The International Arab Journal of Information Technology (IAJIT)

..............................
..............................
..............................


Disease Prognosis of Fetal Heart’s Four-Chamber and Blood Vessels in Ultrasound Images Using CNN Incorporated VGG 16 and Enhanced DRNN

Fetal Heart Disease (FHD) based Structural Heart Disorders (SHD) occur when certain features of the heart develop abnormally. These flaws may cause blood flow to circulate in the erroneous spot, slow down, or be utterly blocked. Heart Defects (HD) caused via FHD or disorders that primarily impact embryonic heart conditions are alternatively referred to as Congenital Heart Defects (CHD). Multiple prior investigation algorithms such as Multi-Resolution Convolutional Neural Network (MRCNN), Deep Convolutional Neural Network (DCNN), Faster-RCNN (FRCNN) and DANomaly Wgan-GP and Convolutional Neural Network (DGACNN) rendered in the detection of FHD. Yet, the models have endured several challenges due to fuzzy constraints and irrelevant adherence. The intended aim is to detect the dilemma of the fetal heart in UltraSound (US) images using two distinct tier methods. The initial tier detects the fetal heart chamber's walls and valves using the Convolutional Neural Network (CNN)-incorporated Visual Geometry Group 16 (VGG 16) technique for processing fetal ultrasound images, allowing it to detect and dissolve anomalies in heart walls. This initial investigation concerns improving the image's quality in each subsequent sequence, from lowest to most improved using the conventional Augmented Wiener Filtering (AWF) approach. Succeeding, an instance-level Region of Interest (ROI) segmentation for exploiting the feature mining approach will be carried out via spatial features masking and ground-truth labeling framework for septal defect diagnosis. The second tier determines the flaws in fetal heart blood flow size, structure and vessels utilizing Deep Recurrent Neural Network (DRNN) integrated with region-based texture characteristics Local-Binary-Pattern (LBP), Histogram-of-Oriented-Gradient (HOG) and the Bags Of Features (BOF) segmentation framework via image acquiring. In eventual, the histogram equalization enhancement algorithm with Median Modified Wiener Filter (MMWF) is enumerated to enhance the visual quality, tests for signal-to-noise ratio, rate of variations, and noise proportion for sorting the blood vessels of the input fetal image. The analyzed CNN’s VGG 16 and DRNN model’s efficiency via Matrix Laboratory (MATLAB) has detected the cardiac features both in normal and abnormal ranges with an overall accuracy of 99.89% and 98.7%.

[1] Acharya U. and Kumar S., “Genetic Algorithm Based Adaptive Histogram Equalization (GAAHE) Technique for Medical Image Enhancement,” Optik, vol. 230, pp. 166273, 2021. https://doi.org/10.1016/j.ijleo.2021.166273

[2] Alan M., Aküner M., and Kepez A., “Biosignal Classification and Disease Prediction with Deep Learning,” in Proceedings of the Innovations in Intelligent Systems and Applications Conference, Istanbul, pp. 1-5, 2020. DOI:10.1109/ASYU50717.2020.9259852

[3] An Y., Li J., Huang L., Leng J., Yang L., and Zhou P., “Deep Learning Enabled Superfast and Accurate M2 Evaluation for Fiber Beams,” Optics Express, vol. 27, no. 13, pp. 18683-18694, 2019. (20) 1124 The International Arab Journal of Information Technology, Vol. 21, No. 6, November 2024 https://doi.org/10.1364/OE.27.018683

[4] Asmare M., Woldehanna F., Janssens L., and Vanrumste B., “Rheumatic Heart Disease Detection Using Deep Learning from Spectro- Temporal Representation of Un-Segmented Heart Sounds,” in Proceedings of the 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Montreal, pp. 168-171, 2020. DOI:10.1109/EMBC44109.2020.9176544

[5] Babu S., Suneetha A., Babu G., Kumar Y., and Karuna G., “Medical Disease Prediction Using Grey Wolf Optimization and Auto Encoder Based Recurrent Neural Network,” Periodicals of Engineering and Natural Sciences, vol. 6, no. 1, pp. 229-240, 2018. DOI:10.21533/pen.v6i1.286

[6] Baumgartner C., Kamnitsas K., Matthew J., Fletcher T., Smith S., Koch L., Kainz B., and Rueckert D., “SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound,” IEEE Transactions on Medical Imaging, vol. 36, no. 11, pp. 2204-2215, 2017. DOI:10.1109/TMI.2017.2712367

[7] Bharat R. and Tanveer M., “EEG Signal Classification Using Universum Support Vector Machine,”Expert Systems with Applications, vol. 106, pp. 169-182, 2018. https://doi.org/10.1016/j.eswa.2018.03.053

[8] Bridge C., Ioannou C., and Noble J. “Automated Annotation and Quantitative Description of Ultrasound Videos of the Fetal Heart,” Medical Image Analysis, vol. 36, pp. 147-161, 2017. https://doi.org/10.1016/j.media.2016.11.006

[9] Cannistraci C., Abbas A., and Gao X., “Median Modified Wiener Filter for Nonlinear Adaptive Spatial Denoising of Protein NMR Multidimensional Spectra,” Scientific Reports, vol. 5, no. 1, pp. 8017, 2015. https://doi.org/10.1038/srep08017

[10] Cannistraci C., Montevecchi F., and Alessio M., “Median‐Modified Wiener Filter Provides Efficient Denoising, Preserving Spot Edge and Morphology in 2‐DE Image Processing,” Proteomics, vol. 9, no. 21, pp. 4908-4919, 2009. DOI:10.1002/pmic.200800538

[11] Cheng J., Ni D., Chou Y., Qin J., Tiu C., Chang Y., Huang C., Shen D., and Chen C., “Computer- Aided Diagnosis with Deep Learning Architecture: Applications to Breast Lesions in US Images and Pulmonary Nodules in CT Scans,” Scientific Reports, vol. 6, no. 1, pp. 24454, 2016. https://doi.org/10.1038/srep24454

[12] Choi E., Schuetz A., Stewart W., and Sun J., “Using Recurrent Neural Network Models for Early Detection of Heart Failure Onset,” Journal of the American Medical Informatics Association, vol. 24, no. 2, pp. 361-370, 2017. DOI:10.1093/jamia/ocw112

[13] Combs C., Hameed A., Friedman A., Hoskins I., Quality Committee, and Society for Maternal- Fetal Medicine., “Special Statement: Proposed Quality Metrics to Assess Accuracy of Prenatal Detection of Congenital Heart Defects,” American Journal of Obstetrics and Gynecology, vol. 222, no. 6, pp. 2-9, 2020. https://doi.org/10.1016/j.ajog.2020.02.040

[14] Das S., Mukherjee H., Obaidullah S., Santosh K., Roy K., and Saha C., “Recurrent Neural Network Based Classification of Fetal Heart Rate Using Cardiotocograph,” in Proceedings of the Recent Trends in Image Processing and Pattern Recognition: 2nd International Conference, Solapur, pp. 226-234, 2019. https://doi.org/10.1007/978-981-13-9184-2_20

[15] De Araujo A., Constantinou C., and Tavares J., “Smoothing of Ultrasound Images Using a New Selective Average Filter,” Expert Systems with Applications, vol. 60, pp. 96-106, 2016. https://doi.org/10.1016/j.eswa.2016.04.034

[16] Dev M., Nanda N., Maulik D., and Vilchez G., “A Brief History of Fetal Echocardiography and its Impact on the Management of Congenital Heart Disease,” Echocardiography, vol. 34, no. 12, pp. 1760-1767, 2017. DOI:10.1111/echo.13713

[17] Dong J., Liu S., Liao Y., Wen H., Lei B., Li S., and Wang T., “A Generic Quality Control Framework for Fetal Ultrasound Cardiac Four- Chamber Planes,” IEEE Journal of Biomedical and Health Informatics, vol. 24, no. 4, pp. 931- 942, 2019. DOI:10.1109/JBHI.2019.2948316

[18] Fu H., Zhang A., Sun G., Ren J., Jia X., Pan Z., and Ma H., “A Novel Band Selection and Spatial Noise Reduction Method for Hyperspectral Image Classification,” IEEE Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-13, 2022. https://doi.org/10.1109/TGRS.2022.3189015

[19] Gong Y., Zhang Y., Zhu H., Lv J., Cheng Q., Zhang H., He Y., and Wang S., “Fetal Congenital Heart Disease Echocardiogram Screening Based on DGACNN: Adversarial One-Class Classification Combined with Video Transfer Learning,” IEEE Transactions on Medical Imaging, vol. 39, no. 4, pp. 1206-1222, 2019. DOI:10.1109/TMI.2019.2946059

[20] Gunarathne M., Wansekara W., Wimalarathna G., Godaliyadda G., Ekanayake M., Wijayakulasooriya J., and Rathnayake R., “Fetal Heart Abnormality Detection Based on Subspace Separation and Wiener Filtering,” in Proceedings of the IEEE International Conference on Industrial and Information Systems, Peradeniya, pp. 1-6, 2017. https://doi.org/10.1109/ICIINFS.2017.8300349

[21] Hasegawa H. and Nagaoka R., “Converting Coherence to Signal-to-Noise Ratio for Enhancement of Adaptive Ultrasound Imaging,” Disease Prognosis of Fetal Heart’s Four-Chamber and Blood Vessels in Ultrasound ... 1125 Ultrasonic Imaging, vol. 42, no. 1, pp. 27-40, 2020. https://doi.org/10.1177/0161734619889384

[22] Leclerc S., Smistad E., Pedrosa J., Ostvik A., Cervenansky F., Espinosa F., Espeland T., Berg E., Jodoin P., and Grenier T., “Deep Learning for Segmentation Using an Open Large-Scale Dataset in 2D Echocardiography,” IEEE transactions on Medical Imaging, vol. 38, no. 9, pp. 2198-2210, 2019. DOI:10.1109/TMI.2019.2900516

[23] Liu S., Wang Y., Yang X., Lei B., Liu L., Li S., Ni D., and Wang T., “Deep Learning in Medical Ultrasound Analysis: A Review,” Engineering, vol. 5, no. 2, pp. 261-275, 2019. DOI:10.1016/j.eng.2018.11.020

[24] Lizzi F. and Feleppa E., “Image Processing and Pre-Processing for Medical Ultrasound,” in Proceedings of the 29th Applied Imagery Pattern Recognition Workshop, Washington, pp. 187-192, 2000. DOI:10.1109/AIPRW.2000.953624

[25] Luo G. and Pan S., “Advances in Interventional Therapy of Fetal Structural Heart Disease,” Journal of Laboratory and Precision Medicine, vol. 33, no. 6, pp. 555-559, 2018.

[26] Maraci M., Bridge C., Napolitano R., Papageorghiou A., and Noble J., “A Framework for Analysis of Linear Ultrasound Videos to Detect Fetal Presentation and Heartbeat,” Medical Image Analysis, vol. 37 pp. 22-36, 2017. https://doi.org/10.1016/j.media.2017.01.003

[27] Mehdi M., Tabarestani S., Cabrerizo M., Barreto A., and Adjouadi M., “Denoising of Ultrasound Images Affected by Combined Speckle and Gaussian Noise,” IET Image Processing, vol. 12, no. 12, pp. 2346-2351, 2018. https://doi.org/10.1049/iet-ipr.2018.5292

[28] Morgan M., Covariance Decomposition of Ultrasonic Backscatter: Application to Estimation-based Image Formation, Ph.D. Thesis, Duke University, 2020. https://hdl.handle.net/10161/20853

[29] Narmadha S., Gokulan S., Pavithra M., Rajmohan R., and Ananthkumar T., “Determination of Various Deep Learning Parameters to Predict Heart Disease for Diabetes Patients,” in Proceedings of the International Conference on System, Computation, Automation and Networking, Pondicherry, pp. 1-6. 2020. DOI:10.1109/ICSCAN49426.2020.9262317

[30] Nurmaini S., Rachmatullah M., Sapitri A., Darmawahyuni A., Jovandy A., Firdaus F., Tutuko B., and Passarella R., “Accurate Detection of Septal Defects with Fetal Ultrasonography Images Using Deep Learning-Based Multiclass Instance Segmentation,” IEEE Access, vol. 8, pp. 196160-196174, 2020. DOI:10.1109/ACCESS.2020.3034367

[31] Oktay O., Ferrante E., Kamnitsas K., Heinrich M., Bai W., Caballero J., Cook S., de Marvao A., Dawes T., O‘Regan D., “Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement And Segmentation,” IEEE Transactions on Medical Imaging, vol. 37, no. 2, pp. 384-395, 2017. DOI:10.1109/TMI.2017.2743464

[32] Pan S., “Exploration and Prospect of Interventional Therapy for Fetal Congenital Heart Diseases in China,” Journal of Interventional Radiology, vol. 28, no. 10, pp. 915-920, 2019.

[33] Patra A. and Noble J., “Multi-Anatomy Localization in Fetal Echocardiography Videos,” in Proceedings of the IEEE 16th International Symposium on Biomedical Imaging, Venice, pp. 1761-1764, 2019. DOI:10.1109/ISBI.2019.8759551

[34] Qi X., Zhao B., Guo Y., Lou H., Pan M., Wang B., Peng X., and Chen R., “Quantitative Study of Early Fetal Echocardiography on Normal Fetal Ventricular Diameter and Z-Score,” Chinese Journal of Ultrasonography, vol. 29, no. 5, pp. 427-433, 2020.

[35] Radiopaedia, https://radiopaedia.org/, Last Visited, 2024.

[36] Richhariya B. and Tanveer M., “Least Squares Projection Twin Support Vector Clustering,” Information Sciences, vol. 533 pp. 1-23, 2020. https://doi.org/10.1016/j.ins.2020.05.001

[37] Rodriguez-Molares A., Rindal O., D’hooge J., Måsøy S., Austeng A., Bell M., and Torp H., “The Generalized Contrast-to-Noise Ratio: A Formal Definition for Lesion Detectability,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 67, no. 4, pp. 745-759, 2019. https://doi.org/10.1109/TUFFC.2019.2956855

[38] Rossi L., Akbar K., and Prati A., “A Novel Region of Interest Extraction Layer for Instance Segmentation,” in Proceedings of the 25th International Conference on Pattern Recognition, Milan, pp. 2203-2209, 2021. DOI:10.1109/ICPR48806.2021.9412258

[39] Selvathi D. and Chandralekha R., “Fetal Biometric Based Abnormality Detection During Prenatal Development Using Deep Learning Techniques,” Multidimensional Systems and Signal Processing, vol. 33, no. 1, pp. 1-15, 2022. https://doi.org/10.1007/s11045-021-00765-0

[40] Sharma A. and Singh J., “Image Denoising Using Spatial Domain Filters: A Quantitative Study,” in Proceedings of the 6th International Congress on Image and Signal Processing, Hangzhou, pp. 293- 298, 2013. DOI:10.1109/CISP.2013.6744005

[41] Shi J., Zhou S., Liu X., Zhang Q., Lu M., and Wang T., “Stacked Deep Polynomial Network Based Representation Learning for Tumor Classification with Small Ultrasound Image Dataset,” Neurocomputing, vol. 194, pp. 87-94, 1126 The International Arab Journal of Information Technology, Vol. 21, No. 6, November 2024 2016. https://doi.org/10.1016/j.neucom.2016.01.074

[42] Simcha Y., Cohen S., and Messing B., “First and Early Second Trimester Fetal Heart Screening,” Current Opinion in Obstetrics and Gynecology, vol. 19, no. 2, pp. 177-191, 2007. DOI:10.1097/GCO.0b013e3280895de6

[43] Singh P., Mukundan R., and De Ryke R., “Feature Enhancement in Medical Ultrasound Videos Using Contrast-Limited Adaptive Histogram Equalization,” Journal of Digital Imaging, vol. 33, no. 1, pp. 273-285, 2020. https://doi.org/10.1007/s10278-019-00211-5

[44] Smistad E. and Løvstakken L., “Vessel Detection in Ultrasound Images Using Deep Convolutional Neural Networks,” in Proceedings of the International Workshop on Deep Learning in Medical Image Analysis, pp. 30-38, 2016. https://doi.org/10.1007/978-3-319-46976-8_4

[45] Sombune P., Phienphanich P., Phuechpanpaisal S., Muengtaweepongsa S., Ruamthanthong A., and Tantibundhit C., “Automated Embolic Signal Detection Using Deep Convolutional Neural Network,” in Proceedings of the 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3365-3368, 2017. DOI:10.1109/EMBC.2017.8037577

[46] Someshwaran G. and Sarada V., “An Improved Detection of Fetal Heart Disease Using Multilayer Perceptron,” in Proceedings of the International Conference on Intelligent Computing for Sustainable Development, Hyderabad, pp. 186- 199, 2023. https://doi.org/10.1007/978-3-031- 61298-5_15

[47] Sundaresan V., Bridge C., Ioannou C., and Noble J., “Automated Characterization of the Fetal Heart in Ultrasound Images Using Fully Convolutional Neural Networks,” in Proceedings of the IEEE 14th International Symposium on Biomedical Imaging, Melbourne, pp. 671-674, 2017. DOI:10.1109/ISBI.2017.7950609

[48] Shinde S. and Martinez-Ovando J., “Heart Disease Detection with Deep Learning Using a Combination of Multiple Input Sources,” in Proceedings of the IEEE 5th Ecuador Technical Chapters Meeting, Cuenca, pp. 1-3, 2021. DOI:10.1109/ETCM53643.2021.9590672

[49] Tanveer M., Gupta T., Shah M., and Richhariya B., “Sparse Twin Support Vector Clustering Using Pinball Loss,” IEEE Journal of Biomedical and Health Informatics, vol. 25, no. 10, pp. 3776- 3783, 2021. DOI:10.1109/JBHI.2021.3059910

[50] Uma R., Roy F., Filly, and Copel J., “Prenatal Imaging: Ultrasonography and Magnetic Resonance Imaging,” Obstetrics and Gynecology, vol. 112, no. 1, pp. 145, 2008. DOI:10.1097/01.AOG.0000318871.95090.d9

[51] Wang H. and Avillach P., “Diagnostic Classification and Prognostic Prediction Using Common Genetic Variants in Autism Spectrum Disorder: Genotype-Based Deep Learning,” JMIR Medical Informatics, vol. 9, no. 4, pp. 24754. 2021. https://doi.org/10.2196/24754

[52] Wang H., Li L., Chi L., and Zhao Z., “Autism Screening Using Deep Embedding Representation,” in Proceedings of the 19th International Conference on Computational Science, Faro, pp. 160-173, 2019. http://dx.doi.org/10.1007/978-3-030-22741-8_12

[53] Wu B., Liu P., Wu H., Liu S., He S., and Lv G., “An Effective Machine-Learning Based Feature Extraction/Recognition Model for Fetal Heart Defect Detection from 2D Ultrasonic Imageries,” CMES-Computer Modeling in Engineering and Sciences, vol. 134, no. 2, pp. 1069-1089, 2023. DOI:10.32604/cmes.2022.020870

[54] Wu B., Wu H., Du Y., and Liu P., “Automatic Recognition of Fetal Heart Standard Section Based on Fast-RCNN,” in Proceedings of the IEEE 15th International Conference on Anti- Counterfeiting, Security, and Identification, Xiamen, pp. 70-73, 2021. DOI:10.1109/ASID52932.2021.9651487

[55] Xu L., Liu M., Shen Z., Wang H., Liu X., Wang X., Wang S., Li T., Yu S., and Hou M., “DW-Net: A Cascaded Convolutional Neural Network for Apical Four-Chamber View Segmentation in Fetal Echocardiography,” Computerized Medical Imaging and Graphics, vol. 80, pp. 101690, 2020. https://doi.org/10.1016/j.compmedimag.2019.101 690

[56] Yang L., Ru T., Gu Y., Yang Y., Yang L., and Wang Z., “The Value of Refinement of Four- Chamber Cardiac Screening Technique in Improving Prenatal Diagnosis Rate of Fetal Congenital Heart Disease,” Chinese Journal of Perinatal Medicine, vol. 17, no. 8, pp. 570-572, 2014.

[57] Yuya H., Muramatsu C., Kobayashi H., Hara T., and Fujita H., “Automated Detection of Masses on Whole Breast Volume Ultrasound Scanner: False Positive Reduction Using Deep Convolutional Neural Network,” in Proceedings of the Conference Record of the Society of Photo- Optical Instrumentation Engineers, Orlando, pp. 717-722, 2017. https://doi.org/10.1117/12.2254581

[58] Zhang L., Li K., Qi Y., and Wang F., “Local Feature Extracted by the Improved Bag of Features Method for Person Re-Identification,” Neurocomputing, vol. 458, pp. 690-700, 2021. doi.org/10.1016/j.neucom.2019.12.142