The International Arab Journal of Information Technology (IAJIT)


An Effective Data Warehousing System for RFID Using Novel Data Cleaning, Data Transformation and Loading Techniques

  Nowadays,  the  vital  parts  of  the  business  programs   are  the  data  warehouses  and  the  data  mining  techni ques.  Especially  these  are  vital  in  the  Radio  Frequency  I dentification  (RFID)  application  which  brings  a  rev olution  in  business  programs.  Manufacturing,  the  logistics  distribution   and  various  stages  of  supply  chains,  retail  store and  quality  management  applications are involved in the RFID technology in  business. A large volume of temporal and spatial data is generated by the  ubiquitous  computing  and  sensor  networks  of  RFID  an d  these  are  often  generated  with  noises  and  duplicates.  The  noises  and  duplicates  in  the  RFID  data  declare  the  need  of  an  effective  data  warehousing  system.  The  warehousing  system  has  the  responsibility  to  provide  proper  data  cleaning  tech nique  to  clean  the  dirty  data  which  occurs  in  the  a pplications.  Also,  the  cleaned data has to be transformed and to be loaded  properly so that they can be stored in the database with minimum space  requirements.  In  this  paper,  we  propose  a  novel  dat a  cleaning,  transformation  and  loading  technique  wh ich  makes  the  data  warehousing system employed for any RFID applicatio ns more effective. The chosen RFID application is tracking of goods in  warehouses  using  RFID  tags and  readers,  one  of  the  significant  RFID  applications.  The data  cleaning  is  performed  based  on  the  probability  of  each  RFID  tag’s  response  and  the   window  size  which  is  made  adaptive.  The  window  siz e  changes  on  the  basis of the occurrence of the dirty data and hence  the cleaning is more effective. The purified data is transformed in a special  structure  in  such  a  way  that  the  ware  house  can  hav e  only  the  tag  IDs  which  are  under  transaction  and the  time  of  interrogation in the size of bits. The transformed  data are loaded into the warehouse using the propos ed loading technique in a  dedicated tabular format.    

[1] Abowd G., and Mynatt E., Charting Past, Present, and Future Research in Ubiquitous Computing, ACM Transactions on Computer- Human Interaction , vol. 7, no. 1, pp. 29-58, 2000.

[2] Bottani E., Reengineering, Simulation and Data Analysis of an RFID System, Journal on Theoretical and Applied Electronic Commerce Research , vol. 3, no. 1, pp. 13-29, 2008.

[3] Chhillar R. and Kochar B., A New Efficient Approach for Effective Warehousing of RFID Data: Readers Load Sentient Scheme, American Journal of Scientific Research , vol. 3, no. 4, pp. 85-95, 2009.

[4] Chhillar R. and Kochar B., Extraction Transformation Loading A Road to Data Warehouse, in Proceedings of 2 nd National Conference on Mathematical Techniques: Emerging Paradigms for Electronics and IT Industries , Bangkok, pp. 358-362, 2008.

[5] Derakhshan R., Orlowska M., and Li X., RFID Data Management: Challenges and Opportunities, in Proceedings of IEEE International Conference on RFID , TX, pp. 175- 182, 2007.

[6] Flies D. and Lopez D., Building a Classroom Data Warehouse, in Proceedings of the 34 th Instruction and Computing Symposium , University of Minnesota, USA, pp. 1-7, 2001.

[7] Gonzalez H., Han J., Li X., and Klabjan D., Warehousing and Analyzing Massive RFID Data Sets, in Proceedings of 22 nd International Conference on Data Engineering , Champaign, pp. 83, 2006.

[8] Inmon W., The Data Warehouse and Data Mining, Communications of the ACM , vol. 39, no. 11, pp. 49- 50, 1996.

[9] Jarke M., List T., and Koller J., The Challenge of Process Data Warehousing, in Proceedings of the 26 th International Conference on Very Large Data Bases , USA, pp. 473- 483, 2000.

[10] Jeffery S., Franklin M., and Garofalakis M., An Adaptive RFID Middleware for Supporting Metaphysical Data Independence, The International Journal on Very Large Data Bases , vol. 17, no. 2, pp. 265-289, 2008.

[11] Lee H., Choi D., Lee S., and Kim H., A Study on RFID Privacy Mechanism using Mobile Phone, in Proceedings of World Academy of Science, Engineering and Technology , USA, pp. 75-78, 2005.

[12] Lee S., Lee J., and Lee B., Service Composition Techniques Using Data Mining for Ubiquitous Computing Environments, International Journal on Computer Science and Network Security , vol. 6, no. 9B, pp. 110- 117, 2006.

[13] Lindell Y. and Pinkas B., Privacy Preserving Data Mining, Journal on Cryptology, vol. 29, no. 2, pp. 36- 54, 2000.

[14] Ling S., Indrawan M., and Loke S., RFID-Based User Profiling of Fashion Preferences: Blueprint for a Smart Wardrobe, International Journal on Internet Protocol Technology , vol. 2, no. 3, pp. 153-164, 2007.

[15] Liu B., Zhang R., and Liu S., RFID System and its Perspective Analysis with KERGM(1,1) Model, Journal on Computers , vol. 3, no. 7, pp. 9-15, 2008.

[16] Mylyy O., RFID Data Management, Aggregation and Filtering, in Proceedings of the 31 st International Conference on Very Large Data Bases Seminar on RFID Technology , USA, pp. 6-154, 2007.

[17] Rob M. and Ellis M., Case Projects in Data Warehousing and Data Mining, Issues in Information Systems , vol. 8, no. 1, pp. 1-7, 2007.

[18] Romero C., Ventura S., and Garcia E., Data Mining in Course Management Systems: Moodle Case Study and Tutorial, Journal on Computers and Education , vol. 51, no. 1, pp. 368-384, 2008.

[19] Santillo L., Size and Estimation of Data Warehouse Systems, in Proceedings of the 4th European Conference on Software Measurement and ICT Control FESMA DASMA , Germany, pp. 173-184, 2001.

[20] Stankovski V., Swain M., Kravtsov V., Niessen T., Wegener D., Kindermann J., and Dubitzky 216 The International Arab Journal of Infor mation Technology, Vol. 9, No. 3, May 2012 W., Grid-Enabling Data Mining Applications with DataMiningGrid: An architectural Perspective, Journal of Future Generation Computer Systems , vol. 24, no. 4, pp. 259-279, 2008.

[21] Telbany M., Warda M., and Borahy M., Mining the Classification Rules for Egyptian Rice Diseases, The International Arab Journal of Information Technology , vol. 3, no. 4, pp. 303- 307, 2006.

[22] Vassiliadis P., Quix C., Vassiliou Y., and Jarke M., Data Warehouse Process Management, Journal of Information Systems , vol. 26, no. 3, pp. 205-236, 2001.

[23] Velpula V. and Gudipudi D., Behavior- Anomaly-Based System for Detecting Insider Attacks and Data Mining, International Journal on Recent Trends in Engineering , vol. 1, no. 2, pp. 261-266, 2009.

[24] Wadhwa V. and Lin D., Radio Frequency Identification: A New Opportunity for Data Science, Journal on Data Sciences , vol. 6, no. 3, pp. 369-388, 2008.

[25] Wikramanayake G. and Goonetillake J., Managing Very Large Databases and Data Warehousing, Sri Lankan Journal on Librarianship and Information Management , vol. 2, no. 1, pp. 22- 29, 2006. Barjesh Kochar is pursuing his PhD under the guidance of Dr. Rajender Singh Chhillar and currently working as the head of MCA in GNIM, New Delhi. He has published a number of research papers in international, national level conferences and journals. Rajender Chhillar a Head of Department of Computer Science and Applications in M.D.U Rohtak, India. He has published a number of research papers on various topics of computer science in international, national journals and conferences.