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Abstract: Image restoration step is important in many image processing applications. In this work, we attempt to restore 
radiological images degraded during acquisition and processing. Details of the work, carried out to optimize a Neural 
Network (NN) for identifying an AutoRegressive Moving Average (ARMA) model used for nonlinearly degraded image 
restoration, are presented in this paper. The degraded image is expressed as an ARMA process. To improve the learning 
performance, the NN is fast trained using a hybrid swarm intelligence optimization approach based on the synergy of Particle 
Swarm (PSO) and Bacterial Foraging (BFO) Algorithms, which is compared with other training techniques such as: The back 
propagation, Quasi-Newton and Levenberg-Marquardt Algorithms. Both original image and blur function are identified 
through this model. The optimized ARMA-NN model is implemented on a Xilinx reconfigurable Field-Programmable Gate 
Array (FPGA) using hardware description language: VHDL. This VHDL code is tested on the rapid prototyping platform 
named ML505 based on a Virtex5-LXT FPGA chip of Xilinx. Simulation results using some test and real images are presented 
to support the applicability of this approach compared to the standard blind deconvolution method that maximizes the 
likelihood using an iterative process. The comparison is based on performance evaluation using some recent image quality 
metrics. 
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1. Introduction 

Radiology is the study of images of the human body. 
Although Radiology began with the use of X-Rays and 
large flat sheets of photographic films, the modern 
Radiologist now has a variety of tools for taking images 
of living patients. Many of these newer tools create an 
image with a computer Computed Tomography (CT) 
and some do not use any X-Rays, nor radiation of any 
kind, such as Magnetic Resonance Imaging (MRI) and 
UltraSound (US). Nuclear medicine studies involve 
making the patient temporarily radioactive, with a very 
small amount of an isotope. The images are obtained by 
looking for the small amount of radioactivity given off 
by the patient. Angiography is the name of a procedure 
that produces an image of blood vessels inside the 
body. Image in any form is never an exact 
representation of the object under observation because 
it is always corrupted by the imaging system itself. In 
radiology, there are several components tend to degrade 
the image, then limiting the resolution of such images. 
The image degraded sources in radiology are geometric 
unsharpness associated with lack of collimation in the  
beam, statistical fluctuation associated with low 
intensities or high background, motion unsharpness due  

 
to object motion during the exposure, and limitations 
in the imaging and processing systems. To overcome 
this problem, digital image restoration is a solution to 
reduce the blurring and noise effects on the image. 
Restoration techniques are different from image 
enhancement techniques. These techniques try to 
perform an inverse transformation of the observed 
degraded image to estimate the original scene. 
Because of this approach, image restoration 
techniques are oriented toward modeling the 
degradations, in order to apply an “inverse” technique. 
In practice, exact restoration of the original scene from 
the observed image data may be impossible, even with 
knowledge of the degrading system characteristics. 
This is due to the ill-posed nature of the image 
restoration problem, and the presence of observation 
noise. Authors of Saadi at el. [19, 20] did a 
comparative study between some state of the art 
approaches to select an image deconvolution method, 
and they got good results by introducing two swarm 
intelligence algorithms in the optimization step. The 
process  of  simultaneously estimating the degradation 
function and restoring an unknown image using partial 
or no information about the imaging system is known 
as blind image restoration [10]. Blind deconvolution 
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technique was another restoration method in image 
processing field. The objective of the blind image 
restoration is to reconstruct the original image from a 
degraded observation without the knowledge of either 
the true image or the degradation process. Authors of 
[24] used a novel rule base Fuzzy 2D Kalman Filter 
(RBFK) to restore images, which are heavy corrupted 
with the mix of Gaussian and impulse noises with 
preserving the details on the angiograph images, which 
is especially important in medical imaging techniques, 
they used blood vessel as a test image. Thavavel et al. 
[23] proposed a technique that incorporates genetic 
algorithm within wavelet denoising framework for 
threshold optimization. Applied of this technique on 
ultrasound and MR images of brain has shown a 
superior performance over the state-of-art wavelet-
based denoising methods in terms of visual quality as 
well as quantitative metrics such as PSNR. Guo et al. 
[8] used iterative Constrained Least Squares algorithm 
for both blur identification and image restoration in 
blind restoration of images degraded by space-variant 
blurs. They extended the Expectation-Maximization 
(EM) algorithm and combine it with the region adaptive 
technique to handle the problem of identifying spatially 
variant blurs.  They got good estimate with reduced 
artifacts in restored images in addition to blur 
identification. Liu [13] present a novel Decision-based 
Fuzzy Averaging (DFA) filter consisting of a 
Dempster-Shafer (D-S) noise detector and a two-pass 
noise filtering mechanism. Experimental results of this 
filter confirm its effectiveness both in suppressing 
impulsive noise as well as a mix Gaussian and 
impulsive noise. Blind deconvolution using ARMA 
parameter estimation methods involves modeling the 
true image as a two-dimensional (AR) process and the 
blurring function as a two-dimensional (MA) process. 
Based on these models, the resulting blurred image is 
represented as an (ARMA) process. Identifying the 
ARMA parameters allows us to identify both the true 
image and the degradation function [11]. Based on a 
novel 2D-ARMA parameter estimation, this paper 
propose a neural network model for fast blind image 
restoration. The proposed approach can overcome local 
minimization problem by using Particle Swarm 
Optimization (PSO) algorithm [7]. Comparison with 
iterative blind deconvolution based on results, shows 
that the proposed approach can obtain a better image 
estimate with a faster speed than the Blind Image 
Deconvolution (BID) algorithm. Maximum Likelihood 
(ML) [12, 16], Generalized Cross Validation (GCV) 
[18] and neural networks [6] are three popular methods 
that are employed to determine these parameters. The 
disadvantage of both ML and GCV lies in the higher 
computational cost which requires small AR and MA 
support sizes at the cost of diminished modeling 
effectiveness. However, in order to improve the 
modeling effectiveness, the support sizes can be 
increased in neural network based on ARMA models. 

Bustos et al. [5] summarize the main properties of the 
spatial ARMA models and describe some of the well-
known methods used in image filtering based on 
estimation of spatial autoregressive models. They also, 
suggested a new filtering algorithm based on robust 
AR estimation. Shkvarko [21] addressed a new 
approach to the problem of improving the quality of 
remote-sensing images, by exploiting the idea of 
Neural Network (NN) based imaging system fusion. 
Because NN is easy to be trapped in local minima and 
converge too slow. The traditional training methods 
based on gradient searching technique are not 
effective and fast in determining accurate 
weights/biases of the neural network. In literature, 
various algorithms are proposed for training NN’s, but 
most of them are derivative based and have some 
weaknesses such as converging to a local minima and 
time-consuming. Many global optimization methods 
have been used for this application such as Genetic 
Algorithm (GA) [3], Particle Swarm (PSO) [13], 
Bacterial Foraging (BFO) [26], and the Differential 
Evolution (DE) algorithm [25]. Qureshi [17], a GA is 
used to minimize the error performance surface in a 
NN based ARMA model with random Gaussian 
process is presented. 

Traditionally image processing applications are 
implemented either in general-purpose Programmable 
Digital Signal Processors (DSPs) or built using 
Application Specific Integrated Circuit (ASIC) 
technology. Typically, Programmable DSP processors 
contain built-in Multiply/Accumulate units (MACs) 
and use a high level instruction set to implement 
image processing algorithms. Field-Programmable 
Gate Array (FPGA) has become a very cost-effective 
means of off-load computationally intensive digital 
signal processing algorithms to improve overall 
system performance. They provide flexibility of 
software while keeping intact the hardware 
performances [14].  

Many works used hybrid implementations for 
image enhancement has been published [1]. In this 
paper, a hybrid implementation of two swarm 
algorithms is employed for training the neural network 
to attain the global error minimum and find optimized 
synaptic weights of a multilayer NN that will model 
the ARMA presenting both a better restored image 
and close blurring function. Simulation results and 
performance evaluation are provided. A statistical 
comparison is accomplished with BID method based 
on various recent image quality metrics. Blind 
deconvolution takes more time to restore an image 
than a direct algorithm due to the heavy computational 
load required to process frames, therefore it is not 
applicable to real-time images. In this work, to 
accelerate processing, the ARMA-NN model is 
implemented on a Xilinx reconfigurable FPGA chip 
using hardware description language: VHDL. This 
VHDL code is synthesized using ISE12.4 Xilinx 
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software, simulated on the ModelSim 6.5 software for 
time and space constraints and then, tested on the rapid 
prototyping platform named ML505 based on a 
Virtex5-LXT FPGA chip of Xilinx. Hardware schemes 
and simulation results are presented in the last section 
of this paper using ISE and ModelSim Softwares. 

2. Image Degradation with ARMA Model 

The true image is modeled as a two an image can be 
considered to be a sample function of random variables 
array. This characterization of an ensemble of images is 
useful in developing image processing techniques that 
are valid for an entire class and not just for an 
individual image. Two dimensional linear stochastic 
systems led to the modeling of blurred image as an 
ARMA process, where AR part determines the image 
model coefficients and MA part determines the blur 
function of the system [22]. Therefore, blind image 
deconvolution is transformed into an ARMA parameter 
estimation problem. Identifying the ARMA parameters 
allows us to identify the true image and the degradation 
function. This task can be achieved using neural 
networks [6] trained with classical optimization 
Algorithms that have the drawbacks of ill-convergence 
to local minima and sensitivity to initial conditions.   
dimensional AR process represented by:  

      
( l ,m ) Ra

( l ,m ) ( 0 ,0 )

f ( x , y ) a( l , m ) f ( x l , y m ) ( x , y )ν
∈

∈

∑= − − +      

f(x, y) is the true image, and v(x, y) is the modelling 
error which is a zero-mean homogeneous noise process 
which is statistically independent of f(x, y). Using 
matrix-vector notation, equation 1 can be written as: 
 

                                   f = Af + ν  

For smooth and homogeneous true images as in 
photography, only three AR coefficients {a(0, l), a(1,0), 
a(1,l)} are sufficient to reasonably model the image. In 
most practical situations, the blurring function is of 
finite extent and its effect on the true image can be 
modeled as that of a two-dimensional FIR filter. The 
linear degradation model can be written:  
 

        g(x, y) = f(x, y) Ä h(x, y) + η(x, y)               (3) 
 

Where the degradation function is h(x, y), and η(x, y) is 
the additive noise of the imaging system assumed to be 
zero-mean Gaussian. The degraded image g(x, y) can be 
expressed as: 
 

     g ( x , y ) h( l , m ) f ( x l , y m ) ( x , y )
( l ,m ) Rh

η∑= − − +
∈

    

 

Using matrix-vector notation, equation 4 becomes: 

                                g Hf η= +                                     (5)         

Rearranging Equation 2, substituting into Equation 5 
and rearranging yields: 

                         1
g H ( I A ) ν η−
= − +                            (6) 

Where I is the identity matrix A complete model for 
the blurred image using Equation 6 is given in Figure 
1, where capital letters denote the Z-transforms of 
their lowercase counterparts. Therefore, the problem 
of blind deconvolution consists of estimating the AR 
parameters: a (l, m) for (l, m) ∈ Ra, and the MA 
parameters: h (l, m) for (l, m) ∈ Rh. Once the blurring 
function h (1, m) is determined, one of the classical 
linear image restoration methods can be used to 
estimate the true image: 

 
Figure 1.  ARMA Model of the degraded image. 

The practical difficulties with estimating {a(l, m), 
h(l, m)} using Equation 6 include high computational 
complexity with large support, instability of the 
estimation algorithms, and non-unique solutions. To 
overcome these problems, the following additional 
assumptions are commonly made on the blurring 
function by existing second-order statistics methods. 
 

1. The blurring function is positive, and the mean 
value of the true image is preserved in the 
degradation process. That is: h(l, m) = 1

(l,m)ÎRh

∑ . The 

use of these assumptions limits the number of 
possible ambiguous solutions to the problem. 

2. The blurring function is symmetric and zero-phase. 
These assumptions are made for the stability and 
the uniqueness of solution of the estimation 
algorithms.  

3. The blurring function has a known parametric form 
consisting of only a few parameters. Use of such 
models significantly lowers the computational 
complexity. 
 

3. Swarm Intelligence  

3.1. Particle Swarm Optimization 

The PSO algorithm was first described in 1995 by 
James and Russell [9]. PSO is a stochastic, 
population-based evolutionary computer algorithm for 
problem solving. In a PSO system, a swarm of 
individuals (called particles) fly through the search 
space. Each particle represents a candidate solution to 
the optimization problem. The position of a particle is 
influenced by the best position visited by itself and the 
position of the best particle in its neighborhood. The 
performance or quality of each particle (i.e., how close 
the particle is from the global optimum) is measured 

1 
1 – A(z1,z2) H(z1,z2) + 

v(x,y) 
f(x,y) 

n(x,y) 
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using a fitness function that varies depending on the 
optimization problem [24]. 

3.2. Bacterial Foraging Optimization  

Foraging means finding, handling, and ingesting food. 
Animals that have successful foraging strategies are 
privileged since they obtain enough food to enable 
them to reproduce [15]. This has led scientists to model 
the activity of foraging as an optimization process. In 
[15], the author explains the biology and physics 
underlying the chemotactic (foraging) behavior of 
E.coli bacteria and gives a computer program that 
emulates the distributed optimization process 
represented by the activity of social bacterial foraging 
and applies that in adaptive controllers. The foraging 
strategy of E.coli bacteria present in human intestine 
can be explained by four processes namely: 
Chemotaxis, swarming, reproduction and Elimination/ 
Dispersal. 

We want to find the minimum of f(x), x∈ℜp, where 
we do not have measurements or an analytical 
description of the gradient ∇f(x). Here we use ideas 
from bacterial foraging to solve this non gradient 
optimization problem. First, suppose that x is the 
position of a bacterium and f(x) represents the 
combined effects of attractants and repellents from the 
environment, with, for example, f(x)<0,  f(x)=0, and 
f(x)>0 representing that the bacterium at location x  is 
in nutrient-rich, neutral, and noxious environments, 
respectively. Bacteria try to climb up the nutrient 
concentration (find lower and lower values of f(x), 
avoid noxious substances, and search for ways out of 
neutral media). Chemotactic is a tumble followed by a 
tumble or a tumble followed by a run.  

Algorithm 1: BFO Algorithm: 

1.Initialization: We choose p, S, Nc , Nre , Ned , Ped and the 
C(i), i=1,2,…,S. for swarming, we choose also, 
parameters of the cell-to-cell attractant functions. Initial 
values for iθ ,i=1,2,…S are also, chosen.  

2.Elimination-dispersal loop: l=l+1 
3. Reproduction loop: k=k+1 
4. Chemotaxis loop: j=j+1 

a) For i=1 to S   take a chemotaxis step for bacterium I as 
follows. 

b) Compute f(i,j,k,l) and let: 
)),,(),,,((),,,(),,,( lkjPlkjflkjiflkjif i

cc θ+= , we add on 

the cell-to-cell attractant effect to the nutrient 
concentration. 

c) Let  flast = f(i,j,k,l) to save this value since we may find 
a better cost via a run. 

d) Tumble: generate a random vector ∆(i) ∈ℜp with each 
element ∆m(i), m=1,2,…P, a random number on [-1,1]. 

e) Move: let: ( ) ( )
)()(

)(
)(,,,,1

ii

i
iClkjlkj

T

ii

∆∆

∆
+=+ θθ  

 this results in a step of size C(i) in the direction of the 
tumble for bacterium i. 

f) Compute f(i,j+1,k,l), and then let: 
)),,1(),,,1((),,1,(),,1,( lkjPlkjflkjiflkjif i

cc ++++=+ θ  

g) Swim:  let  m=0    and    While m<Ns   put  m=m+1,if   
f(i,j+1,k,l) < flast     

 

 let   flast =f(i,j+1,k,l)   and  let:  

( ) ( )
)()(

)(
)(,,1,,1

ii

i
iClkjlkj

T

ii

∆∆

∆
++=+ θθ

 and use this position to 

calculate the new cost value.  
              Else, let m=Ns    end while.  
h) Go to the next bacterium. 

5.   if  j<Nc  then  go to step 4. 
6. Reproduction: For i=1,2,…,S. ( )

N +1ci
f = f i, j, k, lhealth j=1

∑  (health of 

bacterium) 
i) . Sort bacteria and chemotactic parameters C(i) in 

order of ascending cost fhealth (higher cost means 
lower health). The S/2 bacteria of the highest cost 
will die and the healthiest are placed at the same 
location as their parent. 

7.   if k<Nre  go to step 4. 
8.  Elimination-dispersal: for i=1,2,…,S, with probability 

Ped , eliminate and disperse each bacterium. 
9.  if  l<Ned  then  go to step 1, otherwise end algorithm.  

3.3. Hybrid Implementation: PSO-BFO 

In the proposed hybrid approach, after undergoing a 
chemo-tactic step to perform a local search, each 
bacterium gets mutated by a PSO operator to 
accomplish a global search over the entire space. At 
this phase, the bacterium is stochastically attracted 
towards the globally best position found so, far in the 
entire population at current time and also, towards its 
previous heading direction. The PSO operator uses 
only the ‘social’ component and eliminates the 
‘cognitive’ component as the local search in different 
regions of the search space [4]. BFO is changed by 
directing positions of bacteria and updating their 
velocities from the first chemotactic step using the 
power of PSO reaching the global solution. This 
hybridization improved the convergence speed and 
accuracy of solutions obtained by the classical BFO, 
however, what is requested is to attain a best approach 
to the original by finding the best solution, which is 
accomplished by this hybridization. In the BFO 
Algorithm, inside the Chemotaxis loop (step 4, point 
g), we introduce the PSO operator to update the global 
position of each bacterium, then determining fitness 
and subsequently we update both the global position 
and velocity of each bacterium before letting the 
bacteria swimming with the new speed on the way of 
the new updated direction:  
 

g) We introduce PSO operator (for each chemotactic 
stepS): 

• Update the θg_best  and  fbest(i, j, k, l)  
• Update position and velocity of the d-th coordinate of 

the i-th bacterium to the following rule: 

 
new new old

V = ω.V + C .f .(θ - θ (i, j +1, k))1 1id id g_best dd

new old new
θ (i, j +1, k) = θ (i, j +1, k) +Vd d id
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4. Simulation Results 

4.1. ARMA Neural Network Modeling  

A NN is a parallel and distributed network of simple 
nonlinear processing units interconnected in a layered 
arrangement. Parallelism, modularity and dynamic 
adaptation are three computational characteristics 
typically associated with NN’s. The Multi-Layer 
Perceptron (MLP) consists of various layers: An input 
and output ones between which lay one or several 
hidden ones whose outputs are not observable, Figure 
2:  

 
Figure 2. Schematic diagram of a MLP. 

These layers are based upon some processing units 
(neurons) interconnected by means of feed-forward 
pondered links Figure 3:  
 

 

Figure 3. Processing unit in a MLP. 

All these processing units carry out the same 
operation: The sum of their weighted inputs, Equation 
7. Then they apply the result to a non-linear function 
named activation function and generally based upon the 
sigmoid function, Equation 8: 

                               ( )y = w .x - bj ij ij ji
∑ 

  
   

                                     
( )

1
f(x) = -x

1 + e

 

Where yi is the output of the processing unit, wij are 
thesynaptic weight coefficients and bj is the bias Back -
Propagation (BP) has been widely adopted as a 
successful learning rule to find the appropriate values 
of NN weights. Using the hybrid implementation (PSO 
- BFO), each bacterium (or particle) position vector is 
defined by all connecting weights matrix wij. The 
fitness value of each bacterium is the value of the error 
function evaluated at this position. To achieve the same 
error goal both with back - propagation BP and Hybrid 
swarm algorithms, we find that the Hybrid PSO - BFO 
implementation requires less number of computations; 
which is an observed performance.  

For our application, a multi-layer NN structure 
trained using a hybrid swarm implementation, to 
minimize the mean squares of errors function in the 

NN, is used to represent the ARMA model for 
identifying the blur function and restore the degraded 
image, simultaneously. The main difficulty in our 
approach is to learn correctly the perceptron because 
the learning sets are very large (about 100 examples), 
Figure 4. We developed a MLP with 3×3 input/output 
dimensions and two hidden layers, Figure 5. Also, the 
swarm optimization algorithm parameters must be 
chosen carefully. The input of the NN model is a 
white Gaussian noise and the output of the last layer is 
the observed degraded image. The output of the 
second layer is the estimated original image and the 
weights between the third and the output layers 
represent the blurring function.   

M
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                         iterations 

Figure 4. Comparison between different learning algorithms using 
MSE evolution. 

 
Figure 5. The resultant simulated neural network on matlab/ 
simulink. 

In our simulation we use gray scale images with 
size of 256x256 pixels and 256 gray-levels. Some 
practical simulation results are given below. Before 
application to radiological images, we launch a step by 
step assessment procedure of our model using some 
test images restoration Figures 6 and 7 shows a 
comparison between the classical BID that maximizes 
the likelihood using an iterative process and 
restoration via the optimized ARMA - NN model.  
The reference images, used also, for comparison, are 
two text images, Figure 6 and one generated by the 
MATLAB function ‘checkerboard’, Figure 7. The last 
reference image contains all gray levels (from 0 to 
255). The original image in Figure 7 - a is blurred by 
5×5 Gaussian blur and Gaussian noise with 10dB was 
added to the blurred image of Figure 7 - b. Restoration 
results presented in Figures 7 - c and 7 - d, reveal that 
the proposed approach gives a better image estimate 
than the BID method. 
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a) Original text image. b) Blurred image. 

  
c) Restored image with iterative 

BID algorithm. 
d) Restored with the ARMA-

NN model. 

Figure 6. Comparison between the classical BID and our ARMA-
NN model using a text image. 
 

  
a) Original checkerboard 

image. 
b) Blurred image. 

  
c) Restored image withiterative 

blind deconvolution 
algorithm. 

d) Restored with the ARMA-
NN model. 

Figure 7. Comparison between the classical BID and our ARMA-
NN model using checkerboard image. 

4.2. Application to Radiological Images  

Medical radiology offers many good techniques helping 
doctors in their diseases diagnosis work and also, it is 
widely used in medical research. Radiological images 
used here are gathered from radiological databases. 
Five images of different types are selected for 
experimentation to validate the proposed model, 
Figures 8 - 12. 

  
a) Original X-ray image. b) blurred image. 

  
c) Restored image with BID 

Algorithm. 
d) Restored with the ARMA-

NN model. 

Figure 8. Comparison between the classical BID and our ARMA-
NN model using an x-ray image. 

  
a) Original X-ray image. b) Blurred image. 

  
c) Restored image with BID 

algorithm. 
d) Restored with the ARMA-NN 

model. 

Figure 9. Comparison between the classical BID and our ARMA-
NN model using an x-ray image. 
 

  
a) Original MRI image. b) Blurred image. 

  
c) Rrestored image with BID 

Algorithm. 
d) Restored with the ARMA-

NN model. 

Figure 10. Comparison between the classical BID and our ARMA-
NN model using a MRI image. 
 

  
a) Original brain image. b) Blurred image. 

  
c) Restored image with BID 

algorithm. 
d) Restored with the ARMA-NN 

model. 

Figure 11. Comparison between the classical BID and our ARMA-
NN model using a Brain image. 
 

  
a) Original blood vessel image. b) Blurred image. 

  

c) Restored image with BID 
algorithm. 

d) Restored with the ARMA-NN 
model. 

Figure 12. Comparison between the classical BID and our ARMA-
NN model using a blood vessel image. 
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Some image quality measures are calculated for all 
restored images with reference to their original images. 
To extend tests, a set of seven graphs are constructed 
below, Figures 13-18. The implemented image quality 
measures are defined using the following expressions: 

1. Mean Square Error (MSE):  

( )
2M N1 '

MSE = x - xj,k j,kj =1 k =1MN
∑ ∑  

2. Peak Signal to Noise Ratio (PSNR in dB):    

( )2n 22 - 1 255
PSNR = 10log = 10log

MSE MSE

 

3. Normalized Cross-Correlation (NCC):          
M N '

x .xj,k j,kj =1 k =1
NK = M N 2

x j,kj =1 k =1

∑ ∑

∑ ∑

 

4. Average Difference (AD):            

( )'
x - xM N j,k j,k

AD =
j =1 k =1 MN
∑ ∑  

5. Structural Content (SC): 
M N 2

x j,kj =1 k =1
SC = M N '2

x j,kj =1 k =1

∑ ∑

∑ ∑

 

6. Maximum Difference (MD):  

( )'
MD = Max x - xj,k j,k

 

7. Normalized Absolute Error (NAE):  
M N '

x - xj,k j,kj =1 k =1
NAE = M N

x j,kj =1 k =1

∑ ∑

∑ ∑

 

 
 

Figure 13. PSNR evolution: comparison between classical BID and 
ARMA-NN model. 

 
Figure 14. The normalized cross correlation: comparison between 
classical BID and ARMA-NN model. 

 
Figure 15. The average difference: comparison between classical 
BID and ARMA-NN model. 

 
 

Figure 16. The structural content: comparison between classical 
BID and ARMA-NN model. 

 
 

Figure 17. The maximum difference: comparison between 
classical BID and ARMA-NN model. 

 
 

Figure 18. The normalized absolute error: comparison between 
classical BID and ARMA-NN model. 
 

From images visual inspection with numerical 
evaluation from Figures 13-18, we can judge that the 
PSNR is a little enhanced using the proposed model 
compared to standard BID. The performance of this 
approach for restoring radiological images degraded 
by Gaussian and motion blur and an additive noise is 
revealed from experiments performed on some 
database images. Although, the performance is 
demonstrated for such images, the proposed approach 
can be used to restore others images degraded with the 
same blurring function. In the future, we will try to 
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implement models for other known blurring functions 
encountered in radiological images to further improve 
the performance. 
 
5. FPGA-Based Implementation of the 

ARMA-NN Model 

The advances in high density and high performance 
FPGAs offer an attractive alternative for realizing 
complex image processing applications. This 
technology offers an attractive combination of low cost, 
high performance combined with an apparent 
flexibility, while maintaining the advantages of custom 
functionality. Furthermore, FPGAs can be reconfigured 
repeatedly and their configurations upgraded to match 
any changes in the design, the classical electronics 
lacks this property [2]. The description of a neuron in 
VHDL language allows, during compilation, specifying 
some characteristics such as the number of inputs and 
the data length in bits in a generic way, and possibly 
changes the type of arithmetic operators (adder and 
multiplier). The neuron performs primarily the product 
of input data X, stored in the RAM with the 
corresponding synaptic weights W which are in the 
ROM and then adds them to a bias term b. Results of 
these transactions are subject to a unit that 
approximates an activation function tansig, Figure 19. 

 
Figure 19. Neuron structure. 

The following Equations 9 and 10 summarize the 
operations accomplished in each neuron:  
 

n = X.W + b∑  
                  

  Y = tansig(n)   
                                 

Where X is an input vector, W is the weights matrix and 
b is the bias vector. 

The computation in neural networks (multiplication 
and addition) requires the use of signed real numbers. 
To represent fractional numbers it is necessary to define 
the position of the decimal point, for this, two methods 
are possible:  

• The fixed-point representation. 
• The floating point representation. 

The second is more dynamic than the first; it allows the 
encoding of a larger number of real values for the same 
number of bits. In addition, it does not require overflow 
management which is essential in the fixed-point 
representation. On the other hand, the fixed-point 
representation has undeniable assets, making it the 
preferred choice in various applications. In our 
approach we have chosen a fixed-point representation 

of 18 bits (5 bits for integer part and 12 bits for 
fractional part), figure 20, this facilitates the 
Multiplier-Accumulator (MAC) realization which is 
the heart of the NN. 

 
Figure 20. Fixed point representation of 18 bits. 

It is enough with this word length to represent 
weights and biases with high precision. Several types 
of adders can be used to perform the weighted sum of 
states: combinatorial serial, dynamic, carry look 
ahead, manchester, carry select, Wallace tree...etc. 
Similarly, there are several ways to perform the 
multiplication, the most traditional are: In serial, 
serial/parallel and fully parallel. The MAC in Figure 
21 is realized by a multiplier associated to an adder 
looped on itself in order to obtain an accumulation. 

 
Figure 21. MAC Structure. 

In our implementation, we need 45 (9×5) MAC’s in 
the hidden layer and 5(5×1) in the output layer if we 
want a completely parallel NN. However, we 
significantly reduced the space by adopting this 
number of MAC’s for all neurons (for the entire 
network) and multiplication is done in turn through a 
multiplexer. This approach provides us with a partially 
parallel NN less dense but slower.  

5.1. Activation Function (Tansig) 

Approximation 

Digital simulation of the activation function, obtained 
from the basic Equation 11 requires a relatively large 
computation time compared to the time required for 
the MAC:  

           -2x -2x
F(x) = (1 - e ) / (1 + e )                      (11) 

Several possibilities exist to materialize this function 
(hyperbolic tangent). The lookup table places in 
memory (ROM) the digitalized values of the 
activation function, for each value of x correspond a 
value for y. The x values are used to address this 
memory. The advantage of this method is not only 
ability to simulate several types of activation 
functions, but also, it is simple to implement. The 
accuracy depends on the size of the memory. The 
problem comes from both the area occupied in the 
memory and its access time. Thus, the direct 
implementation for non - linear sigmoid transfer 

(9) 

(10) 
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functions is very expensive. To simplify realization, we 
used the method of linear piecewise approximation that 
divides the activation function into intervals and 
models each interval by a line. It consumes less 
memory space and has better precision. It is useful to 
test the model by introducing arbitrary values to the 
input and compare the output with the exact value. The 
simulation result is shown in Figure 22. In Figure 23, 
we present a comparison between MATLAB plotted 
tansig and its estimation using VHDL language 
 

 
 

Figure 22. Simulation results. 
 

 

 
 

Figure 23. Comparison between the desired function tansig (red) 
and its approximation (blue) with VHDL.  

5.2. Elementary Processor Implementation 

The entire network consists of elementary processors 
(the basic component of the NN), each of which 
contains a MAC circuit connected to the piecewise 
circuit that approximates the activation function. 
Neuron inputs and output have the same length (18 
bits). The MAC output is 36 bits in length and will be 
reduced at the piecewise circuit. Thus, the outputs of 
the first layer will be compatible with the second layer 
inputs. The neuron module is made by combing the 
MAC with the linear piecewise function 
(approximating the tansig function). 

 
5.3. Implementation of the Neural Network  

 

There are two different kinds of neurons: one is used in 
the first level and the other is used at second level. 
Those of the first - level have 9 inputs; the others have 
a number of inputs equals the number of neurons in the 
first level. A step construction of these circuits allows 
the pipeline calculations. The hidden layer operates at 
clock rising edge, while the output layer works at the 
clock descending front. The design placement on a 
Virtex5 LXT FPGA chip of Xilinx, is shown in Figure 
24. This chip was largely sufficient to implement the 
whole ARMA - NN model on the space of this chip as 
revealed in Figure 25 - a. The used platform for this 
implementation is given in Figure 25 - b. 

     
 

Figure 24. Design placement: The developed architecture 
implemented in FPGA. 

  

a) Floor planning of the FPGA 
implementation (the used 
space). 

b) The FPGA Hardware used. 

Figure 25. The whole ARMA-NN model implemented on the chip 
space. 

6. Conclusions 

For better diagnostics, restoring radiological images 
degraded during acquisition and processing becomes 
very essential. Getting a reliable, efficient and 
authentic system for this purpose is a challenge in 
image processing. In this work, we could reach 
approximately this goal, compared to blind image 
deconvolution BID, by combining: the parallel 
computing scheme of NN and real time reconfigurable 
FPGA hardware to identify ARMA model parameters. 
In addition, we reduced the NN configuration by 
enhancing its learning using the powerful optimization 
swarm intelligence Algorithms: synergy of PSO and 
BFO. The result is obtaining well restored estimate of 
the desired image, simultaneously with identification 
of the blurring function. Application to radiological 
images reveals the usefulness of this implementation 
in real life world.       
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