36 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

Enhancing Software Development Efficiency
Through User Stories Reuse from Application
Descriptions

Indra Kharisma Raharjana Avril Hermawan
Center for Information Systems Engineering Faculty of Science and Technology
University of Airlangga, Indonesia University of Airlangga, Indonesia
indra.kharisma@(fst.unair.ac.id avrilaudihermawan@gmail.com
Badrus Zaman Shukor Sanim Mohd Fauzi
Faculty of Science and Technology Faculty of Computer and Mathematical Sciences
University of Airlangga, Indonesia University of Teknology MARA, Malaysia
badruszaman@fst.unair.ac.id shukorsanim@uitm.edu.my

Abstract: Software development projects frequently encounter cost and time efficiency challenges, rendering them susceptible
to failure. An imprecise and incomplete process of eliciting user software requirements can further escalate software
development’s time, cost, and effort. Consequently, the reuse of user stories based on application descriptions for software
requirement elicitation is proposed to mitigate these issues and enhance cost efficiency. This research aims to evaluate the reuse
of user stories within the software elicitation process by extracting software features from initial application descriptions. The
goal is to determine whether this approach can effectively reduce the time and cost associated with software development. This
study employs Natural Language Processing (NLP) techniques to identify Part-Of-Speech (POS) tag patterns to extract software
features from application descriptions. A similarity measurement is conducted between user stories and the extracted software
features. User stories are then filtered based on a similarity threshold to ensure high relevance to the extracted software features.
The proposed method was tested using three distinct application descriptions alongside 22 user story datasets provided to nine
respondents. The analysis indicates that the reuse of user stories based on feature extraction from application descriptions,
determined through Cosine similarity with an 80% threshold, significantly enhances software development efficiency in terms of
time and cost. The method demonstrated an average precision of 84%, recall of 93%, and F1-score of 86% across the three test
projects, confirming its alignment with system design requirements. The findings of this research validate the effectiveness of the
Cosine similarity method in identifying reusable user stories from application descriptions. This approach is a viable solution
for reusing user stories in the software requirement elicitation process, thereby improving efficiency in software development
projects.

Keywords: Application description, requirements reuse, requirements elicitation, process innovation, user story.

Received July 31, 2024; accepted August 7, 2025
https://doi.org/10.34028/iajit/23/1/4

1. Introduction Requirement reuse is an effective method for
increasing efficiency in the software development
process, reducing software development and
maintenance costs, producing higher-quality software
products, improving software and system dependencies,
and facilitating the transfer of team members, tools, and
methods between projects [11]. In general, requirements
reuse is extracted from the Software Requirements
Specification (SRS), but not everyone can do SRS
extraction for requirements reuse because not everyone
has access to software artifacts [2, 20]. Apart from being
obtained from SRS, reuse requirements can be extracted
from user reviews and application descriptions. User
reviews are ratings written by users; in addition to
ratings, some users suggest new features that users want.

Meanwhile, the developer writes the application
description containing complete information about the
application name, features, and benefits. It aims to help

Requirements elicitation is the process of finding,
uncovering, obtaining, and describing requirements for
the software development process [40]. Requirement
elicitation is the initial process of the software
development process [25]. In practice, requirements
elicitation is a process that has a significant role in
software development because if the requirements in
requirements elicitation are incomplete, it can increase
costs and efforts in software development [29].
Extraction of requirements obtained from various
sources of unstructured documents increases software
development efficiency [30]. Reusing practices allows
for reducing costs and efforts in the requirements
elicitation [27]. Requirements reuse is reclaiming
software requirements developed and used in earlier
projects [15].

mailto:badruszaman@fst.unair.ac.id

Enhancing Software Development Efficiency Through User Stories Reuse ... 37

users quickly find the application they need [14]. In this
study, the application description is the source document
that will be extracted to obtain software features because
it can be written at the beginning of the software
development process and accessed by everyone, in
contrast to SRS, which is not accessible to everyone and
user reviews which can only be obtained when the
software has been released, used, and reviewed by users.

Several methods can be wused in software
development. One is agile development software, a
short-term software development that requires
developers to adapt quickly to various changes [16, 26,
39]. In agile, user stories collected during the
requirements elicitation are the most widely used
artifacts to obtain simple descriptions from the user’s
perspective [35]. A user story is a short, structured
sentence requesting user needs or functions [6]. User
story consists of 3 aspects: who/who asks for the needs
or functions, what or what needs or stakeholders request
functions, and why/why stakeholders want these
functions [18, 36]. User stories are widely used during
requirements elicitation because user stories play a role
in explaining the needs and desires of stakeholders or
personas [21]. User stories can be boundary objects in
transferring and creating new knowledge [7].

User stories are widely used during the requirements
elicitation in agile software development [10, 34]. User
stories that have been collected are generally not
collected again by software developers, which opens up
opportunities for developers to reuse user stories
collected from several previous projects for future
projects [7]. Reusing user stories based on application
descriptions for software elicitation needs aims to
reduce costs and efforts in software development [7,
24]. The practice of reuse can reduce costs and efforts
in the requirements elicitation process [27]. Customer
satisfaction results from cost and time efficiency [4].
The benchmarks for the success of agile software
development are time, cost, effort, and customer
satisfaction [1, 33]. The purpose of this study is to reuse
user stories for the elicitation of software based on
extracting software features from the initial application
description. This research produces an output list of user
stories that can be reused; the potential is obtained from
the similarity value of user stories with the extraction of
software features from the application description.

2. Related Works

Software developers usually write app descriptions and
describe their features on the app store, and users
comment about the features in the app reviews section
[37, 38]. Extracting and matching functionality from app
descriptions is critical to benefiting from the App Store.
In the study of Johann et al. [14], propose a new
Approach for Extracting Software Features (SAFE) from
application descriptions and user reviews and matching
them. This research uses 18 parts of speech written

manually and five sentence patterns that often refer to
software features. This study will extract application
descriptions to obtain software features using part-of-
speech. Software features that have been extracted will
be searched for compatibility with the processed user
story. There are several techniques in requirements
elicitation to increase understanding of domain
knowledge, such as user interviews, questionnaires,
document analysis, and brainstorming. Most of these
techniques require in-depth stakeholder engagement. In
practice, stakeholders generally have limited time and
stakeholder so that not all software projects can use this
technique [31]. Software development is agile, and user
stories are used to capture and write functional
requirements. A user story is an appropriate and easy-to-
understand format for writing the results of a
requirement. Research by Raharjana et al. [30] aims to
propose a model for extracting user stories from online
news to increase understanding of domain knowledge.

User stories are a fundamental component of agile
software development, which captures functional
requirements from the end-user’s perspective. In this
context, reusable user stories refer to user stories that can
be applied across different projects or domains with
minimal modification [17]. The reusability of user
stories helps improve efficiency and reduce excessive
effort in software development. In this study, user stories
are used to reuse the requirements. This is because user
stories are widely used during requirement elicitation in
agile software development so that they can be reused to
increase cost efficiency and software development
efforts.

High-quality user stories are typically characterized
by the INVEST criteria: Independent, Negotiable,
Valuable, Estimable, Small, and Testable [3]. These
attributes ensure that user stories are well-structured and
manageable in agile development. While our study
focuses on automation rather than manual refinement,
the INVEST principles provide a valuable benchmark
for assessing the quality of extracted user stories. Feature
sets are essential assets for reuse in software product line
methodologies. In requirements reuse, the extraction of
software features from a SRS can only be performed by
practitioners who have access to these software artifacts.
Due to organizational privacy, the SRS is always kept
confidential and is not easily used by the public. As an
alternative, researchers use publicly available software
descriptions (such as product manuals and online) to
identify potential software functions to initiate the reuse
of requirements. Bakar et al. [2] research aims to propose
a semi-automated method, called Feature Extraction for
Natural Language Reuse (FENL), to extract phrases that
can represent software functions from software reviews
without using SRS as a method to initiate the technique.
This study will use application descriptions as document
sources to obtain software features. Software features
will be used to reuse the requirements. The extraction
process from the application description requires a pre-

38 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

processing as described in the research by Bakar et al.

[2].

3. Method

The research step begins with extracting software
features in the application description by pre-processing
the application description by tokenizing sentences and
cleaning data. The next step is labeling each word with
Part-Of-Speech (POS) tagging. After being marked on
each sentence, an extraction process takes the word
fragments labeled according to the needs and then
collects them as a list using Chungking POS. Then, do
Case Folding, which changes all the letters on the list to
lowercase. After case folding, changing becomes the
base word for each word on the list using WordNet

|| Collecting Data ll

User Story

reprocessing Data
1. Separation of who, what and why
aspects
2. Data Cleaning
3. Case Folding
4. WordNet Lemmatization
5. Removing Stopwords

User Story Dataset
Filtering
1. Word Retrieval

preprocessing results of th
user story dataset

2. Similarity calculation

Lemmatization. After being converted into basic words,
words without meaning are removed, usually called stop
words. The next step of this research is to extract the user
story dataset, starting with separating the sentences in the
user story. Then, noise such as punctuation and numbers
are removed, followed by case folding, lemmatization,
and stop word removal.

The last step of this research is filtering the user story
related to the application description and then calculating
the similarity between software feature extraction and
user story extraction. User stories that have a similarity
exceeding the threshold will be included in the list of
user stories that can be reused. Furthermore, an
evaluation will be conducted to assess the information’s
accuracy. The architecture of the proposed method can
be seen in Figure 1.

Application
Description

Preprocessing Data
1. POS Tagging

2. POS Chunking
3. Case Folding

pre-process results
application description

A 4

l' N
Finding Reusable User Stories

user story dataset that {
passes the filtering stage\

1. Software Feature extraction

2. POS Chunking In Software
Extraction Feature

4

3. Calculating Similarity user story
dataset pass filtering with software

feature extraction result
\, 7

A

list of user stories that
can be reused

Evaluation

Figure 1. Architecture of the proposed method.

3.1. Collecting Data

This study requires three types of data: user story
datasets, application descriptions, and expert
evaluations. The user story dataset is the source of
reusable artifacts in the software elicitation process.
Application descriptions are extracted to obtain software

features, while expert data is used for evaluation and
comparison.

User stories typically comprise three aspects: who,
what, and why [18]. Some user stories may not explicitly
include the why aspect. To extract meaningful
information, user stories are processed by separating

Enhancing Software Development Efficiency Through User Stories Reuse ... 39

these aspects: identifying the user (who) requested
features (what) and the rationale or benefit of the feature
(why). The dataset [31] includes over 1,500 user stories
from 22 applications covering various domains.
Extraction steps involve tokenization, data cleaning,
case folding, WordNet lemmatization, and stopword
removal. Application descriptions contain key
information about an application’s name, features, and
benefits, written by developers to attract users [14]. A
well-written application description is concise,
informative, and highlights key features effectively [13].
This study extracts these descriptions to derive software
features, which are then used to filter user stories. Word
extraction uses POS tagging, chunking, and case folding
techniques.

3.2. Pre-Processing Data

The next stage involves pre-processing user story and
application description data to ensure consistency and
improve processing efficiency. Pre-processing includes
tokenization, case folding (converting text to lowercase),
lemmatization (reducing words to their base forms), and
stopword removal (eliminating common but non-
essential words). These steps refine the data for further
analysis in the research workflow.

The data pre-processing stage ensures that user stories
and application descriptions are structured for further
analysis. This process includes aspect separation, data
cleaning, POS tagging, chunking, case folding,
lemmatization, and stopword removal. User stories are
segmented into three key aspects: who (the stakeholder
or end-user requesting the functionality), what (the
requested feature), and why (the reason or benefit) [35].
The separation is performed using delimiters such as
commas (,) and the word “so”. Next, data cleaning
removes unnecessary elements such as numbers,
punctuation, and symbols to reduce noise. POS tagging
is then applied to label words based on their grammatical
roles, facilitating further text processing. Chunking is
performed to group related words into meaningful
phrases using predefined rules.

Case folding standardizes text by converting all
characters to lowercase, ensuring consistency in text
analysis. Lemmatization further refines the data by
reducing words to their base forms, helping to improve
the accuracy of similarity calculations between extracted
user stories and software features. Finally, stopword
removal eliminates common but non-essential words
such as “as,” “is,” and “all,” streamlining the dataset for
more effective processing.

3.3. User Story Dataset Filtering

In this stage, the user story dataset is filtered to enhance
system efficiency by reducing errors, improving
processing speed, and increasing accuracy. The filtering
process evaluates the similarity between extracted user
stories and words from application descriptions. Several

methods are employed to select relevant words from
application descriptions. The first method identifies
frequently occurring words, while the second focuses on
extracting nouns. Both approaches utilize TF-IDF for
word weighting to prioritize important terms.
Additionally, the YAKE tool is used to extract automatic
keywords. Cosine similarity is applied to measure the
closeness between extracted words and the user story
dataset to determine relevance. The user story is
considered relevant for further processing if the
similarity score exceeds a predefined threshold.

3.4. Finding Reusable User Stories

Each story is compared with the software feature
extraction from application descriptions to identify
reusable user stories. The extraction process involves
separating application descriptions into individual
sentences. While this process shares similarities with
pre-processing, the chunking step follows distinct rules
tailored for feature extraction. Chunking uses part-of-
speech patterns and regular expressions to group relevant
words and phrases. These extracted phrases are then
analyzed for similarity with user stories using Cosine
similarity and Jaccard similarity methods. If a user
story’s similarity score exceeds a predetermined
threshold, it is considered relevant to the extracted
software features. The final output is a structured table
displaying user stories that can be reused based on
similarity calculations. This table is then evaluated to
assess the accuracy and effectiveness of the proposed
method.

3.5. Evaluation

Evaluation is carried out to assess whether the system
created can provide accurate information about the list of
user stories that match the application description. The
first step in evaluating this system is to determine an
evaluation case. The determination of the topic
description of the application is required to follow the
user story dataset. So, a user story in the dataset has
similarities and can be reused. Next, the expert manually
marks the user stories that are considered to have
similarities with the application description. The last step
is to perform precision and recall tests on manual results
from experts with results from the system. Experts here
have been involved in software development projects as
programmers or system analysts. Evaluation is carried
out with a minimum of 3 experts.

Precision measures the accuracy between the list of
reused user stories written by experts and the list
provided by the system or the system’s accuracy in
classifying data. Calculating the precision value can be
done by Equation (1).

|{relevant document} N {Retrieved Document}|

Precision = 1
|{retrieved documents}| ()

Recall compares the number of lists of reused user

40 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

stories correctly by the system in a class against all actual
data. The recall calculation can be seen in Equation (2).

relevant document} N {Retrieved Document}
Recall = (2
ecatt = |{relevant Documents}|

e Relevant document: a list of reusable user stories
written by experts.

e Retrieved document: a list of reusable user stories
generated by the system.

4. Result

In this section, an explanation will be given regarding the
research results carried out while conducting the
research. The explanation given is an elaboration of the
existing problem formulation.

4.1. Data Collection

The user story datasets were sourced from Mendeley,
where they were publicly uploaded in 2018 [5]. There
are 22 applications in the user story dataset with various
topics. In this study, it is necessary to understand the
subject of each application to determine a description of
similar applications. The detail of the user story dataset
can be seen in Table 1.

Table 1. User story datasets topics.

Project name Project topic
Federalspending Monitor state spending.
Loudoun Loudoun city planning portal_for residents and visitors
to the city.
Recycling Help find recycling places.
Openspending Monitor and study state finances.
Frictionless Describe validate (process) data.
Scrumalliance Provide learning about scrum and agile.
Nsf Research funding and awards.
Camperplus Camping service provider.
Planningpoker Game for agile planning.
Datahub Data Collection.
Mis Duke university inform_ation management and
repository.
Cask Software development portal.
Neurohub | Data storage and intermediary Research collaboration.
Alfred Oldster assistance.
Badcamp Event management and registration.
Rdadmp Data management planning.
Archivesspace Archiving.
Unibath University of Bath Repository.
Duraspace Repository for digital content.
Racdam Archiving.
Culrepo Content management for universities.
Zooniverse Portal to provide support for research.

4.1.1. Application Description

A description of the application is obtained by looking
for a software project similar to the user story. The
software project topics used in this research are
recycling, digital assistants for parents, and digital
archiving. The search is done using a search engine from
Google by entering the keywords “software project” or
“project idea,” followed by the topic to be searched in
English. Google will show a collection of pages that
have software projects with relevant topics. In this study,
application descriptions were sorted manually by

looking at the relevance of the software project on the
page. In this study, the description page of the software
project will be opened automatically using the software
package “trafilatura.”

4.1.2. Expert Data

The experts here have been involved in software
development projects as programmers or system
analysts, and nine experts were needed in this study. The
first stage of the data collection process is when the
author explains the expert procedures for online data
annotation via video communication (Google Meet).
The video communication explains that the expert will
be given three application descriptions and 22 user
stories containing 1677 user stories. Then, the expert will
be given a brief description of each user story. Then, the
expert will annotate the number of 0 (which means it is
irrelevant to the application description) and 1 (relevant
to the description) from 1677 user stories.

4.2. Data Extraction

The second stage in this research is the pre-processing of
collected data.

4.2.1. User Story Extraction

This user story extraction stage includes tokenization,
case folding, data cleaning, lemmatization, and stopword
removal. Separation of user story sentences into two or
three parts depending on the availability of the number
of aspects in the user story. User stories are separated
based on their aspects, namely who (who) wants this
functionality, what functional (what) stakeholders or
end-users wish to from the system, and why (why)
stakeholders or end-users need this function. The
separation is done by making a regular expression with
a pattern set according to research needs. The aspects
used in this study are the who and why aspects. Case
folding is changing all letters in the user story dataset to
lowercase. The step to do case folding is to call the lower
() function in each iteration of the requirements list
document. Data cleaning is done because the user story
dataset contains many disturbing characters for the next
stage. These characters include punctuation at the end of
words and other irrelevant characters. Data cleaning is
done by calling the remove punctuation () function.
Lemmatization is the process of grouping words in
different forms to be analyzed as one item. In this
process, the additional affixes of the word will be
removed and converted into basic word forms.
Lemmatization is carried out to reduce the vocabulary in
the user story dataset and application description, which
is expected to increase the similarity value of the user
story dataset extraction with software feature extraction.
Stopwords are the most common words in the language,
for example, like, “as,” “a,” “I,” “is,” “all.” Therefore,
these words have no meaning and are removed from the
text of the user story dataset and application description.

Enhancing Software Development Efficiency Through User Stories Reuse ...

4.2.2. Application Description Word Extraction

Word extraction is intended to retrieve words that are
considered necessary from an application description.
To get accurate results, it is necessary to experiment
using three-word extraction methods to get the most
accurate and efficient results. This study uses three trial
methods: TF-IDF, TF-IDF for nouns in the user story
dataset, and tools from YAKE, which can extract words
automatically.

e TF-IDF: word extraction is done by looking for the
word that appears most often and weighing the top 20
words using TF-IDF.

e TF-IDF and Nouns phrases: word extraction intended
to retrieve nouns in the application description. The
methods used in noun extraction are case folding for
changing the shape of each letter in the same form and
POS tagging Natural Language Processing (NLP) to
assign word labels to sentences automatically. POS
tagging uses the pos_tag function in the Natural
Language Toolkit (NLTK) library for each review
sentence iteration, and POS Chunking to group words
or phrases in a sentence into a new group called ‘chunks’
using adjusted rules. In this stage, the rules used to
retrieve nouns are words with tags Noun (NN), Proper
Noun (NNP), NNs, and NNPs.

o YAKE!: Yake is a new feature-based system for multi-
language keyword extraction that supports text of any
size, domain, or language.

4.3. Filtering User Story Dataset

The third stage in this research is filtering or selecting
the user story that will be used for further processing.
Filtering is done to reduce system errors, speed up
processing time, and increase the system’s accuracy to
make the system much more efficient. Filtering is done
by looking for the closeness between user story
extraction and word extraction in the application
description.

4.3.1. Finding the Similarity of Word Extraction
with User Story

After the extraction process is carried out, the three
methods at the application description extraction stage,
namely word extraction using TF-IDF, noun extraction

41

using TF-IDF, and YAKE, will be calculated for
proximity using the Cosine similarity method to
calculate the similarity between the application
description and the user story dataset that has been
extracted. Then, sort the user story dataset based on the
magnitude of the similarity value with the application
description displayed in the data frame, as shown in
Table 2. In Table 2, the user story recycle dataset has the
most prominent similarity value, with a score of 0.16, so
the dataset can be reused compared to other datasets with
lower scores.

Table 2. Result of similarity score of application descriptions with
user story.

| App description | User story |Similarity score
0 daur recycling 0.161061
1 daur nsf 0.134181
2 daur culrepo 0.126633
3 daur neurohub 0.118156
4 daur rdadmp 0.112035
5 daur mis 0.099074
6 daur unibath 0.097821
7 daur alfred 0.092581
8 daur racdam 0.08904
9 daur openspending 0.089037

4.3.2. Testing the Dataset Filtering Method

To determine the number of user story datasets used and
which method is most appropriate for this study, an
experiment was carried out by comparing the results
from the system with the results of data retrieval from
the evaluator. The first step is to combine the data
obtained from nine evaluators. Merging is done by
taking the user story dataset labeled 1 (considered
relevant) by more than 50% of the nine evaluators. A
collection of combined user stories will be used as a
reference in this study’s appropriate method trials and
evaluation process. The retrieval of datasets in this test
uses 2, 5, and 10 datasets to make a significant difference
in test results.

4.3.3. Calculating the Accuracy and Success of the
Method

To find out the correct method for this study and the
number of datasets taken for the filtration process,
precision-recall and F1-scores were manually calculated
between the evaluator’s and the system’s results. The
result of this calculation can be seen in Table 3.

Table 3. Results of similarity score of application descriptions with user story.

. 2 Dataset 5 Dataset 10 Dataset
Project Methods Precision| Recall |F1-score|Precision| Recall | F1-score |Precision| Recall | F1-score
TF-IDF + noun phrase 0,5 1 0,667 0,2 1 0,333 0,1 1 0,182
Recycle YAKE 05 1 0,667 0,2 1 0,333 0,1 1 0,182
TF-IDF 0 0 0 0 0 0 01 1 0,182
TF-1DF + noun phrase 1 0,333 0,5 0,8 0,66 0,727 0,4 0,66 0,55
Archive YAKE 0 0 0 0,2 0,167 | 0,182 0,2 0,333 0,25
TF-IDF 0 0 0 0,2 0,167 | 0,182 0,2 0,333 0,25
TF-IDF + noun phrase 0,5 1 0,667 0,2 1 0,333 01 1 0,182
Alfred YAKE 0,5 1 0,667 0,2 1 0,333 01 1 0,182
TF-IDF 0 0 0 0 0 0 0 0 0

42 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

The recycle project uses the TF-IDF method for
nouns, according to Table 2. Using two datasets
produces a precision value of 0.5, a recall of 1, and an
Fl-score of 0.6667. This figure is obtained by
performing manual calculations by calculating the
results according to the evaluator with the output
generated by the system. Based on these three projects,
the TF-IDF weighting method based on noun extraction
produces the most significant value by taking two
datasets on the recycle and Alfred projects. Taking five
datasets has the most substantial value in the project
archive. The YAKE method produces the most
significant value based on noun extraction by taking two
recycle and Alfred projects datasets.

Furthermore, taking ten datasets has the most
substantial value in the project archive. The TF-IDF
weighting method based on noun extraction produces the
most significant value by taking ten datasets on the
Recycle and Archive projects. This method did not
identify datasets related to the application description in
the Alfred project. There is a difference in the number of
datasets used because, in the Recycle and Alfred
projects, the number of datasets considered relevant by
the evaluator is only one. Six datasets for the archive
dataset project are regarded as appropriate.

It can be concluded from the experimental results
above that the TF-IDF method with noun extraction is
the most appropriate compared to the other two methods.
The results of this filtration process are considerable
time efficiency, from 180-200 minutes to 30-45 minutes
(83.3% time saving), and reduced noise in irrelevant user
story datasets, so it is expected to increase the accuracy
of the system, which will be tested in the evaluation
section.

4.4. Finding Reusable User Stories

The fourth stage of this research is looking for reusable
user stories. The search for user stories that can be reused
is done by comparing each user story with the user story
extracted from the application description. This stage is
carried out in six steps: application description
extraction, sentence tokenization, data cleaning, POS
tagging, POS chunking, and calculating similarity.

4.4.1. Application Description Extraction

Application description will be extracted to obtain
software features by tokenizing sentences, cleaning data,
post tagging, heading chunking, case folding, word net
lemmatization, and deletion of stopwords. Tokenization
separates the application description, which is still one
text, into one sentence for one need. Tokenize on the app
description using the sent tokenize () function. Data
cleaning is done because the application description
contains many disturbing characters for the next stage.
These characters include punctuation at the end of words
and other irrelevant characters. Data cleaning is done by
calling the remove_punctuation () function. POS tagging

is an NLP function that automatically labels words in
sentences. POS tagging uses the POS-tag function in the
NLTK library for each review sentence iteration.
Chunking is done to group words or phrases in a
sentence into a new group called ‘chunks.” Chunking is
done by combining parts of speech with regular
expressions. The rules or rules used for chunking are
adjusted to what phrase or group of words needs to be
taken from a sentence. In this study, the rules used to
retrieve Software Features (SF) are contained in
Equation (6), where to obtain SF rules, Noun Phrase
(NC) rules are needed in Equation (3), Verbs (VERB) in
Equation (4), and Nouns (NP) in Equation (5).

(<> &)
{(< DT >*<JJ|JJS|JJR >*)? (< IN >+< NN|NNP|NNS|NNPS >) *}

VERB = {< VB|VBG|VBZ|VBD|VBN|VBP > +< IN >+} (4)
NP = {((NC > +<,>) *< NC >*< CC > +) *< NC|IN > +} (5)

SF:{(< VERB|(JJJJSUJR)|NP > +< DT >x ©)
< NP|(RB|RBR|RBS)|UJJJSUJR) > +)+}

4.4.2. Calculating Similarity

Similarity calculations are performed to determine
which user stories are related to feature extraction from
the application description. The data extracted from the
user story will be calculated for its proximity to the
results of the feature extraction data from the application
description. Proximity is assessed using the Cosine
similarity and Jaccard similarity methods. Suppose a
user story has a similarity value with a software feature
that exceeds a predetermined threshold. In that case, the
user story is considered to be related to the features in the
application description. User stories that have a
connection will be displayed in the results of user stories
that can be reused. To get the best results, trials were
carried out using three thresholds for each similarity
calculation method. Calculations were carried out using
the Cosine similarity method with 70%, 80%, and 90%,
and Jaccard similarity with 5%, 10%, and 15%
thresholds. The results of similarity calculations can be
seen in Table 4. The most considerable value in each
method is given a bold effect. The purpose of making
this system is to recommend to users which user stories
can be used. The expected recommendation is that the
data generated is quite a lot and varied but still has
minimal errors to produce information that is credible
and usable so that this system prioritizes recall but does
not ignore the value of precision so that in this study, the
F1-score is better used as a reference for finding the best
method.

Based on the results from Table 4, the best method
will refer to the average of the Fl-score, where avg
means the average of data that is O (irrelevant) and 1
(relevant). The F1-score is the harmonic average of the
precision and recall, in which the more significant the
F1-score means, the better the precision and recall
results; vice versa, the smaller the F1-score means, the
waorse the precision and recall results.

Enhancing Software Development Efficiency Through User Stories Reuse ... 43

Table 4. User story results that can be reused.

. 0 (not relevant) 1 (relevant) Average
Project Method . — —
Precision| Recall | F1-score |Precision| Recall | F1-score |Precision| Recall | F1-score
Cosine (0,7) 1.00 0.95 0.98 0.24 1.00 0.38 0.62 0.98 0.68
Cosine (0,8) 1.00 0.98 0.99 0.42 1.00 0.59 0.71 0.99 0.79
Recycle Cosine (0,9) 0.99 1.00 0.99 1.00 0.00 0.00 0.99 0.50 0.50
Jaccard (0,05) 1.00 0.01 0.02 0.01 1.00 0.03 0.51 0.50 0.02
Jaccard (0,1) 0.87 0.04 0.08 0.01 0.58 0.02 0.44 0.31 0.05
Jaccard (0,15) 0.83 0.05 0.10 0.00 0.21 0.01 0.41 0.13 0.05
Cosine (0,7) 0.95 0.87 0.91 0.45 0.67 0.54 0.70 0.77 0.72
Cosine (0,8) 0.95 0.99 0.97 0.94 0.67 0.79 0.95 0.83 0.88
Archive Cosine (0,9) 0.87 1.00 0.93 1.00 0.01 0.02 0.93 0.50 0.47
Jaccard (0,05) 0.75 0.05 0.09 0.13 0.90 0.22 0.44 0.47 0.16
Jaccard (0,1) 0.62 0.13 0.22 0.08 0.47 0.13 0.35 0.30 0.18
Jaccard (0,15) 0.63 0.17 0.26 0.06 0.35 0.10 0.34 0.26 0.18
Cosine (0,7) 1.00 0.91 0.95 0.15 1.00 0.27 0.58 0.96 0.61
Cosine (0,8) 1.00 1.00 1.00 0.76 0.96 0.85 0.88 0.98 0.92
Alfred Cosine (0,9) 0.98 1.00 0.99 1.00 0.00 0.00 0.99 0.50 0.50
Jaccard (0,05) 0.95 0.05 0.10 0.01 0.81 0.03 0.48 0.43 0.06
Jaccard (0,1) 0.89 0.10 0.17 0.00 0.27 0.01 0.45 0.18 0.09
Jaccard (0,15) 0.89 0.12 0.22 0.00 0.00 0.00 0.44 0.06 0.11

In the project recycle using the Cosine similarity
method, it has the best value at the threshold of 0.8 with
an average precision of 0.71, recall of 0.99, and F1-score
of 0.79. The formula is used in the equations below to
get this value. The first thing to do is to get each
precision-recall and Fl1-score from irrelevant (0) and
relevant (1) user stories. For irrelevant user stories with
1620 True Positives (TP), 0 False Positives (FP), and 33
False Negatives. For relevant user stories with 24 True
Positives (TP), 32 False Positives (FP) and 0 False
Negatives. After obtaining each precision, recall, and
F1-score, a macro average search is performed, namely
taking the average of each value. In the Cosine similarity
method, with a threshold of 0.8, the best value is in the
project archive, while at a threshold of 0.8, the best value
is in the Alfred project; for a threshold of 0.9, the best
value is in the recycle and Alfred projects. The Jaccard
similarity method produces the project archive’s best
value with a 0.05, 0.1, 0.15 threshold.

4.5. Discussion

This research begins with data collection, determining
the topic from the public user story dataset [9], which is
carried out for the search process for application
descriptions. The application descriptions are collected
by searching on the Google search engine with
predetermined topics. After obtaining the application
description, an online meeting process was carried out
using Google Meet with the evaluators. The meeting
began with the researchers’ explanation of the
background and purpose of this study, then continued by
dividing sheets using Google Docs containing user story
datasets and application description source links. The
evaluator’s annotation process takes seven days. After
seven days, the sheets were collected and then averaged.
If more than half (50%) of the evaluators chose the user
story, then the user story was considered relevant. At the
same time, during the annotation period from the

evaluator, the user story dataset and application
description are pre-processed.

This study has a limitation: when searching for user
stories related to software feature extraction, the system
runs for over three hours and has a reasonably low
evaluation result. This happens because the 22 user
story datasets contain 1677 user stories compared to
extraction software features of each application
description. So, an initial filtration process is needed,
which aims to find links between the application
description and the user story dataset. The experiment
was carried out using the three methods discussed in
sub-chapter 3.2 with the result that the user story dataset
is smaller in comparison, thereby increasing the
evaluation value and shortening the processing time.
The performance increase occurred because previously,
the user story dataset, which was compared with the
application description of 22, decreased to only two
datasets on the recycle and Alfred topics and five
datasets on the archive topic according to the results of
Table 3 so that the data compared was less and reduced
user stories irrelevant in the dataset. Feature extraction
is performed on application descriptions to identify
relevant software functionalities. However, application
descriptions vary significantly in structure and detail,
leading to potential inconsistencies in feature extraction.
While our approach provides a structured method for
extracting features, handling such variability remain
challenging. Future work could explore fine-tuning
transformer-based models or incorporating metadata-
based heuristics to improve the consistency and
accuracy of feature extraction across diverse application
descriptions.

After the filtration stage is executed, the next step is
to search for user stories that can be reused. This stage
begins by extracting the software features contained in
the application description. The application description
will be pre-processed, and the tagging and chunking
process will follow the specified rules. The results of this

44 The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

extraction will be searched for closeness to each user
story that has gone through the filtration process.
Experiments were carried out using two similarity
calculation methods, namely Cosine and Jaccard
similarity. The results of the closeness calculation will
be evaluated using a precision and recall test with the
annotation results from the evaluator. The method with
the most significant precision and recall test values will
be used at this stage. The evaluation results in Table 4
show that the Cosine similarity method with a threshold
of 0.8 is the most appropriate method for this study, with
F1-scores for each topic being 0.79, 0.88, and 0.92.

The results of this study indicate that the word
extraction method uses noun phrase extraction, as done
by Bakar et al. [2], combined with TF-IDF, can be used
as a filtration step compared to other methods tested in
this study, which were calculated using the precision and
recall test. Cosine and Jaccard similarity are methods
used to find closeness between two sentences [12]. In
this research, the methods used for filtration are TF-IDF
aimed at extracting frequently occurring words,
combining TF-IDF with the extraction of nouns found in
the user story dataset, and utilizing YAKE tools for
automated word extraction. While our approach
effectively identifies relevant user stories using Cosine
similarity and keyword extraction, we recognize that
more advanced NLP techniques, such as BERT-based
embedding, can improve semantic matching [8, 19].
These models take advantage of deep contextual
embedding, which can provide a deeper understanding
of user stories. This study prioritizes TF-IDF and Cosine
similarity due to their simplicity, interpretability, and
lower computational cost. Future work may explore
integrating transformer-based approaches to improve
accuracy and assess their feasibility in practical software
engineering applications.

This shows that this approach is practical for
improving the reuse task of user stories based on feature
extraction from application descriptions. One of the
limitations of this study is that the number of different
projects is relatively small (22). However, the dataset
contains a large number of user stories (1,677), which
provides a solid basis for pattern analysis. It is important
to be aware of the limitations of our datasets. Future
research should validate approaches on more diverse and
broad data sets to ensure their generalization across
multiple contexts. Therefore, the results presented in this
study should be interpreted as indicative, not conclusive.
The performance of the proposed method may differ
when applied to projects from different domains or with
different characteristics.

Given the diversity of topics in the user story dataset
used in this research, it is further suggested to seek
descriptions of other applications with different
relevance from the designated topic in this study. This
would lead to testing a broader range of user story
datasets.

Reusing requirements has been shown to improve
efficiency in software development [15, 22]. However,
adapting reused user stories across multiple domains
presents challenges due to terminology, context, and
variations in functional requirements. For example, user
stories from e-commerce may require significant
modifications when applied to healthcare. The ease of
adaptation depends on the similarities between the
original and target app descriptions-a closer match
simplifies the process, while significant differences
require more effort. Common adaptations include
terminology changes (e.g., “customer” in e-commerce
vs. “patient” in healthcare), feature modifications (e.g.,
a “checkout” process in retail that focuses on payments
vs. procurement that requires approval steps), and
structural refinements (e.g., adding restrictions or
details to fit the new domain). While these adjustments
help maintain relevance, the system cannot function
independently. The intervention of a system analyst is
essential, as the system provides recommendations
rather than fully automated solutions.

The study proposes an automated approach to filter
and extract reusable user stories to improve efficiency
in agile development. While our method improves
automation, we realize that direct comparisons with
traditional manual requirements collection or existing
tools can further validate its effectiveness. However, we
evaluated by involving experts and comparing the
recommended reusable user stories with expert
opinions. Future studies will explore such comparative
analyses to measure time efficiency and accuracy
improvements.

Several studies have investigated approaches to
enhance user story processing and reuse. A taxonomy-
based method has been introduced to support user story
reuse, offering a different strategy from NLP-based
techniques while aiming for similar improvements in
reusability [7]. Additionally, prior research has
emphasized the significance of NLP in automating user
story processing, mainly through models utilizing pre-
trained embeddings [23, 28]. This study aligns with
these advancements by employing feature extraction
and similarity measurements to identify reusable user
stories, contributing to the ongoing development of
NLP-driven requirements engineering. The proposed
method improves user story reuse and can be integrated
into agile workflows through backlog refinement, where
similar past user stories are identified and suggested
during requirement discussions [32]. However,
adopting this approach in industry presents challenges,
such as aligning with existing tools (e.g., Jira, Azure
DevOps) and addressing variations in user story
structuring across teams. Additionally, teams may
require training to effectively utilize automated
recommendations, and some stakeholders may be
hesitant to rely on automation in requirement elicitation.
Addressing these challenges will be crucial for the
broader adoption of this approach.

Enhancing Software Development Efficiency Through User Stories Reuse ... 45

5. Conclusions

The main contribution of this study is the development
and validation of an NLP-based approach for reusing
user stories from application descriptions in software
requirement elicitation to enhance cost and time
efficiency in software development. The findings of this
study confirm that reusing user stories based on feature
extraction from application descriptions using Cosine
similarity with an 80% threshold is an effective method
for improving time and cost efficiency in software
development. The proposed NLP-based approach, which
employs POS tagging and similarity measurement,
demonstrated its feasibility by achieving high precision
(84%), recall (93%), and F1-score (86%) across three
test projects. Specifically, the method achieved
precision, recall, and F1-scores of 0.71, 0.99, and 0.79
for Recycle; 0.95, 0.83, and 0.88 for Archive; and 0.88,
0.98, and 0.92 for Alfred, confirming its alignment with
system design requirements. These results validate the
effectiveness of the Cosine similarity method in
identifying and reusing user stories, making it a viable
solution for improving efficiency in the software
requirement elicitation process.

Acknowledgment

This work was supported by Universitas Airlangga
under Airlangga Research Fund (ARF) Batch 2 2025,
Grand number 3005/B/UN3.LPPM/PT.01.03/2025.

References

[1] Al F., Usman M., Abrar M., Rahman S., and et al.,
“Practices of Motivators in Adopting Agile
Software Development at Large Scale
Development Team from Management
Perspective,” Electronics, vol. 10, no. 19. 2021.
DOI: 10.3390/electronics10192341

[2] Bakar N., Kasirun Z., Salleh N., and Jalab H.,
“Extracting Features from Online Software
Reviews to Aid Requirements Reuse,” Applied
Soft Computing, vol. 49, pp. 1297-1315, 2016.
DOI: 10.1016/j.as0¢.2016.07.048

[3] Buglione L. and Abran A., “Improving the User
Story Agile Technique Using the INVEST
Criteria,” in Proceedings of the 23" Joint
Conference of International Workshop on
Software Measurement and the 8" International
Conference on Software Process and Product
Measurement, Ankara, pp. 49-53, 2013. DOL:
10.1109/IWSM-Mensura.2013.18

[4] Cico O., Jaccheri L., Nguyen-Duc A., and Zhang
H., “Exploring the Intersection between Software
Industry and Software Engineering Education-A
Systematic Mapping of Software Engineering
Trends,” Journal of Systems and Software, vol.
172, pp- 110736, 2021. DOI:
https://doi.org/10.1016/j.jss.2020.110736

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Dalpiaz F., Requirements Data Sets (User Stories),

Mendeley Data,
http://doi.org/10.17632/7zbk8zsd8y.1, Last
Visited, 2024.

Dalpiaz F. and Brinkkemper S., “Agile

Requirements Engineering with User Stories,” in
Proceedings of the IEEE 26" International
Requirements Engineering Conference, Banff, pp.
506-507, 2018. DOI: 10.1109/RE.2018.00075
Dilorenzo E., Dantas E., Perkusich M., Ramos F.,
and et al., “Enabling the Reuse of Software
Development Assets Through a Taxonomy for
User Stories,” IEEE Access, vol. 8, pp. 107285-
107300, 2020. DOLI:
10.1109/ACCESS.2020.2996951

Fahmi F. and Pratiwi A.,, “Identifying Sentiment
in User Reviews of Get Contact Application Using
Natural Language Processing,” in Proceedings of
the International Seminar on Application for
Technology of Information and Communication
(iSemantic), Semarang, pp. 428-433. DOL:
10.1109/iSemantic63362.2024.10762453

Gunes T. and Aydemir F., “Automated Goal Model
Extraction from User Stories Using NLP,” in
Proceedings of the IEEE 28" International
Requirements Engineering Conference, Zurich,
pp. 382-387, 2020. DOI:
10.1109/RE48521.2020.00052

Halme E., Jantunen M., Vakkuri V., Kemell K.,
and Abrahamsson P., “Making Ethics Practical:
User Stories as a Way of Implementing Ethical
Consideration in Software Engineering,”
Information and Software Technology, vol. 167,
pp. 1-37, 2024. DOLI:
10.1016/j.infsof.2023.107379

IEEE Standards Association, IEEE Standard for
Information Technology-System and Software
Life Cycle Processes-Reuse Processes, IEEE
Stand, https://standards.ieee.org/icee/1517/4603/,
Last Visited, 2024.

Jain A., Jain A., Chauhan N., Singh V., and Thakur
N., “Information Retrieval Using Cosine and
Jaccard Similarity Measures in Vector Space
Model,” International Journal of Computer
Applications, vol. 164, no. 6, pp. 28-30, 2017.
DOI: 10.5120/ijca2017913699

Jiang H., Ma H., Ren Z., Zhang J., and Li X,
“What Makes a Good App Description?,” in
Proceedings of the 6™ Asia-Pacific Symposium on
Internetware on Internetware, Hong Kong, pp. 45-
53,2014. DOI: 10.1145/2677832.2677842
Johann T., Stanik C., Alizadeh A., and Maalej W.,
“SAFE: A Simple Approach for Feature
Extraction from App Descriptions and App
Reviews,” in Proceedings of the IEEE 25"
International Requirements Engineering
Conference, Lisbon, pp. 21-30, 2017. DOL:
10.1109/RE.2017.71

https://doi.org/10.1016/j.jss.2020.110736
http://doi.org/10.17632/7zbk8zsd8y.1
https://standards.ieee.org/ieee/1517/4603/

46

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

The International Arab Journal of Information Technology, Vol. 23, No. 1, January 2026

Khan M., Saadatmand M., Enoiu E., Sundamark
D., and Lindskog C., Automated Reuse
Recommendation of Product Line Assets Based on
Natural Language Requirements, Reuse in
Emerging Software Engineering Practices, 2020.
https://doi.org/10.1007/978-3-030-64694-3 11
Kuhrmann M., Tell P., Hebig R., Klunder J., and
et al., “What Makes Agile Software Development
Agile?,” IEEE Transactions on Software
Engineering, vol. 48, no. 9, pp. 3523-3539, 2022.
DOI: 10.1109/TSE.2021.3099532

Lee W. and Chen C., “Agile Software
Development and Reuse Approach with Scrum
and Software Product Line Engineering,”
Electronics, vol. 12, no. 15, pp. 3291, 2023. DOL:
10.3390/electronics12153291

Lucassen G., Dalpiaz F., Werf J., and Brinkkemper
S., “Improving Agile Requirements: The Quality
User Story Framework and Tool,” Requirements
Engineering, vol. 21, no. 3, pp. 383-403, 2016.
DOI: 10.1007/s00766-016-0250-x

Molla Y., Alemneh E., and Yimer S., “COSMIC-
Based Early Software Size Estimation Using Deep
Learning and Domain-Specific BERT,” [EEE
Access, vol. 13, pp. 28463-28475, 2025. DOI:
10.1109/ACCESS.2025.3540548

Muhamad F., Hamid S., Subramaniam H., Abdul
Rashid R., and Fahmi F., “Fault-Prone Software
Requirements Specification Detection Using
Ensemble Learning for Edge/Cloud
Applications,” Applied Sciences, vol. 13, no. 14,
pp- 8368, 2023. DOI: 10.3390/app13148368
O’hEocha C. and Conboy K., “The Role of the
User Story Agile Practice in Innovation,” Lecture
Notes in Business Information Processing, vol. 65,
pp- 20-30,2010. DOI: 10.1007/978-3-642-16416-
33

Pirzadeh H., Oliveira A., and Shanian S., “ReUse:
A Recommendation System for Implementing
User Stories,” in Proceedings of the 11"
International Conference on Software
Engineering Advances, Montreal, pp. 149-153,
2016.

file:///C:/Users/acit2k/Downloads/icsea 2016 6
20 10100%20(1).pdf

Raharjana 1., Siahaan D., and Fatichah C., “User
Stories and Natural Language Processing: A
Systematic Literature Review,” IEEE Access, vol.
9, pp- 53811-53826, 2021. DOL:
10.1109/ACCESS.2021.3070606

Resketi M., Motameni H., Nematzadeh H., and
Akbari E., “Automatic Summarising of User
Stories in Order to be Reused in Future Similar
Projects,” IET Sofiware, vol. 14, no. 6, pp. 711-
723, 2020. DOI: 10.1049/iet-sen.2019.0182
Sabahat N., Igbal F., Azam F., and Javed M., “An
Iterative Approach for Global Requirements
Elicitation: A Case Study Analysis,” in

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Proceedings of the International Conference on
Electronics and Information Engineering, Kyoto,
pp- 361-366, 2010. DOLI:
10.1109/ICEIE.2010.5559859

Salazar G., Mora M., Limon H., Rodriguez F., and
Zavala A., “Review of Agile SDLC for Big Data
Analytics Systems in the Context of Small
Organizations Using Scrum-XP,” The
International Arab Journal of Information
Technology, vol. 21, no. 6, pp. 1089-1110, 2024.
DOI: 10.34028/iajit/21/6/12

Schots M., “On the Use of Visualization for
Supporting Software Reuse,” in Proceedings of
the 36™ International Conference on Software
Engineering, Hyderabad, pp. 694-697,2014. DOL:
10.1145/2591062.2591095

Scoggin S. and Neto H., “Identifying Valid User
Stories Using BERT Pre-Trained Natural
Language Models,” Information Systems and
Technologies, pp- 167-177, 2024.
https://doi.org/10.1007/978-3-031-45648-0 17
Sharma S. and Pandey S., “Requirements
Elicitation: Issues and Challenges,” in
Proceedings of the International Conference on
Computing for Sustainable Global Development,
New Delhi, pp. 151-155, 2014. DOL:
10.1109/IndiaCom.2014.6828119

Siahaan D., Raharjana 1., and Fatichah C., “User
Story Extraction from Natural Language for
Requirements Elicitation: Identify Software-
Related Information from Online News,”
Information and Software Technology, vol. 158,
pp- 107195, 2023. DOL:
10.1016/j.infs0f.2023.107195

Suali A., Fauzi S., Nasir M., Sobri W., and
Raharjana 1., “Software Quality Measurement in
Software Engineering Project: A Systematic
Literature Review,” Journal of Theoretical and
Applied Information Technology, vol. 97, no. 3,
pp. 918-929, 2019.
https://www.jatit.org/volumes/Vol97No3/18Vol97
No3.pdf

Suganya R., Banerjee D.,
Subbulakshmi T., and Subramanian
“Enhancing Agile Development in Tech
Companies: Backlog Management, Tool
Integration, and Stakeholder Collaboration,” in
Proceedings of the 6™ International Conference
on Recent Trends in Advance Computing,
Chennai, pp- 718-724, 2023. DOI:
10.1109/ICRTAC59277.2023.10480864

Tam C., Moura E., Oliveira T., and Varajdo J.,
“The Factors Influencing the Success of on-Going
Agile Software Development Projects,”
International Journal of Project Management,
vol. 38, no. 3, pp. 165-176, 2020. DOL:
10.1016/j.ijproman.2020.02.001

Tariq S., Ibrahim A., Usama A., and Shahbaz M.,

Mishra A.,
G,

https://doi.org/10.1007/978-3-030-64694-3_11
file:///C:/Users/acit2k/Downloads/icsea_2016_6_20_10100%20(1).pdf
file:///C:/Users/acit2k/Downloads/icsea_2016_6_20_10100%20(1).pdf
https://doi.org/10.1007/978-3-031-45648-0_17
https://www.jatit.org/volumes/Vol97No3/18Vol97No3.pdf
https://www.jatit.org/volumes/Vol97No3/18Vol97No3.pdf

Enhancing Software Development Efficiency Through User Stories Reuse ... 47

[35]

[36]

[37]

[38]

[39]

[40]

“An Overview of Requirements Elicitation
Techniques in Software Engineering with a Focus
on Agile Development,” in Proceedings of the 4™
International Conference on Computing and
Information Sciences, Karachi, pp. 1-6, 2021.
DOI: 10.1109/ICCIS54243.2021.9676192
Thamrongchote C. and Vatanawood W., “Business
Process Ontology for Defining User Story,” in
Proceedings of the IEEE/ACIS 15" International
Conference on Computer and Information
Science, Okayama, pp. 3-6, 2016. DOI:
10.1109/ICIS.2016.7550829

Trisnawati E., Raharjana I., Taufik T., Basori A.,
and et al., “Analyzing Variances in User Story
Characteristics: A Comparative Study of
Stakeholders with Diverse Domain and Technical
Knowledge in Software Requirements
Elicitation,” [Information Systems Engineering
and Business Intelligence, vol. 10, no. 1, pp. 110-
125, 2024. DOI: 10.20473/jisebi.10.1.110-125
Wang Y., Wang J., Zhang H., Ming X., and et al.,
“Where is your App Frustrating Users?,” in
Proceedings of the 44™ International Conference
on Software Engineering, New York, pp. 2427-
2439, 2022. DOI: 10.1145/3510003.3510189

Wu H., Deng W., Niu X., and Nie C., “Identifying
Key Features from App User Reviews,” in
Proceedings of the IEEE/ACM 43" International
Conference on Software Engineering, Madrid, pp.
922-932, 2021. DOI:
10.1109/ICSE43902.2021.00088.

Zainal D., Razali R., and Mansor Z., “Team
Formation for Agile Software Development-
Crowdsourcing-based Empirical Study,” Journal
of Advanced Research in Applied Sciences and
Engineering Technology, vol. 34, no. 2, pp. 133-
143, 2024. DOI: 10.37934/araset.34.2.133143
Zowghi D. and Coulin C., Engineering and
Managing Software Requirements, Springer
Nature, 2005. https://doi.org/10.1007/3-540-
28244-0_2

Indra Kharisma Raharjana is an
Associate Professor at Universitas
Airlangga. He holds degrees from
Institut Teknologi Sepuluh Nopember

\ and Institut Teknologi Bandung. His
‘% research focuses on software
engineering and natural language

processing. He is Editor-in-Chief of the Journal of
Information Systems Engineering and Business
Intelligence and an active member of CASE, IEEE,
ACM, INACL, and AISINDO.

Avril Hermawan received a
bachelor’s degree in information
systems from the Universitas
Airlangga, Indonesia, in 2023. He
currently works as a digital product

VAR campaign specialist at PT. Bank

v LA Tabungan Negara (BTN). His
professional interests include Digital Marketing, Digital
Product Management, and User Experience.

Badrus Zaman is a lecturer in the
information systems study program at
Universitas Airlangga. He received a
bachelor’s degree in informatics
engineering from the Institut
Teknologi Sepuluh Nopember,
AT e Indonesia, in 2005, and a master’s
degree in computer science from the Universitas Gadjah
Mada, Indonesia, in 2011. His research interests Cover
Information Systems and Natural Language Processing.

Shukor Sanim Mohd Fauzi is a
Senior Lecturer at the Faculty of
Computer and Mathematical
Sciences, Universiti ~ Teknologi
MARA. He holds degrees from
UiTM, Universiti Teknologi
Malaysia, and a Ph.D. in Software
Engineering from UNSW. His research interests include
Software Engineering, Empirical Studies, Software
Repository Mining, Social Network Analysis, Socio-
Technical Congruence, and Collaborative Software
Processes.

https://doi.org/10.1007/3-540-28244-0_2
https://doi.org/10.1007/3-540-28244-0_2

