2013.18

[4] Cico O., Jaccheri L., Nguyen-Duc A., and Zhang

H., “Exploring the Intersection between Software

Industry and Software Engineering Education-A

Systematic Mapping of Software Engineering

Trends,” Journal of Systems and Software, vol.

172, pp. 110736, 2021. DOI:

https://doi.org/10.1016/j.jss.2020.110736

[5] Dalpiaz F., Requirements Data Sets (User Stories),

Mendeley Data,

http://doi.org/10.17632/7zbk8zsd8y.1, Last

Visited, 2024.

[6] Dalpiaz F. and Brinkkemper S., “Agile

Requirements Engineering with User Stories,” in

Proceedings of the IEEE 26th International

Requirements Engineering Conference, Banff, pp.

506-507, 2018. DOI: 10.1109/RE.2018.00075

[7] Dilorenzo E., Dantas E., Perkusich M., Ramos F.,

and et al., “Enabling the Reuse of Software

Development Assets Through a Taxonomy for

User Stories,” IEEE Access, vol. 8, pp. 107285-

107300, 2020. DOI:

10.1109/ACCESS.2020.2996951

[8] Fahmi F. and Pratiwi A.,, “Identifying Sentiment

in User Reviews of Get Contact Application Using

Natural Language Processing,” in Proceedings of

the International Seminar on Application for

Technology of Information and Communication

(iSemantic), Semarang, pp. 428-433. DOI:

10.1109/iSemantic63362.2024.10762453

[9] Gunes T. and Aydemir F., “Automated Goal Model

Extraction from User Stories Using NLP,” in

Proceedings of the IEEE 28th International

Requirements Engineering Conference, Zurich,

pp. 382-387, 2020. DOI:

10.1109/RE48521.2020.00052

[10] Halme E., Jantunen M., Vakkuri V., Kemell K.,

and Abrahamsson P., “Making Ethics Practical:

User Stories as a Way of Implementing Ethical

Consideration in Software Engineering,”

Information and Software Technology, vol. 167,

pp. 1-37, 2024. DOI:

10.1016/j.infsof.2023.107379

[11] IEEE Standards Association, IEEE Standard for

Information Technology-System and Software

Life Cycle Processes-Reuse Processes, IEEE

Stand, https://standards.ieee.org/ieee/1517/4603/,

Last Visited, 2024.

[12] Jain A., Jain A., Chauhan N., Singh V., and Thakur

N., “Information Retrieval Using Cosine and

Jaccard Similarity Measures in Vector Space

Model,” International Journal of Computer

Applications, vol. 164, no. 6, pp. 28-30, 2017.

DOI: 10.5120/ijca2017913699

[13] Jiang H., Ma H., Ren Z., Zhang J., and Li X.,

“What Makes a Good App Description?,” in

Proceedings of the 6th Asia-Pacific Symposium on

Internetware on Internetware, Hong Kong, pp. 45-

53, 2014. DOI: 10.1145/2677832.2677842

[14] Johann T., Stanik C., Alizadeh A., and Maalej W.,

“SAFE: A Simple Approach for Feature

Extraction from App Descriptions and App

Reviews,” in Proceedings of the IEEE 25th

International Requirements Engineering

Conference, Lisbon, pp. 21-30, 2017. DOI:

10.1109/RE.2017.71

https://doi.org/10.1016/j.jss.2020.110736
http://doi.org/10.17632/7zbk8zsd8y.1
https://standards.ieee.org/ieee/1517/4603/

46 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

[15] Khan M., Saadatmand M., Enoiu E., Sundamark

D., and Lindskog C., Automated Reuse

Recommendation of Product Line Assets Based on

Natural Language Requirements, Reuse in

Emerging Software Engineering Practices, 2020.

https://doi.org/10.1007/978-3-030-64694-3_11

[16] Kuhrmann M., Tell P., Hebig R., Klunder J., and

et al., “What Makes Agile Software Development

Agile?,” IEEE Transactions on Software

Engineering, vol. 48, no. 9, pp. 3523-3539, 2022.

DOI: 10.1109/TSE.2021.3099532

[17] Lee W. and Chen C., “Agile Software

Development and Reuse Approach with Scrum

and Software Product Line Engineering,”

Electronics, vol. 12, no. 15, pp. 3291, 2023. DOI:

10.3390/electronics12153291

[18] Lucassen G., Dalpiaz F., Werf J., and Brinkkemper

S., “Improving Agile Requirements: The Quality

User Story Framework and Tool,” Requirements

Engineering, vol. 21, no. 3, pp. 383-403, 2016.

DOI: 10.1007/s00766-016-0250-x

[19] Molla Y., Alemneh E., and Yimer S., “COSMIC-

Based Early Software Size Estimation Using Deep

Learning and Domain-Specific BERT,” IEEE

Access, vol. 13, pp. 28463-28475, 2025. DOI:

10.1109/ACCESS.2025.3540548

[20] Muhamad F., Hamid S., Subramaniam H., Abdul

Rashid R., and Fahmi F., “Fault-Prone Software

Requirements Specification Detection Using

Ensemble Learning for Edge/Cloud

Applications,” Applied Sciences, vol. 13, no. 14,

pp. 8368, 2023. DOI: 10.3390/app13148368

[21] O’hEocha C. and Conboy K., “The Role of the

User Story Agile Practice in Innovation,” Lecture

Notes in Business Information Processing, vol. 65,

pp. 20-30, 2010. DOI: 10.1007/978-3-642-16416-

3_3

[22] Pirzadeh H., Oliveira A., and Shanian S., “ReUse:

A Recommendation System for Implementing

User Stories,” in Proceedings of the 11th

International Conference on Software

Engineering Advances, Montreal, pp. 149-153,

2016.

file:///C:/Users/acit2k/Downloads/icsea_2016_6_

20_10100%20(1).pdf

[23] Raharjana I., Siahaan D., and Fatichah C., “User

Stories and Natural Language Processing: A

Systematic Literature Review,” IEEE Access, vol.

9, pp. 53811-53826, 2021. DOI:

10.1109/ACCESS.2021.3070606

[24] Resketi M., Motameni H., Nematzadeh H., and

Akbari E., “Automatic Summarising of User

Stories in Order to be Reused in Future Similar

Projects,” IET Software, vol. 14, no. 6, pp. 711-

723, 2020. DOI: 10.1049/iet-sen.2019.0182

[25] Sabahat N., Iqbal F., Azam F., and Javed M., “An

Iterative Approach for Global Requirements

Elicitation: A Case Study Analysis,” in

Proceedings of the International Conference on

Electronics and Information Engineering, Kyoto,

pp. 361-366, 2010. DOI:

10.1109/ICEIE.2010.5559859

[26] Salazar G., Mora M., Limon H., Rodriguez F., and

Zavala A., “Review of Agile SDLC for Big Data

Analytics Systems in the Context of Small

Organizations Using Scrum-XP,” The

International Arab Journal of Information

Technology, vol. 21, no. 6, pp. 1089-1110, 2024.

DOI: 10.34028/iajit/21/6/12

[27] Schots M., “On the Use of Visualization for

Supporting Software Reuse,” in Proceedings of

the 36th International Conference on Software

Engineering, Hyderabad, pp. 694-697, 2014. DOI:

10.1145/2591062.2591095

[28] Scoggin S. and Neto H., “Identifying Valid User

Stories Using BERT Pre-Trained Natural

Language Models,” Information Systems and

Technologies, pp. 167-177, 2024.

https://doi.org/10.1007/978-3-031-45648-0_17

[29] Sharma S. and Pandey S., “Requirements

Elicitation: Issues and Challenges,” in

Proceedings of the International Conference on

Computing for Sustainable Global Development,

New Delhi, pp. 151-155, 2014. DOI:

10.1109/IndiaCom.2014.6828119

[30] Siahaan D., Raharjana I., and Fatichah C., “User

Story Extraction from Natural Language for

Requirements Elicitation: Identify Software-

Related Information from Online News,”

Information and Software Technology, vol. 158,

pp. 107195, 2023. DOI:

10.1016/j.infsof.2023.107195

[31] Suali A., Fauzi S., Nasir M., Sobri W., and

Raharjana I., “Software Quality Measurement in

Software Engineering Project: A Systematic

Literature Review,” Journal of Theoretical and

Applied Information Technology, vol. 97, no. 3,

pp. 918-929, 2019.

https://www.jatit.org/volumes/Vol97No3/18Vol97

No3.pdf

[32] Suganya R., Banerjee D., Mishra A.,

Subbulakshmi T., and Subramanian G.,

“Enhancing Agile Development in Tech

Companies: Backlog Management, Tool

Integration, and Stakeholder Collaboration,” in

Proceedings of the 6th International Conference

on Recent Trends in Advance Computing,

Chennai, pp. 718-724, 2023. DOI:

10.1109/ICRTAC59277.2023.10480864

[33] Tam C., Moura E., Oliveira T., and Varajão J.,

“The Factors Influencing the Success of on-Going

Agile Software Development Projects,”

International Journal of Project Management,

vol. 38, no. 3, pp. 165-176, 2020. DOI:

10.1016/j.ijproman.2020.02.001

[34] Tariq S., Ibrahim A., Usama A., and Shahbaz M.,

https://doi.org/10.1007/978-3-030-64694-3_11
file:///C:/Users/acit2k/Downloads/icsea_2016_6_20_10100%20(1).pdf
file:///C:/Users/acit2k/Downloads/icsea_2016_6_20_10100%20(1).pdf
https://doi.org/10.1007/978-3-031-45648-0_17
https://www.jatit.org/volumes/Vol97No3/18Vol97No3.pdf
https://www.jatit.org/volumes/Vol97No3/18Vol97No3.pdf

Enhancing Software Development Efficiency Through User Stories Reuse ... 47

“An Overview of Requirements Elicitation

Techniques in Software Engineering with a Focus

on Agile Development,” in Proceedings of the 4th

International Conference on Computing and

Information Sciences, Karachi, pp. 1-6, 2021.

DOI: 10.1109/ICCIS54243.2021.9676192

[35] Thamrongchote C. and Vatanawood W., “Business

Process Ontology for Defining User Story,” in

Proceedings of the IEEE/ACIS 15th International

Conference on Computer and Information

Science, Okayama, pp. 3-6, 2016. DOI:

10.1109/ICIS.2016.7550829

[36] Trisnawati E., Raharjana I., Taufik T., Basori A.,

and et al., “Analyzing Variances in User Story

Characteristics : A Comparative Study of

Stakeholders with Diverse Domain and Technical

Knowledge in Software Requirements

Elicitation,” Information Systems Engineering

and Business Intelligence, vol. 10, no. 1, pp. 110-

125, 2024. DOI: 10.20473/jisebi.10.1.110-125

[37] Wang Y., Wang J., Zhang H., Ming X., and et al.,

“Where is your App Frustrating Users?,” in

Proceedings of the 44th International Conference

on Software Engineering, New York, pp. 2427-

2439, 2022. DOI: 10.1145/3510003.3510189

[38] Wu H., Deng W., Niu X., and Nie C., “Identifying

Key Features from App User Reviews,” in

Proceedings of the IEEE/ACM 43rd International

Conference on Software Engineering, Madrid, pp.

922-932, 2021. DOI:

10.1109/ICSE43902.2021.00088.

[39] Zainal D., Razali R., and Mansor Z., “Team

Formation for Agile Software Development-

Crowdsourcing-based Empirical Study,” Journal

of Advanced Research in Applied Sciences and

Engineering Technology, vol. 34, no. 2, pp. 133-

143, 2024. DOI: 10.37934/araset.34.2.133143

[40] Zowghi D. and Coulin C., Engineering and

Managing Software Requirements, Springer

Nature, 2005. https://doi.org/10.1007/3-540-

28244-0_2

Indra Kharisma Raharjana is an

Associate Professor at Universitas

Airlangga. He holds degrees from

Institut Teknologi Sepuluh Nopember

and Institut Teknologi Bandung. His

research focuses on software

engineering and natural language

processing. He is Editor-in-Chief of the Journal of

Information Systems Engineering and Business

Intelligence and an active member of CASE, IEEE,

ACM, INACL, and AISINDO.

Avril Hermawan received a

bachelor’s degree in information

systems from the Universitas

Airlangga, Indonesia, in 2023. He

currently works as a digital product

campaign specialist at PT. Bank

Tabungan Negara (BTN). His

professional interests include Digital Marketing, Digital

Product Management, and User Experience.

Badrus Zaman is a lecturer in the

information systems study program at

Universitas Airlangga. He received a

bachelor’s degree in informatics

engineering from the Institut

Teknologi Sepuluh Nopember,

Indonesia, in 2005, and a master’s

degree in computer science from the Universitas Gadjah

Mada, Indonesia, in 2011. His research interests Cover

Information Systems and Natural Language Processing.

Shukor Sanim Mohd Fauzi is a

Senior Lecturer at the Faculty of

Computer and Mathematical

Sciences, Universiti Teknologi

MARA. He holds degrees from

UiTM, Universiti Teknologi

Malaysia, and a Ph.D. in Software

Engineering from UNSW. His research interests include

Software Engineering, Empirical Studies, Software

Repository Mining, Social Network Analysis, Socio-

Technical Congruence, and Collaborative Software

Processes.

https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2

