The International Arab Journal of Information Technology (IAJIT)

..............................
..............................
..............................


Nature-Inspired Metaheuristic Algorithms: A Comprehensive Review

Recently, the Metaheuristic Algorithms (MAs) field has seen a noteworthy rise in proposed Algorithms. MAs have been picking up ubiquity in a long time due to their capacity to fathom complex optimization issues in different areas, including building, funds, healthcare, and transportation. These Algorithms are based on heuristic methodologies that mirror the behaviour of normal frameworks. For occasion, developmental forms, swarm insights, and mimicked strengthening, among others, this audit presents the foremost productive later algorithms. As well as highlight the instruments and highlights (investigation look procedure, abuse look procedure, and differing qualities) of each algorithm. Moreover, an explanatory investigation has been conducted to show the productivity of each algorithm. This audit will permit interested analysts to select a suitable algorithm to illuminate their issues. In expansion, it'll help the analysts who are looking to propose a recent algorithm.

[1] Abdel-Basset M., Mohamed R., and Abouhawwash M., “Crested Porcupine Nature-Inspired Metaheuristic Algorithms: A Comprehensive Review 827 Optimizer: A New Nature-Inspired Metaheuristic,” Knowledge-Based Systems, vol. 284, pp. 111257, 2024. https://doi.org/10.1016/j.knosys.2023.111257

[2] Abdel-Basset M., Mohamed R., Jameel M., and Abouhawwash M., “Nutcracker Optimizer: A Novel Nature- Inspired Metaheuristic Algorithm For Global Optimization and Engineering Design Problems,” Knowledge-Based Systems, vol. 262, pp. 110248, 2023. https://doi.org/10.1016/j.knosys.2022.110248

[3] Abdollahzadeh B., Gharehchopogh F., and Mirjalili S., “African Vultures Optimization Algorithm: A New Nature-Inspired Metaheuristic Algorithm For Global Optimization Problems,” Computers an Industrial Engineering, vol. 158, pp. 107408, 2021. https://doi.org/10.1016/j.cie.2021.107408

[4] Abdollahzadeh B., Gharehchopogh F., and Mirjalili S., “Artificial Gorilla Troops Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems,” International Journal of Intelligent Systems, vol. 36, no. 10, pp. 5887-5958, 2021. https://doi.org/10.1002/int.22535

[5] Abdollahzadeh B., Gharehchopogh F., Khodadadi N., and Mirjalili S., “Mountain Gazelle Optimizer: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems,” Advances in Engineering Software, vol. 174, pp. 103282, 2022. https://doi.org/10.1016/j.advengsoft.2022.103282

[6] Abualigah L., Abd-Elaziz M., Sumari P., Geem Z. W., and Gandomi A., “Reptile Search Algorithm (RSA): A Nature-Inspired Meta-Heuristic Optimizer,” Expert Systems with Applications, vol. 191, pp. 116158, 2022. https://doi.org/10.1016/j.eswa.2021.116158

[7] Abualigah L., Alsalibi B., Shehab M., Alshinwan M., Khasawneh A., and Alabool H., “A Parallel Hybrid Krill Herd Algorithm for Feature Selection,” International Journal of Machine Learning and Cybernetics, vol. 12, pp. 783–806, 2020. https://doi.org/10.1007/s13042-020-01202- 7

[8] Abualigah L., Al-zyod M., Ikotun A., Shehab M., and Otair M., “A Review of Krill Herd Algorithm: Optimization and Its Applications,” Metaheuristic Optimization Algorithms, pp. 231-239, 2024. DOI:10.1016/b978-0-443-13925-3.00017-0

[9] Abualigah L., Diabat A., Mirjalili S., Abd-Elaziz M., and Gandomi A., “The Arithmetic Optimization Algorithm,” Computer Methods in Applied Mechanics and Engineering, vol. 376, pp. 113609, 2021. https://doi.org/10.1016/j.cma.2020.113609

[10] Abualigah L., Elaziz M., Shehab M., Alomary O., and Alshinwan M., “Hybrid Harris Hawks Optimization with Differential Evolution for Data Clustering,” Studies in computational intelligence, pp. 267-299, 2021. https://doi.org/10.1007/978-3- 030-70542-8_12

[11] Abualigah L., Elkhalaifa L., Ikotun A., AL-Saqqar F., and El-Bashir M., “Gradient-Based Optimizer: Analysis and Application of the Berry Software Product,” Metaheuristic Optimization Algorithms, pp. 221-229. 2024. DOI:10.1016/b978-0-443- 13925-3.00002-9

[12] Abualigah L., Yousri D., Abd-Elaziz M., Ewees A., and Al-Qaness M., “Aquila Optimizer: A Novel Meta-Heuristic Optimization Algorithm,” Computers and Industrial Engineering, vol. 157, pp. 107250, 2021. https://doi.org/10.1016/j.cie.2021.107250

[13] Abu-Hashem M., Gutub A., Salem O., Shambour M., and Shambour Q., “Discrepancies of Remote Techno-Tolerance Due to COVID-19 Pandemic Within Arab Middle-East Countries,” Journal of Umm Al-Qura University for Engineering and Architecture, vol. 14, no. 3, pp. 151-165, 2023. https://doi.org/10.1007/s43995-023-00026-0

[14] Agushaka J., Ezugwu A., and Abualigah L., “Gazelle Optimization Algorithm: A Novel Nature-Inspired Metaheuristic Optimizer”. Neural Computing and Applications, vol. 35, no. 5, pp. 4099-4131, 2023. https://doi.org/10.1007/s00521- 022-07854-6

[15] Ahmadianfar I., Bozorg-Haddad O., and Chu X., “Gradient-Based Optimizer: A New Metaheuristic Optimization Algorithm,” Information Sciences, vol. 540, pp. 131-159, 2020. https://doi.org/10.1016/j.ins.2020.06.037

[16] Ahmadianfar I., Heidari A., Gandomi A., Chu X., and Chen H., “Run Beyond the Metaphor: An Efficient Optimization Algorithm Based On Runge Kutta Method,” Expert Systems with Applications, vol. 181, pp. 115079, 2021. https://doi.org/10.1016/j.eswa.2021.115079

[17] Ahmed M., Sulaiman M., Mohamad A., and Rahman M., “Gooseneck Barnacle Optimization Algorithm: A Novel Nature Inspired Optimization Theory and Application,” Mathematics and Computers in Simulation, vol. 218, pp. 248-265, 2024. https://doi.org/10.1016/j.matcom.2023.10.006

[18] Al-Betar M., Awadallah M., Braik M., Makhadmeh S., and Doush I., “Elk Herd Optimizer: A Novel Nature-Inspired Metaheuristic Algorithm,” Artificial Intelligence Review, vol. 57, no. 3, 2024. https://doi.org/10.1007/s10462-023- 10680-4

[19] Alsattar H., Zaidan A., and Zaidan B., “Novel Meta-Heuristic Bald Eagle Search Optimisation Algorithm,” Artificial Intelligence Review, vol. 53, pp. 2237-2264, 2020. https://doi.org/10.1007/s10462-019-09732-5

[20] AlShorman A., Shannaq F., and Sheha M., “Machine Learning Approaches for Enhancing 828 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024 Smart Contracts Security: A Systematic Literature Review,” International Journal of Data and Network Science, vol. 8, no. 3, pp. 1349-1368, 2024. DOI:10.5267/j.ijdns.2024.4.007

[21] Amiri M., Hashjin N., Montazeri M., Mirjalili S., and Khodadadi N., “Hippopotamus Optimization Algorithm: A Novel Nature-Inspired Optimization Algorithm,” Scientific Reports, vol. 14, pp. 5032, 2023. https://doi.org/10.1038/s41598-024-54910-3

[22] Anaraki M. and Farzin S., “Humboldt Squid Optimization Algorithm (HSOA): A Novel Nature-Inspired Technique for Solving Optimization Problems,” IEEE Access, vol. 11, pp. 122069-122115, 2023. DOI:10.1109/ACCESS.2023.3328248

[23] Arora S. and Singh S., “Butterfly Optimization Algorithm: A Novel Approach for Global Optimization,” Soft Computing, vol. 23, pp. 715- 734, 2019. https://doi.org/10.1007/s00500-018- 3102-4

[24] Ayyarao T., Ramakrishna N., Elavarasan R., Polumahanthi N., and Rambabu M., “War Strategy Optimization Algorithm: A New Effective Metaheuristic Algorithm for Global Optimization,” IEEE Access, vol. 10, pp. 25073- 25105, 2022. DOI:10.1109/ACCESS.2022.3153493

[25] Bharat R., Ikotun A., Ezugwu A., Abualigah L., and Shehab M., “A Real-Time Automatic Pothole Detection System Using Convolution Neural Networks,” Applied and Computational Engineering, vol. 6, no. 1, pp. 750-757, 2023. DOI:10.54254/2755-2721/6/20230948

[26] Brammya G., Praveena S., Ninu Preetha N., Ramya R., and Rajakumar B., “Deer Hunting Optimization Algorithm: A New Nature-Inspired Meta-Heuristic Paradigm,” The Computer Journal, vol. 24, no. 2, 2019. https://doi.org/10.1093/comjnl/bxy133

[27] Dalirinia E., Jalali M., Yaghoobi M., and Tabatabaee H., “Lotus Effect Optimization Algorithm (LEA): A Lotus Nature-Inspired Algorithm for Engineering Design Optimization,” The Journal of Supercomputing, vol. 80, pp. 761- 799, 2023. https://doi.org/10.1007/s11227-023- 05513-8

[28] Dehghani M., Bektemyssova G., Montazeri Z., Shaikemelev G., and Malik O., “Lyrebird Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems,” Biomimetics, vol. 8, no. 6, pp. 507, 2023. https://doi.org/10.3390/biomimetics8060507

[29] Dehghani M., Montazeri Z., Bektemyssova G., Malik O., and Dhiman G., “Kookaburra Optimization Algorithm: A New Bio-Inspired Metaheuristic Algorithm for Solving Optimization Problems,” Biomimetics, vol. 8, no. 6, pp. 470, 2023. https://doi.org/10.3390/biomimetics8060470

[30] El-kenawy E., Khodadadi N., Mirjalili S., Abdelhamid A., and Eid M., “Greylag Goose Optimization: Nature-Inspired Optimization Algorithm,” Expert Systems with Applications, vol. 238, pp. 122147, 2024. https://doi.org/10.1016/j.eswa.2023.122147

[31] Faramarzi A., Heidarinejad M., Mirjalili S., and A. Gandomi H., “Marine Predators Algorithm: A Nature-Inspired Metaheuristic,” Expert Systems with Applications, vol. 152, pp. 113377, 2020. https://doi.org/10.1016/j.eswa.2020.113377

[32] Faramarzi A., Heidarinejad M., Stephens B., and Mirjalili S., “Equilibrium Optimizer: A Novel Optimization Algorithm,” Knowledge-Based Systems, vol. 191, pp. 105190, 2020. https://doi.org/10.1016/j.knosys.2019.105190

[33] Fathollahi-Fard A., Hajiaghaei-Keshteli M., and Tavakkoli-Moghaddam R., “Red Deer Algorithm (RDA): A New Nature-Inspired Meta-Heuristic,” Soft Computing, vol. 24, pp. 14637-14665, 2020. DOI:10.1007/s00500-020-04812-z

[34] Ghafil H. and Jármai K., “Dynamic Differential Annealed Optimization: New Metaheuristic Optimization Algorithm for Engineering Applications,” Applied Soft Computing, vol. 93, pp. 106392, 2020. https://doi.org/10.1016/j.asoc.2020.106392

[35] Hamad H. and Shehab M., “Integrated Multi- Layer Perceptron Neural Network and Novel Feature Extraction for Handwritten Arabic Recognition,” International Journal of Data and Network Science, vol. 8, no. 3, pp. 1501-1516, 2024. DOI:10.5267/j.ijdns.2024.3.015

[36] Han M., Du Z., Yuen K., Zhu H., and Li Y., “Walrus Optimizer: A Novel Nature-Inspired Meta-Heuristic Algorithm,” Expert Systems with Applications, vol. 239, pp. 122413, 2024. https://doi.org/10.1016/j.eswa.2023.122413

[37] Harifi S., Khalilian M., Mohammadzadeh J., and Ebrahimnejad S., “Emperor Penguins Colony: A New Meta-Heuristic Algorithm for Optimization,” Evolutionary Intelligence, vol. 12, vol. 211-226, 2019. https://doi.org/10.1093/comjnl/bxy133

[38] Hashim F. and Hussien A., “Snake Optimizer: A Novel Meta-Heuristic Optimization Algorithm,” Knowledge-Based Systems, vol. 242, pp. 108320, 2022. https://doi.org/10.1016/j.knosys.2022.108320

[39] Hashim F., Houssein E., Hussain K., Mabrouk M., and Al-Atabany W., “Honey Badger Algorithm: New Metaheuristic Algorithm for Solving Optimization Problems,” Mathematics and Computers in Simulation, vol. 192, pp. 84-110, 2022. https://doi.org/10.1016/j.matcom.2021.08.013

[40] Hashim F., Hussain K., Houssein E., Mabrouk M., and Al-Atabany W., “Archimedes Optimization Algorithm: A New Metaheuristic Algorithm for Solving Optimization Problems,” Applied Intelligence, vol. 51, pp. 1531-1551, 2021. Nature-Inspired Metaheuristic Algorithms: A Comprehensive Review 829 https://doi.org/10.1007/s10489-020-01893-z

[41] Hayyolalam V. and Kazem A., “Black Widow Optimization Algorithm: A Novel Meta-Heuristic Approach for Solving Engineering Optimization Problems,” Engineering Applications of Artificial Intelligence, vol. 87, pp. 103249, 2020. https://doi.org/10.1016/j.engappai.2019.103249

[42] Hu G., Guo Y., Wei G., and Abualigah L., “Genghis Khan Shark Optimizer: A Novel Nature- Inspired Algorithm for Engineering Optimization,” Advanced Engineering Informatics, vol. 58, pp. 102210, 2023. https://doi.org/10.1016/j.aei.2023.102210

[43] Hu G., Yang R., Qin X., and Wei G., “MCSA: Multi-Strategy Boosted Chameleon-Inspired Optimization Algorithm for Engineering Applications,” Computer Methods in Applied Mechanics and Engineering, vol. 403, pp. 115676, 2023. https://doi.org/10.1016/j.cma.2022.115676

[44] Jindal R. and Singla S., “Latent Fingerprint Recognition using Hybrid Ant Colony Optimization and Cuckoo Search,” The International Arab Journal of Information Technology, vol. 20, no. 1, pp. 19-28, 2023. https://doi.org/10.34028/iajit/20/1/3

[45] Kallioras N., Lagaros N., and Avtzis D., “Pity Beetle Algorithm-A New Metaheuristic Inspired by The Behavior of Bark Beetles,” Advances in Engineering Software, vol. 121, pp. 147-166, 2018. https://doi.org/10.1016/j.advengsoft.2018.04.007

[46] Kaur S., Awasthi L., Sangal A., and Dhiman G., “Tunicate Swarm Algorithm: A New Bio-Inspired Based Metaheuristic Paradigm for Global Optimization,” Engineering Applications of Artificial Intelligence, vol. 90, pp. 103541, 2020. https://doi.org/10.1016/j.engappai.2020.103541

[47] Kaveh A. and Eslamlou A., “Water Strider Algorithm: A New Metaheuristic and Applications,” Structures, vol. 25, pp. 520-541. Elsevier, 2020. https://doi.org/10.1016/j.istruc.2020.03.033

[48] Kaveh A. and Zaerreza A., “Shuffled Shepherd Optimization Method: A New Meta-Heuristic Algorithm,” Engineering Computations, vol. 37, no. 7, pp. 2357-2389, 2020. https://doi.org/10.1108/EC-10-2019-0481

[49] Kaveh A., Khanzadi M., and Moghaddam M., “Billiards-Inspired Optimization Algorithm; A New Meta- Heuristic Method,” Structures, vol. 27, pp. 1722-1739. 2020. https://doi.org/10.1016/j.istruc.2020.07.058

[50] Khishe M. and Mosavi M., “Chimp Optimization Algorithm,” Expert Systems with Applications, vol. 149, pp. 113338, 2020. https://doi.org/10.1016/j.eswa.2020.113338

[51] Kumar N., Singh N., and Vidyarthi D., “Artificial Lizard Search Optimization (ALSO): A Novel Nature-Inspired Meta-Heuristic Algorithm,” Soft Computing, vol. 25, no. 8, pp. 6179-6201, 2021. https://doi.org/10.1007/s00500-021-05606-7

[52] Majumder A., “Termite Alate Optimization Algorithm: A Swarm-Based Nature Inspired Algorithm for Optimization Problems,” Evolutionary Intelligence, vol. 16, no. 3, 997-1017, 2023. https://doi.org/10.1007/s12065-022-00714-1

[53] Masadeh R., Mahafzah B., and Sharieh A., “Sea Lion Optimization Algorithm,” International Journal of Advanced Computer Science and Applications, vol. 10, no. 5, pp. 388-395, 2019. DOI:10.14569/IJACSA.2019.0100548

[54] Moazzeni A. R. and Khamehchi E., “Rain Optimization Algorithm (ROA): A New Metaheuristic Method for Drilling Optimization Solutions,” Journal of Petroleum Science and Engineering, vol. 195, pp. 107512, 2020. https://doi.org/10.1016/j.petrol.2020.107512

[55] Mohammadi-Balani A., Nayeri M., Azar A., and Taghizadeh-Yazdi M., “Golden Eagle Optimizer: A Nature-Inspired Metaheuristic Algorithm,” Computers and Industrial Engineering, vol. 152, pp. 107050, 2021. https://doi.org/10.1016/j.cie.2020.107050

[56] Mohammed H. and Rashid T., “Fox: A Fox- Inspired Optimization Algorithm,” Applied Intelligence, vol. 53, no. 1, pp. 1030-1050, 2023. https://doi.org/10.1007/s10489-022-03533-0

[57] Mousavirad S. and Ebrahimpour-Komleh H., “Human Mental Search: A New Population-Based Metaheuristic Optimization Algorithm,” Applied Intelligence, vol. 47, pp. 850-887, 2017. https://doi.org/10.1007/s10489-017-0903-6

[58] Muthulakshmi M. and Murugeswari G., “A Hybrid Grey Wolf-Whale Optimization Algorithm for Classification of Corona Virus Genome Sequences Using Deep Learning,” The International Arab Journal of Information Technology, vol. 20, no. 3, pp. 331-339, 2023. https://doi.org/10.34028/iajit/20/3/5.

[59] Naruei I. and Keynia F., “Wild Horse Optimizer: A New Meta-Heuristic Algorithm for Solving Engineering Optimization Problems,” Engineering with Computers, vol. 38, pp. 3025-3056, 2022. https://doi.org/10.1007/s00366-021-01438-z

[60] Oyelade O., Ezugwu A., Mohamed T., and Abualigah L., “Ebola Optimization Search Algorithm: A New Nature-Inspired Metaheuristic Optimization Algorithm,” IEEE Access, vol. 10, pp. 16150-16177, 2022. DOI:10.1109/ACCESS.2022.3147821

[61] Pierezan J. and Coelho L., “Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems,” IEEE Congress on Evolutionary Computation (CEC), pp. 1-8, 2018. https://doi.org/10.1016/j.knosys.2022.108320

[62] Priyadarshini I., “Dendritic Growth Optimization: 830 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024 A Novel Nature-Inspired Algorithm for Real- World Optimization Problems,” Biomimetics, vol. 9, no. 3, pp. 130, 2024. https://doi.org/10.3390/biomimetics9030130

[63] Qais M., Hasanien H., and Alghuwainem S., “Transient Search Optimization: A New Meta- Heuristic Optimization Algorithm,” Applied Intelligence, vol. 50, pp. 3926-3941, 2020. https://doi.org/10.1007/s10489-020-01727-y

[64] Qi X., Zhu Y., and Zhang H., “A New Meta- Heuristic Butterfly-Inspired Algorithm,” Journal of Computational Science, vol. 23, pp. 226-239, 2017. https://doi.org/10.1016/j.jocs.2017.06.003

[65] Shayanfar H. and Gharehchopogh F., “Farmland Fertility: A New Metaheuristic Algorithm for Solving Continuous Optimization Problems,” Applied Soft Computing, vol. 71, pp. 728-746, 2018. https://doi.org/10.1016/j.asoc.2018.07.033

[66] Shehab M., Abualigah L., Omari M., Shambour M., and Alshinwan M., “Artificial Neural Networks for Engineering Applications: A Review,” Elsevier eBooks, pp. 189-206, 2022. https://doi.org/10.1016/b978-0-12-820793- 2.00003-3

[67] Shehab M., Abu-Hashem M., Shambour M., Alsalibi A., and Alomari O., “A Comprehensive Review of Bat Inspired Algorithm: Variants, Applications, And Hybridization,” Archives of Computational Methods in Engineering, vol. 30, pp. 765-797, 2022. https://doi.org/10.1007/s11831-022-09817-5

[68] Shehab M., Khader A., and Alia M., “Enhancing Cuckoo Search Algorithm by Using Reinforcement Learning for Constrained Engineering Optimization Problems,” in Proceedings of the IEEE Jordan International Joint Conference On Electrical Engineering and Information Technology, Amman, pp. 812-816, 2019. DOI:10.1109/JEEIT.2019.8717366

[69] Shehab M., Mashal I., Momani Z., Shambour M. K., and AL-Badareen A., “Harris Hawks Optimization Algorithm: Variants and Applications,” Archives of Computational Methods in Engineering, vol. 29, no. 7, pp. 5579- 5603, 2022. https://doi.org/10.1007/s11831-022- 09780-1

[70] Shehab M., Tarawneh O., AbuSalem H., Shannag F., and Al-Omari W., “Improved Gradient-Based Optimizer for Solving Real-World Engineering Problems,” in Proceedings of the 4th IEEE Middle East and North Africa Communications Conference, Amman, pp. 191-196, 2022. DOI:10.1109/menacomm57252.2022.9998095

[71] Tian A., Liu F., and Lv H., “Snow Geese Algorithm: A Novel Migration-Inspired Meta- Heuristic Algorithm for Constrained Engineering Optimization Problems,” Applied Mathematical Modelling, vol. 126, pp. 327-347, 2024. https://doi.org/10.1016/j.apm.2023.10.045

[72] Wang G., “Moth Search Algorithm: A Bio- Inspired Metaheuristic Algorithm for Global Optimization Problems,” Memetic Computing, vol. 10, no. 2, pp. 151-164, 2018. https://doi.org/10.1007/s12293-016-0212-3

[73] Xu X., Hu Z., Su Q., Li Y., and Dai J., “Multivariable Grey Prediction Evolution Algorithm: A New Metaheuristic,” Applied Soft Computing, vol. 89, pp. 106086, 2020. doi: 10.1016/j.asoc.2020.106086.

[74] Yapici H. and Cetinkaya N., “A New Meta- Heuristic Optimizer: Pathfinder Algorithm,” Applied Soft Computing, vol. 78, pp. 545-568, 2019. https://doi.org/10.1016/j.asoc.2019.03.012

[75] Yuan Y., Shen Q., Wang S., Ren J., and Yang D., “Coronavirus Mask Protection Algorithm: A New Bio-Inspired Optimization Algorithm and Its Applications,” Journal of Bionic Engineering, vol. 20, pp. 1747-1765, 2023. https://doi.org/10.1007/s42235-023-00359-5

[76] Zhao S., Zhang T., Ma S., and Wang M., “Sea- Horse Optimizer: A Novel Nature-Inspired Meta- Heuristic for Global Optimization Problems,” Applied Intelligence, vol. 53, no. 10, pp. 11833- 11860, 2023. https://doi.org/10.1007/s10489-022- 03994-3

[77] Zhao W., Wang L., and Zhang Z., “Artificial Ecosystem-Based Optimization: A Novel Nature- Inspired Meta- Heuristic Algorithm,” Neural Computing and Applications, vol. 32, pp. 9383- 9425, 2020. https://doi.org/10.1007/s00521-019- 04452-x