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Abstract: In addition to the devastating effects of anxiety and stress on the development and exacerbation of the 

cardiovascular disease, lack of stress control increases drivers' risk of accidents. This paper aims to identify the stress of 

drivers in various driving situations to warn the driver to control the tense conditions during driving. In order to detect stress 

while driving, we used the heart signals in the Physionet database. To analyze the conditions of the electrocardiogram (ECG) 

under various driving situations, linear and non-linear features were used. The characteristics of the RRIs are the only able to 

identify driver stress in different driving modes relative to rest periods, while the return mapping features, in addition to 

identifying driver stress while resting, have the ability to identify stress between different driving positions also brought. The 

results showed that driver's stress level during driving in city 1 and highway 1 with a P-value of 0.028 and also in city 3 and 

highway 2 with a P-value of 0.041 can be distinguished. The accuracy obtained from the proposed detection method is 98±2% 

for 100 iterations. The result indicated an efficiency of our proposed method and enhanced the reliability. 
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1. Introduction 

In addition to the significant risk factors for heart 

disease, including cholesterol and high blood pressure, 

lack of physical activity, smoking, and diabetes, stress 

(nervous tension) is also the main factor associated 

with cardiovascular disease. When a person gets stress, 

the body secretes hormones called epinephrine, 

norepinephrine, which increases blood pressure and, 

over time, damages to the lining of the arteries. The 

amount of plaque deposition increases with the 

restoration of the arteries and thicken them. The heart 

rate and blood pressure can be increased with stressful 

conditions, and in this case, the heart's need for oxygen 

is greater than before [5]. In some people with heart 

disease, increasing the heart's need for oxygen can lead 

to chest pain (angina). Stress also increases the clotting 

factors in the blood, which increases the likelihood of 

clot formation and blockage of the arteries, especially 

in cases where it has been somewhat obstructed by a 

plaque [12].  

Driving accidents are responsible for more than 

50% of deaths worldwide between the ages of 15 to 44 

and about 1.35 million deaths are due to road traffic 

crashes [28]. In Iran, driving accidents are the second 

leading cause of death [11]. Driving is a skillful work 

that requires a full focus and a critical balance between 

consciousness and a calm situation [15]. The result of 

public vehicle transportation in urban centers is among 

the most stressful and unhealthy modern jobs. People 

with this mental disorder should not be placed in 

drivers of personal or public vehicles to jeopardize 

their health and others [13]. 

High-stress can cause a lot of social damage and, if 

not properly and timely controlled, costs including the 

provision of health services for people who suffer from 

the disease due to high levels of stress as well as the 

high cost of driving disability caused by severe stress, 

are imposed on individuals and the community [15, 

21]. 

Moreover, stress makes people cranky and negatively 

affects the overall life quality of individuals. 

Therefore, controlling and reducing stress leads to a 

healthier and happier society and plays a significant 

role in developing that community [22]. 

2. Background and Related Works 

Many studies have been carried out to determine the 

stress of a driver during driving. In the following, some 

research conducted on the methods of driver stress 

detection and structural categories will be discussed. 

By reviewing the background related to this topic, it is 

possible to improve the previous methods and 

techniques and use new and more precise methods. 

Jeong et al. [10] investigated the detection of 

drivers' stress using the electrocardiogram (ECG) 

signal in Turkey. The experiment was conducted on 6 

people, including 5 men and one woman, aged 26 to 33 

years, with an average age of 27.2 years who learned 

driving. None of these people had pathological changes 

and physical defects. This study measured the driver's 
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stress level using the ECG signal and analysis of Heart 

Rate Variability (HRV) and other signals during 

driving. The results indicated that this system provides 

more comfort for the driver by placing electrodes on 

the steering wheel, gear, and rest position of the arm on 

the driver's side door. Therefore, it is very useful for 

driving because it records body signals without 

affecting the performance of the steering wheel and 

other parts. 

Another study was conducted in 2012 by Singh et 

al. [26]. Their research focused on identifying drivers' 

stress levels while driving, using biological signals. 

Data is collected in 5 modes of driving (primary 

driving mode for 10 minutes and relax (pr-dr), relax 

driving for 8 to 9 minutes (rx-dr), driving in busy and 

traffic for 8 to 9 minutes in the city (by-dr), rest driving 

after busy for 3 to 4 minutes (rt-dr), secondary driving 

mode for 5 minutes (po-dr) and 20 drivers have been 

used to form the statistical population. The data 

obtained in (pr-dr) and (po-dr) modes are in the low-

stress group, and the data of (rx-dr) and (rt-dr) modes 

are in the moderate stress group and the data of (by-dr) 

mode are classified in the high-stress group. They 

selected the Self-Organizing Map (SOM) method for 

clustering the data into distinct topographic clusters 

from low, moderate and severe stress states, which 

were able to classify three different categories of driver 

stress with a predictive power of 81.6%. As a result, 

drivers were classified into three categories based on 

susceptibility to stress [27]. 

Similarly, in another paper conducted by Shiwu et 

al. [25] of this paper in 2011 in China, a total of 15 

people, including 12 men and 3 women, were 

randomly selected, with an average age of 6 ± 38 

years, and all of them had at least 3 years of driving 

experience. They provided a system that regularly 

controls the driver's fatigue in real-time to prevent 

accidents. To do so, they used the support vector 

machine technique to detect driver fatigue based on 

recorded EEG and ECG signals. Driver fatigue levels 

were used as output variables of the SVM model and 

resulted in a model that can detect driver fatigue levels. 

Another study entitled “Detecting the driver's stress 

in the real world when driving with physiological 

signals” was conducted by Healey and Picard [7]. Out 

of the 27 cases recorded in this study, only 16 of these 

data were completed and could be used. They used 

four types of physiological sensors during their test, 

which were connected to an analog-to-digital 

converter. The converter was also connected to a 

computer inside the tested vehicle. The ECG electrodes 

are placed so that the Lead 2 covers the heart and 

minimize the unwanted signals (artifacts) and 

maximize the R-wave amplitude. In their research, in 

addition to using the mean filter, the ECG sampling 

frequency, 496 Hz and the sampling frequency of skin 

conductance and respiration signals, 31 Hz and the 

sampling frequency of the electromyogram (EMG) 

signal was 15.5 Hz. This study showed that, with the 

advancement of computer vision algorithms and 

automotive sensors in the future, it is possible to 

automatically create a stress measure similar to video 

analysis that can calculate the driver's stress level [2]. 

3. Materials and Methods 

3.1. Introduction of The Database 

In this study, the Physionet database was used [7]. This 

dataset has been collected through experiments 

conducted by Helay and Picard [7]. The data consist of 

17 healthy drivers, with six types of data in a driving 

route, including two highways and three cities in the 

Boston area and two rest modes recorded. The drivers 

selected for data recording did not have any specific 

cardiovascular disease, nor did they use any alcoholic 

and tobacco products. People enjoyed relative calm at 

the start of the recording time. Recorded data included 

ECG, EMG, foot Galvanic Skin Response (GSR), hand 

galvanic skin response, Intermittent Heart Rate (IHR), 

and respiration rate. All data has been recorded using 

wearable sensors. The data were categorized into three 

levels of stress, including low-stress (rest time), 

moderate stress (driving on the highway) and high-

stress (driving in the city). The times recorded for rest 

and driving in cities and highways were distinguished 

by Akba [1] for each section. In the case of 7 data 

recorded about the drivers, no information was not 

reported for rest and driving times by Akba [1]. 

Therefore, only 10 data are used in this paper to 

identify the stress levels of drivers. The duration of 

data recording lasted at least 65 minutes and up to 93 

minutes. Therefore, a method was provided to identify 

the driver's stress level with the help of a heart signal, 

aimed at warning in stressful times, could help the 

driver maintain calm and prevent potential risks during 

driving. 

3.2. Proposed Method 

Given that the effect of stress during driving is on heart 

rate, an ECG signal is used in this paper to detect the 

driver's stress level. According to the block diagram of 

Figure 1, the target data is firstly selected from the 

database presented in the previous section, and then, to 

extract useful information for better detection, the city 

power noise and field lines contained in the ECG 

signal were deleted in the preprocessing stage using the 

method mentioned in reference [16]. 
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Figure 1. Block diagram of driver's stress level identification system. 

Then, the R wave was detected, and the Heart Rate 

Variability (HRV) signal was formed using Pan and 

Tompkins algorithm [18]. In the next step, according to 

the database information, the ECG signal was divided 

into seven different prescribed routes during driving, 

including initial rest (IR), driving in city 1 (C1), 

driving on highway 1 (H1), driving in city 2 (C2), 

driving on highway 2 (H2), driving in city 3 (C3) and 

Final Rest (FR)). Then, conversion and extraction of 

features from different sections (various situations 

during driving) were discussed in the next step. In 

order to extract better information to more accurately 

determine the driver's stress level in different 

situations, the non-linear features of return map were 

used, in addition to the time characteristics, such as 

Mean Heart Rate (Mean HR), Standard Deviation 

Heart Rate (STD HR), RR interval and RR standard 

deviation which was assessed using the source code 

available in GitHub [9]. Figures 2 and 3 illustrate the 

electrode's installation, how to record and analyze data 

in different situations. 

 

Figure 2. Electrode installation and ECG recording. 

 
a) Rest situation. 

 
b) City situation. 

 
c) Highway situation. 

Figure 3. Data recording and analysis under different situations. 

This map graphic depicts the relationship between 

two consecutive heart rate intervals that examines the 

short-term and long-term variations. In this mapping, 

the horizontal axis represents the n-th RR interval 

(RRn), and the vertical axis represents the n+1-th RR 

interval (RRn+1) [19]. If the heart rate variability is 
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completely the same, the points that include the return 

map all places on a point on the 45-degree line. This 

occurs when the patient has a brain death. If the 

interval between these heart rates is different, the 

points are scattered on the map so that the distribution 

will look like an ellipse. The standard deviation created 

in a small ellipse radius that represents short-term 

HRV changes is defined as Standard Deviation1 

(SD1). Short-term changes are generally in line with 

the effect of the respiratory cycle on heart rate, and 

because respiratory effects are applied to heart rate 

variability through the vagus nerve [29], any 

dysfunction of the vagus may reduce heart rate 

variability in the short term. In addition, the standard 

deviation in the large elliptical radius is an index of 

long-term heart rate variability and indicates conditions 

that affect the heart rate variability in the long-term, 

including sympathetic fluctuations, compression 

reflexes, and hormonal changes [14]. Therefore, long-

term HRV changes are defined as SD2. Figure 4 shows 

the driver's heart rate signal for 13.15 minutes in the 

initial rest mode (above image), as well as the return 

map (below image). 

 
a) Driver's heart rate in initial rest period. 

 
b) Poincare initial rest period. 

Figure 4. Display heart rate in time series and return map. 

4. Simulation Results 

Descriptive analysis (mean and standard deviation) 

related to the heart rate variability features at different 

driving stages is presented in Table 1. The Mean HR 

and Mean RR features when driving in C1, C2, and C3 

are respectively higher and lower than when the driver 

was driving at H1 and H2, much less than when he was 

in the initial and the final rest modes. A comparison of 

the results obtained from STD RR and STD HR 

features represents an increase of standard deviation in 

situations where a driver is driving in a busy and 

voluminous environment. 

Figure 5 displays the driver's heart rate during 

driving and rest times. As shown in this figure, the 

cities' heart rate is much higher than the highway and 

much more than the rest mode. In Figure 6, the driver's 

stress is shown by the feature of RR intervals. When 

the feature has less value, the driver is in more stressful 

situations. Figures 7, and 8 also represent changes in 

the non-linear properties of the return map. The SD1 

feature has less value when complexity is less, and its 

value increases at high-stress times. The SD2 has also 

reduced when the driver is driving in high traffic and a 

busy environment. 

Table 1. Analysis of the time domain and non-linear features in 
different periods. 

Std 

SD2 

(ms) 

Mean 

SD2 

(ms) 

Std 

SD1 

(ms) 

Mean 

SD1 

(ms) 

Std 

RR 

(ms) 

Mean 

RR 

(ms) 

Std HR 

(1/mim) 

Mean 

HR 

(1/mim) 

Feature type 

Time 

Periods 

68.54 227.23 7.88 33.21 89.65 906.46 6.64 67.32 
Initial Rest 

(IR) 

46.75 178.37 11.78 47.54 140.21 866.94 9.31 79.55 City1 (C1) 

59.94 211.86 9.43 40.29 115.48 838.47 7.28 73.76 
Highway1 

(H1) 

41.59 170.89 13.56 50.88 136.57 723.36 8.83 84.71 City2 (C2) 

57.25 198.31 10.23 42.71 113.72 826.23 7.49 74.46 
Highway2 

(H2) 

39.36 153.34 14.67 53.93 158.62 683.34 9.17 89.45 City3 (C3) 

63.25 207.45 9.52 39.16 93.24 854.56 6.92 72.41 
Final Rest 

(FR) 

 

Figure 5. Impact of driver's stress on heart rate. 
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Figure 6. Impact of driver's stress on RR intervals. 

Figure 7. SD1 changes at different driving times. 

 

Figure 8. SD2 changes at different driving times. 

This increase and decrease in mean and standard 

deviation were analyzed by statistical analysis. It was 

found that there is a significant difference in the 

number of extracted features from different driving 

situations, according to Table 2. The places shown in 

this table with the green and red colors mean 

differentiation and non-differentiation of data in two 

different driving situations. For example, the heart rate 

feature could differentiate the driver's stress during 

driving in City 2 with P-value equal to 0.001 compared 

to when it was at the initial rest position. In the case of 

the other features mentioned in Table 1, although the 

level of some features has increased or decreased in 

different driving situations, the test's execution showed 

no significant difference in some features when 

comparing other driving conditions. 

Using the RR interval feature, this feature could 

create a good distinction between the driving distance 

between city 1 and highway 1 with a P-value of 0.031 

and the differentiation of all time intervals with rest 

mode. The use of the SD1 feature produced far better 

results than the previous two features, which made it a 

good distinction between driver stress during driving in 

city 1 and highway 1 with a P-value of 0.011 and city 3 

and highway 2 with a P-value of 0.044. Using the SD2 

feature also has a slightly better performance than the 

SD1 feature with more acceptable differentiation 

values. This feature indicated that the driver's stress 

level during the driving in the city 1 and highway 1 

with a P-value of 0.028 and the city 3 and highway 2 

with a P-value of 0.041 can be distinguished and 

identified. 

This feature showed that the proposed algorithm can 

create a significant difference between driver stress 

levels during driving in city 1 and highway 1 with P-

value of 0.028 and in city 3 and highway 2 with a P-

value of 0.041. Using extracted features from the 

return map shows that when a person is driving in 

cities, the SD1 and SD2 rates have increased and 

decreased, respectively, reflecting the driver's higher 

stress when driving in heavy traffic and crowded route. 

Due to the increasing number of vehicles and their 

collisions' fear and anxiety, the number of accidents in 

crowded routes is high, which the driver stress 

naturally increases due to the lack of collision with 

other vehicles [17]. 

Figure 9 shows the heart rate variability and RR 

intervals. As shown in this figure, City 3 has the 

highest heart rate and more standard deviation than 

other driving positions, and this point has the lowest 

mean in the RR intervals graph. This figure's results 

represent increased driver stress in crowded situations 

in cities compared to times when the driver needs to 

focus less on ideal driving. Figure 10 also indicates an 

increase in SD1 and a decrease in the SD2 value when 

the driver needs more attention and brainpower to 

make low-risk driving. Changing the features of the 

return map mentioned above indicates the system's 

complexity and disorder while driving in stressful 

situations than the situations where the driver is less 

stressed because of reduced traffic volume and driving 

route openness. 
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Table 2. Levels of distinction in different driving situations using heart rate feature. 

Final Rest (FR) City3 (C3) Highway2 (H2) City2 (C2) Highway1 (H1) City1 (C1) Initial Rest (IR) 

         Feature type  

 

 

Time Periods           

0.132 0.000 0.016 0.001 0.018 0.002  Initial Rest (IR) 

0.017 0.187 0.132 0.331 0.067  0.002 City1 (C1) 

0.024 0.073 0.193 0.126  0.067 0.018 Highway1 (H1) 

0.027 0.362 0.152  0.126 0.331 0.001 City2 (C2) 

0.013 0.127  0.152 0.193 0.132 0.016 Highway2 (H2) 

0.034  0.127 0.362 0.073 0.187 0.000 City3 (C3) 

 0.034 0.013 0.027 0.024 0.017 0.132 Final Rest (FR) 

 
a) Driver's heart rate in different situation. 

 
b) Driver's RR interval in different situation. 

Figure 9. The rate of heart rate variability and RR intervals of the driver in different driving situations.

 
a) Driver's SDI in different situation. 

 
b) Driver's SD2 in different situation. 

Figure 10. Changes of SD1 and SD2 features in different driving situations. 

4.1. Thresholding Criteria 

The online thresholding method was used to determine 

the efficiency of the proposed algorithm.  

In this method, the characteristics extracted from the 

heart signal in the periods mentioned above are 

compared. If the value of the desired feature 

approaches the selected threshold for driver stress in 

that feature, the alarm of the driver's position in the 

stress state would sound. The accuracy of this method 

for 100 iteration reported 98±2%. The results show 

that the extracted features of the return mapping are 

capable of identifying driver stress in various driving 

situations more than the introduced linear features. 
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Physiological parameters derived from the activity of 

the autonomic nervous system can be used to identify 

individuals' mental states. 

5. Discussion 

This paper aimed to evaluate an appropriate and 

practical method for identifying stress during driving. 

To this end, firstly, the investigations of researchers in 

these years and the various methods used and the 

causes of failure and the advantages of these methods 

have been discussed. Noting the advantages of the 

method of this paper, how the data were recorded and 

its recording conditions were then described. 

So far, research on the driver's stress detection has 

been carried out using other methods, including the 

recording of brain signals, jaw muscle signal recording 

and hand sweating, and so on. By reviewing these 

articles, it can be found that the recording methods of 

some of these signals, such as the electrical signal of 

the brain, are relatively complex and difficult, and the 

varying conditions of a person during driving (fatigue, 

head movements, etc.) can have negative effects on the 

correct recording of the signal. On the other hand, 

some studies have been able to detect driver stress by 

recording and using more data than this paper. In 

contrast, the authors of this paper were only able to 

detect the driver's stress level by recording the ECG 

signal and processing it (ECG recording is far more 

straightforward and more comfortable for drivers) at 

different stages of driving. 

As expected, the heart rate response was different 

during the initial and final rest periods than other 

driving conditions.  

A comparison of the results obtained in this paper 

with other research in this field shows that this paper's 

results show a significant advantage in identifying 

drivers' stress. In 2014, a study by Liu et al. [13] 

published a review of the ECG and GSR signals, which 

achieved only 85% accuracy in diagnosing stress. 

Similarly, El-Haouij et al. [4] achieved 81% accuracy 

in stress diagnosis using the Random Forest classifier. 

Munla et al. [20] also achieved 83% accuracy in 

diagnosing driver stress using the SVM-RBF method. 

Another study by Corcoba-Magaña et al. [3] based on 

deep learning found stress with an accuracy of 88%. 

Another study was conducted in 2008 by Patil and 

Hansen [23]. to detect stress using a contact sensor, 

which achieved an accuracy of 86.52%. According to 

the mentioned articles, we find that using the method 

proposed in this paper is still a useful way to diagnose 

driver stress. 

The obtained results of a research about stress 

detection showed that the use of the EMG signal and 

the statistical features with a support vector machine 

classifier with a cubic kernel were effective for 

detecting stress events where an Area Under Curve 

(AUC) of %97 is produced [30]. In other research, 

Rastgoo et al. [24] presented a method based on 

Convolutional Neural Network (CNN) is used to fuse 

the information obtained from ECG, vehicle, and 

environmental data. The result of this paper showed 

that the average accuracy: 92.8%, sensitivity: 94.13%, 

specificity: 97.37% and precision: 95.00%. In result, 

improvements should also be made based on 

explainable machine learning methods to assess stress 

levels, as it can personalize the severity of the warning 

that a re-system can reduce the personal and economic 

effects that a car accident can have [9]. 

6. Conclusions 

This paper indicated that the activity of the autonomic 

nervous system changes while driving and being on 

times that require more attention and focus. By 

identifying the stress caused by changes in different 

driving conditions, biorhythm, environmental 

conditions, fatigue, and illness, the proposed system 

prevents the driver from getting into a false situation 

and makes driving much safer. Through this 

information and careful monitoring of the driver's state 

during the event of an unfavorable condition, the driver 

is asked to stop and rest, resulting in safe driving. 

Therefore, the HRV signal can easily be extracted with 

the aid of a Photo Plethysmography (PPG) signal in 

real and practical mode, which will reduce the 

problems associated with the electrodes-induced fault 

with the skin and the body's sweating. According to the 

studies, the following suggestions are provided to 

improve the work and solve the limitations to achieve 

better results and increase diagnosis speed. 

Other methods that may be considered in this paper 

include selecting the superior feature rank using 

optimization methods.  

A deep qualitative understanding of which trait is 

most important to us can help us find more features 

and better understand the sympathetic nervous system's 

biological processes. 

Other time-frequency algorithms (such as wavelet-

violet conversion) may also differentiate ECG data. 
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