The International Arab Journal of Information Technology (IAJIT)

..............................
..............................
..............................


Generating Embedding Features Using Deep Learning for Ethnics Recognition

Although significant advances have been made recently in the field of ethnics recognition through face recognition, there is still a lack of studies of ethnics recognition through facial recognition. This study is concerned with ethnics recognition through facial representation using a few images used as samples for any selected group of ethnics using a deep neural network with a Variational Feature Learning (VFL) loss function that has been used to increase the performance accuracy during the evaluation process. The output of a deep neural network is an embedding of 128 bytes for each face image in each group of ethnics. After that, all embeddings of every face in each group of ethnics pass to a machine learning classification method like a Support Vector Machine (SVM). We achieved state-of-the-art ethnic recognition. The system achieved a classification accuracy of 97.3% on a collected group of image dataset collected from three different countries.

[1] AlBdairi A., Xiao Z., and Alghaili M., “Identifying Ethnics of People through Face Recognition: A deep CNN Approach,” Scientific Programming, vol. 2020, 2020. https://doi.org/10.1155/2020/6385281

[2] Alfasly S., Hu Y., Liang T., Jin X, Zhao Q., and Liu B., “Variational Representation Learning for Vehicle Re-Identification,” in Proceedings of the IEEE International Conference on Image Processing, Taipei, pp. 3118-3122, 2019. DOI:10.1109/ICIP.2019.8803366

[3] Alzahrani A. and Bhuiyan A., “On Satellite Imagery of Land Cover Classification for Agricultural Development,” The International Arab Journal of Information Technology, vol. 20, no. 1, pp. 9-18, 2023. https://doi.org/10.34028/iajit/20/1/2

[4] Amos B., Ludwiczuk B., and Satyanarayanan M., “Openface: A general-purpose Face Recognition Library with Mobile Applications,” CMU School of Computer Science, vol. 6, no. 2, pp. 1-20, 2016.

[5] Anwar I. and Islam N., “Learned Features are Better for Ethnicity Classification,” Cybernetics and Information Technologies, vol. 17, no. 3, pp. 152-164, 2017. DOI: 10.1515/cait-2017-0036

[6] Blaine B. and Brenchley K., Understanding the Psychology of Diversity, Sage Publications, 2017.

[7] Bruce V., Burton A., Hanna E., Healey P., Mason O., Coombes A., Fright R., and Linney A., “Sex Discrimination: How Do We Tell the Difference Between Male and Female Faces?,” Perception, vol. 22, no. 2, pp. 131-152, 1993. https://doi.org/10.1068/p220131

[8] Chen H., Deng Y., and Zhang S., “Where am I from? -East Asian Ethnicity Classification from Facial Recognition,” Project Study in Stanford University, 2016.

[9] Ding H., Huang D., Wang Y., and Chen L., “Facial Ethnicity Classification based on Boosted Local Texture and Shape Descriptions,” in Proceedings of the 10th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Shanghai, pp. 1-6, 2013. DOI:10.1109/FG.2013.6553815

[10] Duan X., Wang C., Liu X., Li Z., Wu J., and Zhang H., “Ethnic Features Extraction and Recognition of Human Faces,” in Proceedings of the 2nd International Conference on Advanced Computer Control, Shenyang, pp. 125-130, 2010. DOI: 10.1109/ICACC.2010.5487194

[11] Elbasi E. and Zreikat A., “Heart Disease Classification for Early Diagnosis based on Adaptive Hoeffding Tree Algorithm in IoMT,” The International Arab Journal of Information Technology, vol. 20, no. 1, pp. 38-48, 2023. DOI:10.34028/iajit/20/1/R=

[12] Farkas L., Katic M., Forrest C., and Alt K., “International Anthropometric Study of Facial Morphology in Various Ethnic Groups/Races,” Journal of Craniofacial Surgery, vol. 16, no. 4, pp. 615-646, 2005. DOI:10.1097/01.scs.0000171847.58031.9e

[13] Fu S., He H., and Hou Z., “Learning Race from Face: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 36, no. 12, pp. 2483-2509, 2014. DOI: 10.1109/TPAMI.2014.2321570

[14] Fu Y., Guo G., and Huang T., “Age Synthesis and Estimation via Faces: A Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 32, no. 11, pp. 1955-1976, 2010. DOI: 10.1109/TPAMI.2010.36

[15] Furl N., Phillips P., and O’Toole A., “Another-race Effect for Face Recognition Algorithms. Face Recognition Algorithms and the Other-Race Effect: Computational Mechanisms for a Developmental Contact Hypothesis,” Cognitive Science, vol. 26, no. 6, pp. 797-815, 2002. https://doi.org/10.1016/S0364-0213(02)00084-8

[16] Guo G., “Human Age Estimation and Sex Classification,” Video Analytics for Business Intelligence, vol. 409, pp. 101-131, 2012. DOI:10.1007/978-3-642-28598-1_4

[17] Gutta S., Wechsler H., and Phillips P., “Gender and Ethnic Classification of Face Images,” in Proceedings of the 3rd IEEE International Conference on Automatic Face and Gesture Recognition, Nara, pp. 194-199, 1998. DOI:10.1109/AFGR.1998.670948

[18] Han H., Otto C., Liu X., and Jain A., “Demographic Estimation from Face Images: Human vs. Machine Performance,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 37, no. 6, pp. 1148-1161, 2014. DOI:10.1109/TPAMI.2014.2362759

[19] Hosoi S., Takikawa E., and Kawade M., “Ethnicity Estimation with Facial Images,” in Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Generating Embedding Features Using Deep Learning for Ethnics Recognition 675 pp. 195-200, 2004. DOI:10.1109/AFGR.2004.1301530
[20]    Huang G., Mattar M., Berg T., and Learned-Miller E., “Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments,” pp. 1-11, 2008. http://vis-www.cs.umass.edu/lfw/lfw.pdf
[21]    Jilani S., Ugail H., Bukar A., Logan A., and Munshi T., “A Machine Learning Approach for Ethnic Classification: The British Pakistani Face,” in Proceedings of the International Conference on Cyberworlds, Chester, pp. 170-173, 2017. DOI: 10.1109/CW.2017.27
[22]    Jin H., Wang X., Zhong Z., and Hua J., “Robust 3D Face Modeling and Reconstruction from Frontal and Side Images,” Computer Aided Geometric Design, vol. 50, pp. 1-13, 2017. https://doi.org/10.1016/j.cagd.2016.11.001
[23]    Jindal R. and Singla S., “Latent Fingerprint Recognition using Hybrid Ant Colony Optimization and Cuckoo Search,” The International Arab Journal of Information Technology, vol. 20, no. 1, pp. 19-28, 2023. https://doi.org/10.34028/iajit/20/1/3 
[24]    Kingma D. and Welling M., “Auto-Encoding Variational Bayes,” arXiv Preprint arXiv, pp. 1312-6114, 2013. https://doi.org/10.48550/arXiv.1312.6114 
[25]    Kisku D., Rattani A., Grosso E., and Tistarelli M., “Face Identification by SIFT-based Complete Graph Topology,” in Proceedings of the IEEE Workshop on Automatic Identification Advanced Technologies, Alghero, pp. 63-68, 2007. DOI: 10.1109/AUTOID.2007.380594 
[26]    Krizhevsky A., Sutskever I., and Hinton G., “ImageNet Classification with Deep Convolutional Neural Networks,” Advances in Neural Information Processing Systems, vol. 25, no. 2, pp. 1097-1105, 2012. https://scirp.org/reference/referencespapers.aspx?referenceid=3031254
[27]    LeCun Y., Boser B., Denker J., Henderson D., Howard R., Hubbard W., and Jackel L.,“Backpropagation Applied To Handwritten Zip Code Recognition,” Neural Computation, vol. 1, no. 4 pp. 541-551, 1989. DOI: 10.1162/neco.1989.1.4.541
[28]    Lin Q., Man Z., Cao Y., and Wang H., “Automated Classification of Whole-Body SPECT Bone Scan Images with VGG-Based Deep Networks,” The International Arab Journal of Information Technology, vol. 20, no. 1, pp. 1-8, 2023. https://doi.org/10.34028/iajit/20/1/1
[29]    Liu C. and Wechsler H., “Independent Component Analysis of Gabor Features for Face Recognition,” IEEE Transactions on Neural Networks, vol. 14, no. 4, pp. 919-928, 2003. DOI: 10.1109/TNN.2003.813829 
[30]    Liu W., Wen Y., Yu Z., Li M., Raj B., and Song L., “SphereFace: Deep Hypersphere Embedding for Face Recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212-220, Honolulu, 2017. https://openaccess.thecvf.com/content_cvpr_2017/html/Liu_SphereFace_Deep_Hypersphere_CVPR_2017_paper.html
[31]    Liu Z., Luo P., Wang X., and Tang X., “Large-Scale CelebFaces Attributes (CelebA) Dataset,” Retrieved August, vol. 15, pp. 1-11, 2018. https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html 
[32]    Megias A., Rzeszewska I., Aguado L., and Catena A., “Influence of Cross-ethnic Social Experience on Face Recognition Accuracy and the Visual Perceptual Strategies Involved,” International Journal of Intercultural Relations, vol. 65, pp. 42-50, 2018. https://doi.org/10.1016/j.ijintrel.2018.04.008 
[33]    Ng C., Tay Y., and Goi B., “EtVision-based Human Gender Recognition: A Survey,” arXiv preprint arXiv, pp. 1204-1611, 2012. https://doi.org/10.48550/arXiv.1204.1611 
[34]    Parkhi O., Vedaldi A., and Zisserman A., “Deep Face Recognition,” in bmvc, pp. 1-12, 2015. https://www.robots.ox.ac.uk/~vgg/publications/2015/Parkhi15/parkhi15.pdf
[35]    Phillips P., Jiang F., Narvekar A., Ayyad J., and O‘Toole A., “An other-race Effect for Face Recognition Algorithms,” ACM Transactions on Applied Perception, vol. 8, no. 2, pp. 1-14, 2011. https://doi.org/10.1145/1870076.1870082 
[36]    Ramanathan N., Chellappa R., and Biswas S., “Computational Methods for Modeling Facial Aging: A Survey,” Journal of Visual Languages and Computing, vol. 20, no.3 pp. 131-144, 2009. https://doi.org/10.1016/j.jvlc.2009.01.011 
[37]    Rumelhart D., Hinton G., and Williams R., “Learning Representations by Back-Propagating Errors,” Cognitive Modeling, vol. 5, pp. 1, 1988. https://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=2239759
[38]    Savran A., Alyüz N., Dibeklioglu H., Çeliktutan Q., Gökberk B., Sankur B., and Akarun L., “Bosphorus Database for 3D Face Analysis,” European Workshop on Biometrics and Identity Management, vol. 5372, pp. 47-56, 2008. https://doi.org/10.1007/978-3-540-89991-4_6
[39]    Sayers J., “The Bonds of Love-Psychoanalysis, Feminism and the Problem of Domination-Benjamin J,” Feminism and Psychology, vol. 3, pp. 250-251, 1993. https://kar.kent.ac.uk/id/eprint/20663
[40]    Schirrmeister R., Springenberg J., Fiederer L., and Glasstetter M.,“Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization,” Human Brain Mapping, vol. 38, no. 11, pp. 5391-5420, 2017. https://doi.org/10.1002/hbm.23730 

[41]    Schroff F., Kalenichenko D., and Philbin J., “FaceNet: A Unified Embedding for Face Recognition and Clustering,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 815-823, 2015. DOI: 10.1109/CVPR.2015.7298682
[42]    Shakhnarovich G., Viola P., and Moghaddam B., “A Unified Learning Framework for Real Time Face Detection and Classification,” in Proceedings of the 5th IEEE International Conference on Automatic Face Gesture Recognition, Washington, pp. 16-23, 2002. DOI: 10.1109/AFGR.2002.1004124
[43]    Shin M., Seo J., and Kwon D., “Face Image-Based Age and Gender Estimation with Consideration of Ethnic Difference,” in Proceedings of the 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, pp. 567-572, 2017. DOI: 10.1109/ROMAN.2017.8172359 
[44]    Sun Y., Chen Y., Wang X., and Tang X., “Deep Learning Face Representation by Joint Identification-Verification,” Advances in Neural Information Processing Systems, vol. 2, pp. 1988-1996, 2014. https://dl.acm.org/doi/10.5555/2969033.2969049#d21007992e1 
[45]    Sun Y., Wang X., and Tang X., “Deep Learning Face Representation from Predicting 10,000 Classes,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 1891-1898, 2014. DOI: 10.1109/CVPR.2014.244 
[46]    Sun Y., Wang X., and Tang X., “Deeply Learned Face Representations are Sparse, Selective, and Robust,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 2892-2900, 2015. DOI: 10.1109/CVPR.2015.7298907 
[47]    Sun Y., Wang X., and Tang X., “Hybrid Deep Learning for Face Verification,” in Proceedings of the IEEE International Conference on Computer Vision, Sydney, pp. 1489-1496, 2013. DOI: 10.1109/ICCV.2013.188
[48]    Szegedy C., Liu W., Jia Y., Sermanet P., Reed S., and Anguelov D., “Going Deeper with Convolutions,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 1-9, 2015. DOI: 10.1109/CVPR.2015.7298594 
[49]    Taigman Y., Yang M., Ranzato M. A., and Wolf L., “Web-Scale Training For Face Identification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, pp. 2746-2754, 2015. https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Taigman_Web-Scale_Training_for_2015_CVPR_paper.html
[50]    Taigman Y., Yang M., Ranzato M., and Wolf L., “Deep-Face: Closing the Gap to Human-Level Performance in Face Verification,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, pp. 1701-1708, 2014. DOI: 10.1109/CVPR.2014.220 
[51]    Tan H., Yang B., and Ma Z., “Face Recognition Based on the Fusion of Global and Local HOG Features of Face Images,” IET Computer Vision, vol. 8, no. 3, pp. 224-234, 2014. doi: 10.1049/iet-cvi.2012.0302
[52]    Valentin D., Abdi H., O'Toole A., and Cottrell G., “Connectionist Models of Face Processing: A Survey,” Pattern Recognition, vol. 27, no. 9, pp. 1209-1230, 1994. https://doi.org/10.1016/0031-3203(94)90006-X
[53]    Vijayan V., Bowyer K., Flynn P., Huang D., Chen L., and Hansen M., “Twins 3D Face Recognition Challenge,” in Proceedings of the International Joint Conference on Biometrics, Washington, pp. 1-7, 2011. DOI: 10.1109/IJCB.2011.6117491
[54]    Wang W., He F., and Zhao Q., “Facial Ethnicity Classification with Deep Convolutional Neural Networks,” in Proceedings of the 11th Chinese Conference on Biometric Recognition, Chengdu, pp. 176-185, 2016. https://doi.org/10.1007/978-3-319-46654-5_20
[55]    Wang Y., Shen J., Petridis S., and Pantic M., “A Real-Time and Unsupervised Face Re-Identification System for Human-Robot Interaction,” Pattern Recognition Letters, vol. 128, pp. 559-568, 2019. https://doi.org/10.1016/j.patrec.2018.04.009
[56]    Weinberger K. and Saul L., “Distance Metric Learning for Large Margin Nearest Neighbor Classification,” Journal of Machine Learning Research, vol. 10, pp. 207-244, 2009. https://jmlr.csail.mit.edu/papers/volume10/weinberger09a/weinberger09a.pdf
[57]    Wu S. and Wang D., “Effect of Subject’s Age and Gender on Face Recognition Results,” Journal of Visual Communication and Image Representation, vol. 60, pp. 116-122, 2019. https://doi.org/10.1016/j.jvcir.2019.01.013
[58]    Yan Y., “Is he Chinese, Korean or Japanese?,” Project study in Stanford University, 2015. http://cs231n.stanford.edu/reports/2015/pdfs/yuyuan1_project.pdf 
[59]    Yi D., Lei Z., Liao S., and Li S., “Learning Face Representation from Scratch,” arXiv Preprint arXiv, pp. 1411-7923, 2014. https://doi.org/10.48550/arXiv.1411.7923
[60]    Zhang D., Meng D., and Han J., “Co-saliency Detection via a Self-Paced Multiple Instance-Learning Framework,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 5, pp. 865-878, 2017. DOI: 10.1109/TPAMI.2016.2567393

[61]    Zhang G., Huang X., Li S., Wang Y., and Wu X., “Boosting Local Binary Pattern (LBP)-Based Face Recognition,” in Proceedings of the 5th Chinese Conference on Biometric Recognition, Guangzhou, pp. 179-186, 2004. DOI:10.1007/978-3-540-30548-4_21 
[62]    Zhang L., Gao Y., Xia Y., Da Q., and Li X., “A Fine-Grained Image Categorization System by Cellet-Encoded Spatial Pyramid Modeling,” IEEE Transactions on Industrial Electronics, vol. 62, no. 1, pp. 564-571, 2015. DOI: 10.1109/TIE.2014.2327558 
[63]    Zhang L., Hong R., Gao Y., Ji R., Dai Q., and Li X., “Image Categorization by Learning a Propagated Graphlet Path,” IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 3, pp. 674-685, 2016. DOI: 10.1109/TNNLS.2015.2444417
[64]    Zhu Z., Luo P., Wang X., and Tang X., “Deep Learning and Disentangling Face Representation by Multi-View Perceptron,” in Proceedings of the Advances in Neural Information Processing Systems, 2014.
[65]    Zhu Z., Luo P., Wang X., and Tang X., “Deep Learning Identity-Preserving Face Space,” in Proceedings of the IEEE International Conference on Computer Vision, Sydney, pp. 113-120, 2013. DOI: 10.1109/ICCV.2013.21
[66]    Zhu Z., Luo P., Wang X., and Tang X., “Recover Canonical-View Faces in the Wild with Deep Neural Networks,” arXiv Preprint arXiv, pp. 1404-3543, 2014. https://doi.org/10.48550/arXiv.1404.3543
[67]    Zhuang Z., Landsittel D., Benson S., Roberge R., and Shaffer R., “Facial Anthropometric Differences among Gender, Ethnicity, and Age Groups,” Annals of Occupational Hygiene, vol. 54, no. 4, pp. 391-402, 2010. https://doi.org/10.1093/annhyg/meq007