The International Arab Journal of Information Technology (IAJIT)

..............................
..............................
..............................


New Prototype of Hybrid 3D-Biometric Facial

#
 In  the  last  decades,  a  lot  of  3D  face  recognition  t echniques  have  been  proposed.  They  can  be  divided  i nto  three  parts, holistic matching techniques, feature-based  techniques and hybrid techniques. In this paper, a  hybrid technique is used,  where,  a  prototype  of  a  new  hybrid  face  recognition   technique  depends  on  3D  face  scan  images  are  desig ned,  simulated  and  implemented.  Some  geometric  rules  are  used  for  anal yzing  and  mapping  the  face.  Image  processing  is  used  to  get  the  two- dimensional values of predetermined and specific fa cial points, software programming is used to perform a three-dimensional  coordinates  of  the  predetermined  points  and  to  calc ulate  several  geometric  parameter  ratios  and  relations.  Neural  network  technique is used for processing the calculated geo metric parameters and then performing facial recogn ition. The new design  is  not  affected  by  variant  pose,  illumination  and  e xpression  and  has  high  accurate  level  compared  with   the  2D  analysis.  Moreover,  the  proposed algorithm  is  of  higher  perfo rmance  than  latest’s  published biometric  recognition  algorithms  in  terms  of cost, confidentiality of results, and availabili ty of design tools.    


[1] Ayyagari V., Boughorbel F., Koschan A., Abidi B., and Abidi M., A Pose Invariant 3D Face Recognition Method, available at: http://imaging.utk.edu/publications/papers/2005/ 220_3D-Abidi-UTK-4_05.pdf, last visited 2005.

[2] Bevilacqua V., Caprioli M., Cortellino M., Giannini M., Mastronardi G., and Santarcangelo V., Accuracy of 3D Face Recognition Frameworks, available at: http://www.isprs.org/ proceedings/XXXVIII/part7/b/pdf/86_XXXVIII- part7B.pdf, last visited 2010.

[3] Bowyer K., Chang K., and Flynn P., A Survey of Approaches and Challenges in 3D and Multi- Modal 3D+2D Face Recognition, Computer Vision Image Understanding , vol. 101, no. 1, pp. 1-15, 2006.

[4] Bronstein A., Bronstein M., Michael M., Bronstein., and Ron K., Expression-Invariant Representation of Faces, IEEE Transaction Image Processing , vol. 16, no. 1, pp. 188-197, 2007.

[5] Bronstein A., Bronstein M., and Ron K., Expression-Invariant 3D Face Recognition, in C W2 O u t p u tay ||dist|| na b

[]1,1w

[]R w ,11P2P RP Input 594 The International Arab Journal of Information Techn ology, Vol. 13, No. 5, September 2016 Proceedings of the 4th International Conference, AVBPA 2003 Guildford , UK, pp. 52-61, 2003.

[6] Dalong Jiang , and et al., Efficient 3D Reconstruction for Face Recognition, available at: http://citeseerx.ist.psu.edu/viewdoc/download?do i=10.1.1.88.3670&rep=rep1&type=pdf

[7] Jiang D., Hu Y., Yan S., Zhang L., Zhang H., and Gao W., Efficient 3D Reconstruction for Face Recognition, available at: http://research. microsoft.com/en-us/um/people/leizhang/paper/ pr05-dalong.pdf, last visited 2005.

[8] Kaushik V., Pathak V., and Gupta P., Geometric Modeling of 3D-Face Features and Its Applications, Journal of Computers , vol. 5, no. 9, 1305-1314 2010.

[9] Li S. and Jain A., Handbook of Face Recognition , Springer, 2011.

[10] Mahoora M., and Abdel-Mottaleb M., Face Recognition based on 3D Ridge Images Obtained from Range Data, Pattern Recognition Journal , vol. 42, pp. 445-451, 2009.

[11] Murtaza M., Sharif M., Raza M., and Shah J., Analysis of Face Recognition under Varying Facial Expression: A Survey, The International Arab Journal of Information Technology , vol. 10, no. 4, pp. 387-388, 2013.

[12] Tin M. and Sein M., Multi Triangle based Automatic Face Recognition System by using 3D Geometric Face Feature, in Proceedings of IEEE Instrumentation and Measurement Technology Conference , Singapore, pp. 895-899, 2009.

[13] Nagi J. and Nagi F., A MATLAB based Face Recognition System using Image Processing and Neural Networks, in Proceedings of the 4 th International Colloquium on Signal Processing and its Applications , Kuala Lumpur, Malaysia, pp. 83-88, 2008.

[14] Suhas S., Ajay K., and Khanale P., Face Recognition Using Principal Component Analysis and Linear Discriminant Analysis on Holistic Approach in Facial Images Database, IOSR Journal of Engineering , vol. 2, no. 12, pp. 15-23, 2012.

[15] Zhang M., Wen J., Zhang Z., and Zhang J., Designing of 3D-face Recognition System, in Proceedings of the 3 rd International Congress on Image and Signal Processing , Yantai, pp. 1845- 1848, 2010.

[16] Zhao W., Chellappa R., Phillips P., and Rosenfeld A., Face Recognition: A LITERATURE Survey, ACMC Computing Surveys , vol. 35, no. 4, pp. 399-458, 2003.

[17] Zhen W. and Huang T., 3D Face Processing Modelling, Analysis and Synthesis , Kluwer Academic Publishers, 2004. Haitham Issa received the PhD degree in Communications and Information systems from Zhejiang Unive rsity in 2002 (China). Currently, he is teaching in the Department of Communications & Electronics Engineering at Isra University (Jordan). Sali Issa received the MASTER degree from Yarmouk University in 2015 (Jordan). Currently, she is a PhD student in the field of Electronics and Information Engineering at HUST University (China). Mohammad Issa received the MASTER degree in the field of Electronics and Information Engineering from HUST University in 2016 (China). Currently, he is working with Huawei Technologies Company (China). Currently, he is a master degree candidate in the field of Communications and Information Engineering at HUST University.