Canine Disease Prediction using Multi-Directional Intensity Proportional Pattern with Correlated Textural Neural Network
Data optimization is crucial for enhancing prediction accuracy and similarity identification in texture learning systems, especially for predicting canine diseases. Traditional data retrieval methods often struggle with accuracy and efficiency, particularly when dealing with large datasets. This study presents a novel approach combining Multi-Directional Intensity Proportional Pattern (MDIPP) with a Similarity Measure (SM) system to improve data relevance and similarity estimation. The model organizes data into a paged database structure, which speeds up search operations. A neural network, Correlated Textural Neural Network (CTNN), forecasts the relevance of feature attributes and sorts matching indexes to predict canine diseases based on Test data. The CTNN model incorporates a correlation factor among features to enhance prediction accuracy. The relevance of data is determined using an upgraded neural network that accounts for these correlations. The study evaluates performance based on precision, recall, F1-score, and data retrieval accuracy, comparing the results with state-of-the-art techniques. By improving the organization and indexing of data and refining the prediction process, this approach aims to advance data validation and the prediction of canine diseases in large-scale texture learning systems.
[1] Bagra J., Nair S., Athira V., Kumar M., Kumar M., Thomas P., Kumar B., Chaturvedi V., Dandapat P., Abhishek., “In Vitro Virulotyping, Antifungal Susceptibility Testing and DNA Fingerprinting of Microsporum Canis Strains of Canine and Feline Origin,” Journal of Comparative Immunology, Microbiology and Infectious Diseases, vol. 104, pp. 102-100, 2024. https://doi.org/10.1016/j.cimid.2023.102100
[2] Bernicker M., Birrer C., Seeger M., Almeida B., Vogel F., and Cargnelutti J., “Antimicrobial Activity of Cationic Water-Soluble Porphyrin against Multidrug-Resistant Bacteria in Biofilms and Canine Skin Samples,” World Journal of Microbiology and Biotechnology, vol. 40, no. 4, pp. 1-9, 2024. DOI: 10.1007/s11274-024-03939-7
[3] Bertram C., Aubreville M., Marzahl C. Maier A., and Klopfleisch R., “Mitosis WSI CCMCT: Large-Scale Mitotic Figure Data Set on Canine Cutaneous Mast Cell Tumor,” Journal List, vol. 6, no. 274, 2019. doi: 10.1038/s41597-019-0290-4
[4] Brément T., Laly M., Combarros D., Guillemaille D., Bourdeau P., and Bruet V., “Reliability of Different Sets of Criteria in Diagnosing Canine Atopic Dermatitis Applied to a Population of 250 Dogs Seen in a Veterinary Teaching Hospital,” Journal of Veterinary Dermatology, vol. 30, no. 3, pp. 188-e59, 2019. DOI:10.1111/vde.12729
[5] Calabro C., Sadhu R., Xu Y., Aprea M., Guarino C., and Cazer C., “Longitudinal Antimicrobial Susceptibility Trends of Canine Staphylococcus Pseudintermedius,” Journal of Preventive Veterinary Medicine, vol. 226, pp. 106170, 2024. https://doi.org/10.1016/j.prevetmed.2024.106170
[6] Cugmas B. and Olivry T., “Evaluation of Skin Erythema Severity by Dermatoscopy in Dogs with Atopic Dermatitis,” Journal of Veterinary Dermatology, vol. 32, no. 2, pp. 183-e46, 2021. DOI:10.1111/vde.12932
[7] Emanuelli M., Kommers G., Antoniazzi A., Bernardes F., Lopes S., and Fighera R., “Myoepithelial Cells and Extracellular Matrix in the Cytologic Differentiation of Canine Mammary Tumors,” Journal of Veterinary Clinical Pathology, vol. 49, no. 3, pp. 451-458, 2020. DOI:10.1111/vcp.12894
[8] Harrand R., “Feline reticulocytes: Microscopy Images of Different Cell Types” https://www.kaggle.com/tentotheminus9/feline- reticulocytes, Last Visited, 2024. Canine Disease Prediction using Multi-Directional Intensity Proportional Pattern ... 913
[9] Harvey T., Dos Santos Freire Z., Dos Santos K., Vieira de Jesus A., Brandão Guedes P., da Paixão Sevá A., De Almeida Borges F., and Alberto Carlos R., “Clinical and Macroscopic Morphological Features of Canine Tungiasis,” Journal of Parasitology Research, vol. 120, pp. 807-818, 2021. DOI:10.1007/s00436-020-07013- 7
[10] Heishima K., Meuten T., Yoshida K., Mori T., and Thamm D., “Prognostic Significance of Circulating Micro RNA-214 and-126 in Dogs with Appendicular Osteosarcoma Receiving Amputation and Chemotherapy,” BMC Veterinary Research, vol. 15, no. 39, pp. 1-13, 2019. https://doi.org/10.1186/s12917-019-1776-1
[11] Jones C. and Murugamani C., “Malaria Parasite Detection on Microscopic Blood Smear Images with Integrated Deep Learning Algorithms,” The International Arab Journal of Information Technology, vol. 20, no. 2, pp. 170-179, 2023. doi: 10.34028/iajit/20/2/3.
[12] Kelly P., McKay J., Maguire D., Jones M., Roberts L., Powell F., and Breathnach R., “A Retrospective Study of Cases of Canine Demodicosis Submitted to a Commercial Diagnostic Laboratory Servicing the United Kingdom and Ireland (2017-2018) Part 2, Aerobic Culture and Antimicrobial Susceptibility Results,” Journal of Research in Veterinary Science, vol. 153, pp. 92-98, 2022. doi:10.1016/j.rvsc.2022.10.021
[13] Lange C., Jennings S., Diallo A., and Lyons J., “Canine Papillomavirus Types 1 and 2 in Classical Papillomas: High Abundance, Different Morphological Associations and Frequent Co- Infections,” The Veterinary Journal, vol. 250, pp.1-5, 2019. DOI:10.1016/j.tvjl.2019.05.016
[14] Marques G., Rocha L., Vargas T., Pulz L., Huete G., Cadrobbi K., Pires C., Sanches D., Mota E., and Strefezzi R., “Relationship of Galectin-3 Expression in Canine Cutaneous Squamous Cell Carcinomas with Histopathological Grading and Proliferation Indices,” Journal of Comparative Pathology, vol. 178, pp. 16-21, 2020. DOI:10.1016/j.jcpa.2020.06.004
[15] Mehain S., Haines J., and Lee P., “Platelet Indices as Biomarkers for Characterization and Determination of Severity in Canine Chronic Enteropathy,” The Veterinary Journal, vol. 248, pp. 37-41, 2019. DOI:10.1016/j.tvjl.2019.04.003
[16] Munday J., Knight C., and Luff J., “Papillomaviral Skin Diseases of Humans, Dogs, Cats and Horses: A Comparative Review. Part 2: Pre-Neoplastic and Neoplastic Diseases,” The Veterinary Journal, vol. 288, pp. 105898, 2022. https://doi.org/10.1016/j.tvjl.2022.105898
[17] Pardo-Marin L., Ceron J., Tecles F., Baneth G., and Martínez-Subiela S., “Comparison of Acute Phase Proteins in Different Clinical Classification Systems for Canine Leishmaniosis,” Journal of Veterinary Immunology and Immunopathology, vol. 219, pp. 109958, 2020. DOI:10.1016/j.vetimm.2019.109958
[18] Qin J., Zhu H., Song Z., Hou X., Wang X., Wang L., and Li J., “A Randomized Double-Blind Clinical Trial: Comparison of Oclacitinib with A Traditional Chinese Herbal Medicine Product (Dihuang Guiqin Capsule) in the Treatment of Canine Atopic Dermatitis,” Journal of the Research in Veterinary Sciences, vol. 105, pp. 105221, 2024. DOI: 10.1016/j.rvsc.2024.105221
[19] Raigonda M. and Shweta., “Signature Verification System Using SSIM in Image Processing,” Journal of Scientific Research and Technology, vol. 2, no. 1, pp. 5-11, 2024. https://doi.org/10.61808/jsrt79
[20] Saengchoowong S., Jitvaropas R., Poomipak W., Praianantathavorn K., and Payungporn S., “Identification of Bacteria Associated with Canine Otitis Externa Based on 16S R-DNA High- Throughput Sequencing,” Brazilian Journal of Microbiology, vol. 54, no. 4, pp. 3283-3290, 2023. DOI: 10.1007/s42770-023-01166-0
[21] Sözmen M., Devrim A., Sudağıdan M., Kabak Y., and Yıldırım F., “Expression of Angiogenic Growth Factors in Canine Squamous Cell Cancers,” Journal of Biotechnic and Histochemistry, vol. 96, no. 6, pp. 450-459, 2021. DOI:10.1080/10520295.2020.1818826
[22] Starr H., Howerth E., Jr R., Barber J., Leon R., Blubaugh A., and Banovic F., “Characterization of the Serum and Skin Inflammatory Profile in Canine Pemphigus Foliaceus Using Multiplex Assay and Quantitative Real-Time Polymerase Chain Reaction (QRT-PCR),” Veterinary Immunology and Immunopathology Journal, vol. 262, pp. 110631, 2023. DOI: 10.1016/j.vetimm.2023.110631
[23] Stempelová L., Kubašová I., Bujňáková D., Kačírová J., Farbáková J., Maďar M., Karahutová L., and Strompfová V., “Distribution and Characterization of Staphylococci Isolated from Healthy Canine Skin,” Topics in Companion Animal Medicine, vol. 49, pp. 100665, 2022. https://doi.org/10.1016/j.tcam.2022.100665
[24] Taranum A. and Mahesh S., “A Survey Analysis for the Detection of Canine Diseases among Domestic Mammals Using Image Texture Pattern Extraction Methods,” European Journal of Molecular and Clinical Medicine, vol. 9, no. 7, pp. 7385-7392, 2022.
[25] Taranum A. and Mahesh S., “An Optimal Texture Pattern Model of Big Data Processing for Canine Disease Classification,” International Journal of Intelligent Systems and Applications in Engineering, vol. 12, no. 2, pp. 458-466, 2023. 914 The International Arab Journal of Information Technology, Vol. 21, No. 5, September 2024
[26] Upadhyay A., Singh G., Mhatre S., and Nadar P., “Dog Skin Diseases Detection and Identification Using Convolutional Neural Networks,” SN Computer Science, vol. 4, no. 250, 2023. https://doi.org/10.1007/s42979-022-01645-5
[27] Van Amersfort., Lee A., and Hagen‐Plantinga E., “Evidence‐base for the Beneficial Effect of Nutraceuticals in Canine Dermatological Immune‐Mediated Inflammatory Diseases-A Literature Review,” Veterinary Dermatology, vol. 34, no. 4, pp. 266-283, 2023. DOI: 10.1111/vde.13152
[28] Veloso Soares E., Nascimento Gonçalves I., Silveira T., Espirito Santo J., Vieira Figueiredo L., Varaschin M., Dantas Cassali G., Del Puerto H., and Ferreira E., “ZEB and Snail Expression Indicates Epithelial-Mesenchymal Transition in Canine Melanoma,” Research in Veterinary Sciences, vol. 131, pp. 7-14, 2020. DOI:10.1016/j.rvsc.2020.04.007
[29] Xie T., Lin J., Lin D., Zhang D., Xu X., Zhu N., and Lin J., “In Vitro and in Vivo Antibacterial Studies of Volatile Oil from Atractylodis Rhizoma Against Staphylococcus Pseudintermedius and Multidrug Resistant Staphylococcus Pseudintermedius Strains from Canine Pyoderma,” Journal of Ethnopharmacology, vol. 319, pp. 117326, 2024. https://doi.org/10.1016/j.jep.2023.117326